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RESUMEN

La cizalladura del viento y los cambios repentinos en su dirección y velocidad son un peligro familiar para la 
aviación, así como un fenómeno complejo y difícