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RESUMEN

Los métodos tradicionales del tipo ARMA(p,q), Fiering, Svanidze entre otros se han usado con éxito en la 
estimación de series de tiempo hidrológicas tales como escurrimientos, volúmenes de ingreso a embalses, 
series con componente invernal, precipitación; sin embargo su aplicación a los datos promedios mensuales 
de las temperaturas de la superficie del mar (SST), que de manera conjunta describen mucho de los patrones 
de los escurrimientos en el país (González et al., 2000), no logra reproducir las altas correlaciones existentes 
entre los registros históricos así como las correlaciones cruzadas. En este artículo se presenta una breve 
descripción de tres métodos tradicionales, seguida de su aplicación para el caso de estudio y algunos co-
mentarios sobre las limitaciones de los resultados obtenidos. Finalmente se propone un método que permite 
aprovechar las virtudes de dos de los métodos (Fiering y Svanidze), con lo que es posible obtener registros 
sintéticos que preservan las características estadísticas del registro histórico, especialmente las autocorre-
laciones y las correlaciones cruzadas.

ABSTRACT

Traditional methods, autoregressive moving average models ARMA(p,q), Fiering, Svanidze, among oth-
ers, have been successfully used in estimating hydrological time series such as flows, inflow volumes to 
reservoirs, series with a winter component, precipitation; nevertheless, their application to mean average 
sea surface temperatures (SST) in three regions, which jointly explain most of the rainfall and runoff pat-
terns in México (González et al., 2000), did not get to reproduce the high autocorrelations shown by the 
historical temperature records of each region neither the cross correlations among them. In this paper, a 
brief description of three traditional methods is presented, followed by their application to the case of study 
and some comments about the limitations of the obtained results. Finally, a procedure is proposed which 
allows to take advantage of the virtues of both methods (Fiering and Svanidze), through which it is possible 
to obtain synthetic records that preserve the statistical characteristics of the historical record, specially the 
autocorrelations and the cross correlations.
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1.	Introduction
Water temperatures in the ocean are physical parameters with a crucial influence in the behavior 
of the hydrological cycle components; precipitation and runoff variations are closely related to 
temperature values in the waters of continental or maritime streams.

In the last decades studies have shown high values for the coefficients of correlation between sea 
surface temperature data and those of precipitation series (Shukla and Wallace, 1983; Ropelewski 
and Halpert, 1986). From these studies, it can be concluded that humid years are related to the “El 
Niño” phenomenon. (Hongbing and Furbish, 1997). Additionally, many countries in the world are 
seriously affected by the “El Niño” phenomenon (which is associated to adverse warm effects) or 
by “La Niña” (adverse cold effects); such episodes are related to a variation of + 0.5 ºC in the sea 
surface temperature averaged over three consecutive months (NOAA, 2005).

In México, González et al. (2000), have proposed equations through which the runoff behavior 
in different regions of México can be estimated from the values of the teleconnection indices and 
from anomalies in the sea surface temperature of three regions associated with the “El Niño” and 
“La Niña” phenomena (Fig. 1).

In this paper a combination of Fiering and Svanidze methodologies to generate synthetic long 
term sea temperature records that maintain the statistical characteristics of their historical records 
is proposed, and is applied in “El Niño” regions. These records could be applied for the simulation 
of the possible long term variation of runoff in events that are statistically similar to the historical 
records. 

For the study of this phenomenon, daily measurements are taken by the NOAA to get the 
monthly reports of the sea surface temperatures and their respective anomalies (differences with 
respect to the average in different ocean regions).

The following is a summary of the classic methodologies used in the generation of synthetic 
records.

1.1 Background
A problem that arises in climatic and hydrological studies is the insufficiency of measured historic 
data and incomplete or short-term records. Consequently, it is fundamental to rely upon algorithms 
through which it is possible to obtain time series records of longer duration than those available, 
while striving to preserve, as much as possible, the historical statistics of the samples. 

Undoubtedly, one of the tools most often used in hydrology for time series analysis are the 
stochastic ARMA(p,q) methods, which are used to model most of the processes of the hydrological 
cycle, and are applied both in problems related to the modeling of subterranean flow (Elfeki, 
2006), and in problems related to precipitation regime and runoff within a region. For example, the 
precipitation forecast for dry periods can be modeled using Markov chains, and in general, with 
the Monte Carlo method (Sanso and Guenni, 1999; Thyer and Kuczera, 2003a and b). It must be 
noted that an autoregressive model of order one is commonly known as a Markov model, in which 
it is assumed that historical series have a normal probability distribution function.
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Currently, comparisons are made between autoregressive procedures, ARMA(p,q) and artificial 
neural networks (ANN) or non-parametric methods (nearest-neighbors) (Toth et al., 2000). However, 
ARMA models will always be a reference parameter to validate results (Abrahart and See, 2000;  
Tingsanchali and Gautam, 2000).

With these models it is possible to analyze extreme event occurrences, as well as uncertainties, 
possible climate changes and the strategies to determine even dam operation policies. Such is 
the case of the Thomas-Fiering model, which has been used to characterize the monthly change 
in the elevations of water levels in lakes and reservoirs (Somlyódy and Honti, 2005). Furthermore, 
the study of the conceptual models of the rainfall-runoff processes developed for different climatic 
scenarios may be nowadays performed with autoregressive models (Liden and Harlin, 2000).

Regarding climate change, remote sensitivity analyses undoubtedly contribute very importantly 
in these types of studies, and ARMA(p, q) models also have an exceptional applicability in image 
analysis, particularly to identify changes in diverse hydro-meteorological variables (Piwowar 
and Ledrew, 2002). However, a problem that arises in climatic and hydrological studies is the 
insufficiency of measured historic data and incomplete or short-term records. Consequently, it is 

160W

−1.5 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Degrees C18:01:10    TUE    JAN  9   2007

80S

60S

40S

20S

20S

40S

60S

80S

120W

N

N3+4 N3 N1+2 SOUTH
AMERICA

MÉXICO

USA

ATLANTIC OCEAN

PACIFIC OCEAN

80W 40W 0

Fig. 1. Location of “El Niño” regions in the Pacific Ocean.



370 M. L. Arganis Juárez et al.

fundamental to rely upon algorithms that allow the acquisition of time series records of longer 
duration than those available, while striving to preserve, as much as possible, the historical statistics 
of the samples.

In general, ARMA(p,q) models have made possible, for over a decade, the study of several 
autocorrelation functions of the hydro-climatological variables that are used to describe the 
processes of the hydrologic cycle. Nevertheless, a wide range of improvements to the procedures 
traditionally used can be found. For example, through empirical models based on daily values series, 
the ARMA-GARCH/EGARCH schema were created (Karanasos and Kim, 2003). In the case of 
periodical series, the modified fragment method (Srikanthan and Zhou, 2003), and in general, the 
Box-Jenkins models (Calzolari et al., 1998; Katsamaki et al., 1998) can be mentioned. 

The main problem observed in many of these methods of periodic generation lies in that, as the 
order of moment progresses, it becomes more difficult to reproduce the corresponding statistics. 
That is, some of these methods are able to reproduce the average, but not the statistics related to 
moments of higher order such as the standard deviation or the coefficient of skew. Another limitation 
of some of these procedures is their inability to reproduce the autocorrelation between the values of 
the last period of a year (i) with respect to those of the first period of the following year (i+1); this 
is true for the fragment method of Svanidze (Svanidze, 1980) in its traditional form as is described 
below. Finally, the majority of the classic models have not been designed to reproduce the cross 
correlation between the historical values recorded in different sites. 

For the reasons stated above, this article proposes an algorithm to generate synthetic series 
that allows us to reproduce the autocorrelation between the first period of a year (i+1) and the last 
period of the previous year (i), while preserving the historical statistics of the historical samples, 
and specially the cross correlations between simultaneous values measured in three rectangular 
regions nearby the Equator, which are defined by their geographic coordinates and are related to 
the “El Niño” phenomenon, called Region Niño 1+2 (N1+2), Region Niño 3 (N3) and Region 
Niño 3+4 (N3+4) (Fig. 1). 

2.	Methodology
2.1 Svanidze method
The Svanidze method, or fragments method, in its original version (Svanidze, 1980) is used to 
generate synthetic records of a periodical series; the historical record of the analyzed series (daily, 
monthly, bimonthly, etc.) for n years, as well as the annual total of the recorded value are required 
(Eq. 1). 

A statistical analysis to estimate the distribution function of best fit is performed on the annual 
total; once such distribution is obtained, m synthetic annual total values are randomly generated 
with the fitted distribution function. On the other hand, for each recorded year the fraction of each 
period with respect to the annual total is calculated (Eq. 2); subsequently, m years are randomly 
selected from the historic record, and their corresponding fractions are multiplied by each random 
annual total, and a synthetic periodical series of m years is determined.

VTi VMi,j=
12

j=1
;       i = 1, 2,….nΣ 	 (1)
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VTi

FVMi,j

VMi,j= 	 (2)

Where:

n	 number of year for the historical record
m	 number of years for the generated synthetic series
i	 counter of years from the historical record (i=1,2,….n)
j	 counter corresponding to the month under consideration (j=1,2,….12).
VTi	 is the annual total of year i for the analyzed variable in the series; VMi,j is the monthly value j 

for the year i for the analyzed variable in the series; FVMi,j is the fraction of the monthly value 
j for the year i with respect to VTi (Domínguez et al., 2001). 

2.2 Modified Svanidze method
The modification to the Svanidze method consists in applying it to two or more periodical series; 
it was originally used to generate monthly feed volumes for two reservoirs in series (Domínguez 
et al., 2001). When two or more series are involved, the annual total is determined for each one, 
as well as the fragments with respect to the annual total (Eqs. 3 and 4); afterwards, the sum of 
the annual totals for the n series and the corresponding proportion for each series is calculated; 
a statistical analysis is performed on the sum of the annual totals to determine the probability 
distribution function of best fit. 

With such distribution m synthetic random values for the sum of the annual totals are generated. 
On the other hand, m years are randomly selected from the historical record, to consider the 
fragments corresponding to those n years, as well as the proportion with respect to the sum of 
the totals. Each random proportion is multiplied by the total sum, which leads to random totals 
for each series. Finally, these totals are multiplied by the random fragments and with this, the 
m years of synthetic records for each series are determined.

SVTi VTi,k=
N

Σ
k=1

;       i = 1, 2,….n	 (3)

SVTi

FVi,k

VTi,j= 	 (4)

Where SVTi is the sum, for the N series, of the annual totals for the analyzed variable in year 
i; VTi,k is the total value of the analyzed variable in the year i of the series k; FVi,k is the fraction 
of the total value of the variable in year i, for the series k with respect to SVTi ; k is the counter 
variable corresponding to the series under consideration (k = 1, 2,….N), where N is the total 
number of series.

This method has the advantage of its relative simplicity, but its main disadvantage is that, due 
to the way years are selected, the correlation between the last period of a year and the first period 
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of the following year is not preserved. To reduce this deficiency, a record that takes into account 
the naturally low correlation that exists in the change of seasons may be used (for example, in 
the case of precipitation or runoff, when moving from dry to flood seasons, so a hydrologic year 
is defined, having July as the first month and June from next year as the last month instead of 
January to December).

The sea surface temperatures are characterized by their high autocorrelations from one month 
to another and the Svanidze modified method has difficulties in reproducing this behavior for the 
last month of year i to the first month of year i + 1; so, it is necessary to research classical methods 
and a possible combination of methodologies to overcome this situation.

2.3 Autoregressive moving average models, ARMA(p, q)
These models are mainly applied to annual series; they are a combination of the autoregressive 
models AR(p) and the moving average models MA(q) (Box and Jenkins, 1976; Salas et al., 1988); 
the value of p is the number of parameters associated with the autoregressive part while the value 
of q represents the number of parameters associated with the moving average component. The 
general representation of ARMA(p,q) models is:

xt p,1 p,2 p,p t q,1 q,2 q,qt−1 t−2 t−q− − − −xt−1 xt−2 ... ...xt−p= + + + + 	 (5)

where ht is a random variable, calculated in time t; fp,i, i=1,2,…,p are the parameters of the 
autoregressive component; qq,j, j=1,2,…,q are parameters of the moving average component. This 
method considers data and residuals to be normal and independent. A property of the ARMA(p,q) 
models is that autocovariances from order 1 to order q depend on the autoregressive parameters fp,i 
and on the moving averages qq,j, while for higher orders they are only dependent upon autoregressive 
parameters (Meddahi, 2003). In the case of discrete series, the autocovariance C of order l (lag) 
is calculated as:

Cl n

xk(xk+1)
=

n−l

Σ
k=1 l = 0, 1, 2, 3,….n

	 (6 )

The coefficient of autocorrelation of order one r1 is obtained through dividing the autocovariance 
of order one by the autocovariance of order zero, that is:

Cl

C0
rl = 	 (7)

Other important parameters for the selection of the ARMA model are the coefficients of partial 
correlation, which can be obtained with the following equations:

r1=1,1 	 (8)
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rp

p = 2, 3,...
1

rp −j

rj

p−1,j

p−1,j

p,p =
−

−

p−l

Σ
j=1
p−l

Σ
j=1

	 (9)

One criterion to select the p and q parameters of the ARMA model is the analysis of the variations 
of the correlogram (plotting rl versus l) and in the partial correlogram (fp,p versus p) (Salas et al., 
1988). 

Another selection procedure is the information criteria of Akaike, that is very frequently used 
in the definition of hydrograph parameters (Jena and Tiwari, 2006):

CIA(np) = nln( ) + 2np2
e 	 (10)

Where np = p+q is the number of parameters, n is the size of the annual series, 2
e is the variance 

of the residuals calculated by:

Ci Cx,n= +
p

Σ
i=1

q

Σ
i=1

− (−i)2
i iε

2 	 (11)

where s2 is the variance of the normalized series and Cx, h is the covariance between x and h

2.4 Annual Fiering method
The annual Fiering method is the particular case of an ARMA(1,0), commonly known as a Markov 
model; it assumes that data have a normal distribution, with average m and variance 2

x; it directly 
generates synthetic values with a normal distribution function which preserves the average, the 
variance and the coefficient of autocorrelation of order one for the historical series. The generation 
model has the following form:

xi tir1µ= + +(xi-1 − µ) (1 − r  )2
1x 	 (12)

where xi is the estimated value at instant i; m is the average of the historical series; sx is the standard 
deviation of the historical series; r1 is the coefficient of autocorrelation of order one; ti is a random 
number with standard normal distribution (zero average and standard deviation equal to one). Due 
to the characteristics of the standard normal distribution function, sometimes negative values for 
ti may be obtained and this may lead to xi values that are also negative; both values are utilized to 
generate the following values, but must be considered null when performing a simulation process.

This method may be employed to generate annual time series that are not normal; for this the 
variable is transformed so that it has a normal distribution, the generation is performed and finally 
the de-normalization process is carried out. Nevertheless, since the transformations that are used 
for normalization (calculation of logarithms, Box-Cox transformations (Kite, 1988)) are not linear, 
the results obtained are approximations.
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2.5 Data analysis
Information of the recorded values of the monthly sea surface temperature (SST) was obtained for 
the period of 1950 to 2003 in the Regions Niño 1+2, Niño 3 and Niño 3+4 that are located in the 
Pacific Ocean (Fig. 1); these values were reported by the Climate Prediction Center of the National 
Weather Service that belongs to the National Oceanic and Atmospheric Administration (NOAA). 
To identify a possible trend or a cyclical component, the variation in the time of the monthly sea 
surface temperatures (SST) in each region was analyzed (Figs. 2 a, b and c). The monthly and 
annual average temperature statistics were calculated; additionally, the autocorrelations between 
month j+1 and month j as well as the cross correlations of month i of region k with month i of 
region k+1 (Figs. 3a and b) were obtained. 

Figures 2 a, b and c do not indicate a trend of the temperatures to increase over time; on contrast, 
a cyclical component is manifested, following along the seasonal variation of every year. Figure 3a 
shows a high autocorrelation between the temperatures of consecutive months, and on 3b important 
cross correlations are highlighted, particularly between the Regions Niño 1+2 and Niño 3, and 
between Niño 3 and Niño 3+4.

With the preceding information the Svanidze method could be employed since it is able to 
reproduce the autocorrelations from a month to another month in the same period of the year, as 
well as the cross correlations; nonetheless, the Svanidze procedure has problems in maintaining 
acceptable correlation values between the last period of year i and the first period of year i + 1. To 
justify the possible use of an ARMA(p, q) model for the annual average data, the total and partial 
correlogram for each region were determined, with their corresponding confidence intervals (a= 
0.05); the respective correlograms are shown in Figs. 4 to 6.

In these figures it can be observed that the autocorrelation for the annual values falls practically 
always within the confidence intervals; this means that the use of an ARMA(p, q) model should 
not lead to an improvement of results. 
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3.	Results
3.1 Application of Svanidze, modified Svanidze and ARMA-Svanidze methods
The historical statistics and the correlations of the temperatures in the three regions were compared 
to the results obtained by the application of three methods: the Svanidze method to each region 
under analysis, the modified Svanidze method (simultaneously considering the three regions) and 
an ARMA-Svanidze combined form, using an ARMA(2,1) model (selected after applying the 
information criterion of Akaike) to generate the annual average data and the Svanidze method to 
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consider simultaneously the three regions for the monthly data. The results are shown in Figs. 7 
to 11. According to Figs. 7 to 11, it can be observed that the average is adequately reproduced by 
the three methodologies, (the maximum difference of 0.24% was observed by applying Svanidze 
to the Region Niño 1+2); regarding the standard deviation the worst method is the ARMA-
Svanidze, with maximum differences up to 0.59 in the regions Niño 3 and Niño 3+4; with respect 
to the coefficient of skew practically all methods present difficulties, mainly in the Region Niño 
1+2 where the maximum differences were of 1.87 for the ARMA-Svanidze method, 1.85 for the 
Svanidze method and 1.37 for modified Svanidze; autocorrelations are adequately reproduced 
with all the procedures (with maximum differences on the order of 0.10), with the exception of the 
autocorrelation between the last period of year i and the first period of year i+1, with differences on 
the order of 0.90 for the three methods. As was expected, the cross correlations were not reproduced 
by the Svanidze method applied individually to each region whereas with the ARMA-Svanidze 
and modified Svanidze methods the maximum differences were only of 0.13 and 0.25 respectively.
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3.2 Application of Fiering-Svanidze method
Taking into account that autocorrelations do not show a clear cyclical component, it was proposed 
to use the series corresponding to the sum of the monthly values for the three regions under 
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analysis, its standardization month to month for each year, with the corresponding statistics, and 
the posterior synthetic generation as if each month were a year, with the assistance of the Annual 
Fiering method; afterwards, the un-standardization of the series would be performed and finally 
the random distribution of the monthly percentages for each region would be carried out through 
the Svanidze method. 

The monthly series was formed by the sum, month to month, of the 54 recorded years in the 
three regions under analysis. 
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Fig. 10. Coefficient of autocorrelation calculated by different synthetic generation methods with respect to 
the historical record.
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Tsi,j i = 1, 2,...54 j = 1, 2,...12Ti,j
1 Ti,j

2= + Ti,j ; ; 3+ 	 (13)

Where Ti,j
k is the measured temperature of the month j of year i in region k; Tsi,,j is the sum of 

the measured temperatures in month j of year i for the three regions.
For this summed record of n years the average and the standard deviation of each month were 

calculated.

Tsj Tsi,j=
n

Σ
i=1

n
1 n = 54;       j = 1, 2,….12; 	 (14)

2
1/2

(Tsi,j − Tsj )=
n

Σ
i=1

n  1
1 ;       j = 1, 2,….12STs  j 	 (15)

To remove the cyclical component of the average and the standard deviation, the summed record 
was standardized subtracting the average and dividing by the standard deviation of each month.

(Tsi,j − Tsj )= ;     i = 1, 2,….,n;     j = 1, 2,….,12TEi,j STs j

	 (16)

Next, a record TCk was built, in only one column, placing historical year 1 through historical 
year 54, one after another, the values for months 1 through 12. 

= ;     i = 1, 2,…., 54;     j = 1, 2,…., 12TEi,jTC12(i − 1)+j 	 (17)

Once the autocorrelogram and the partial correlogram of the new series were obtained, it was 
observed that it can be approximated with an AR(1) model or the equivalent Fiering method. 

The Fiering method was then applied to generate ten synthetic monthly series of the same size 
as the historical record (54 years). It was verified that the obtained series had an average of zero 
and a standard deviation approximately equal to one.

To build the record of each generated month and year, the first 12 values of the series were made 
to correspond to the 12 months of the first year; values 13 to 24 corresponded to the 12 months of 
the second year, and so on successively. 

The obtained series corresponded to the synthetic values standardized from the sum of the 
regions, so it was necessary to un-standardize it using the average and the standard deviation of 
each month of the historical series (Eqs. 14 and 15). 

The results of the historical and synthetic statistics for the summed region are presented in 
Figure 12 which shows that, with the exception of the coefficient of skew, statistics are adequately 
reproduced. 

On the other hand, for each month and year of the historical record the fraction for each region 
with respect to the historical sum was available:
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=kFTi,j ;       k = 1,2,3 Tsi,j

kTi,j 	 (18)

A random selection of an historical year i and therefore of its fractions FTi,j
k was performed to 

distribute, in each one of the regions, the generated summed record, in a similar way to the process 
of the modified Svanidze method. The results of the statistics for each region compared against 
the historical are shown on Figures 13 to 17.

In Figures 13 and 14 it is observed that the average and the standard deviation are well 
reproduced, with maximum differences in the averages up to 1.73% , for the Region Niño 1+2, 
1.76% for the Region Niño 3 and 1.88% for the Region Niño 3+4; in the standard deviation there 
are differences up to 0.57 in the Region Niño 3+4. The coefficient of skew is reproduced at least 
in its tendency (Fig. 15), but with maximum differences up to 1.83 for the Region Niño 1+2.

Concerning Figure 16, results are encouraging inasmuch as the combination of the Fiering and 
Svanidze methods, as has heretofore been proposed, overcomes the deficiencies that appeared in 
previous procedures (Svanidze and the ARMA-Svanidze combination) due to the good concordance 
between the coefficients of correlation of the first month of the subsequent year with respect to 
the last month of the preceding year, with a maximum difference of 0.10 for the Region Niño 1+2 
(February with January), 0.14 for the Niño 3 (April with March) and 0.12 for the Region Niño 
3+4 (June with May). The behavior of the cross correlations is reproduced as well (Fig. 17), with 
a maximum difference 0.27 of Region Niño 1+2 with Region Niño 3+4.

Finally, the lagged correlation of three consecutive months was estimated for the Fiering-
Svanidze method for the three regions, in order to analyze some results directly related with the 
persistence during several months. A good agreement with the historical coefficients was observed. 
This is shown in Figure 18. In addition the average frequency between two “El Niño” and two “La 
Niña” episodes resulted of 4.9 and 2.1 years respectively, in comparison with the frequency of 4.9 
and 3.6 years for the historical record.
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Fig. 13. Comparison of the average between regions, Fiering-Svanidze.
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4.	Conclusions and recommendations
Sea surface temperatures determine in part runoff conditions in vast continental zones. Such is the 
case for the sea surface temperatures in the regions called Region Niño 1+2, Region Niño 3 and 
Region Niño 3 + 4, which strongly influence runoff in the Pacific basins of México. Historical 
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Fig. 18. Comparison of the lagged correlation of  three consecutive months for the three regions.
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temperature series are, however, limited, so it becomes convenient to generate synthetic records 
of longer duration from which it will be possible to visualize scenarios that have not appeared or 
have not been measured. 

Synthetic records must preserve statistical characteristics of the historical series, which 
becomes difficult in the case study fundamentally because the monthly autocorrelations are 
maintained above 0.75 throughout the year and also because the cross correlations between 
regions are high as well. 

The autocorrelations between annual average sea surface temperatures in the analyzed regions 
show that the application of an AR(1) model is justified, due to their scarce autocorrelation (see 
Figs. 4 to 6). Nevertheless, the information criterion of Akaike reports that good results would be 
obtained with an ARMA(2,1) model. 

In conformance with these results, records were generated by utilizing the Svanidze method, 
the modified Svanidze method, and a combination of the ARMA(2,1) model for annual data and 
the Svanidze method to distribute between the regions and months.

The results show that the behavior pattern of the average and the standard deviation were reproduced 
(see Figs. 8 and 9), as well as the coefficient of skew to a lesser degree (Fig. 10), but the coefficients of 
autocorrelation were not reproduced for the last month of year i with respect to the first month of the 
following year (Fig. 11). The cross correlations were preserved with the Modified Svanidze method 
and with the ARMA-Svanidze, while this was not accomplished by Svanidze applied independently 
to each region (Fig. 12). In general terms and due to the above considerations, we consider that the 
Modified Svanidze method is the one that produces the best response for the statistics and the cross 
correlations in the analyzed monthly data series; however, its deficiency to reproduce the correlation 
of the last period of year i and the first period of year i + 1 persists.

The final proposal named Fiering-Svanidze consisted in generating the monthly data from the 
summed record of the three stations as if they were annual and applying the Fiering method. The 
generated values were later distributed in each region with the random procedure employed by 
Svanidze. In this way, in addition to adequately reproducing the statistics of each region and the 
cross correlations between regions, the coefficients of autocorrelation in the three analyzed regions 
were reproduced as well (Figures 16 and 17).

The generation of synthetic samples using this last proposed combination of methodologies 
allowed us to analyze the possible long term behavior of the values for the sea surface temperature 
and to model “El Niño” or “La Niña” episodes which determine in part the hydrological behavior 
of the Pacific basins in Mexico.
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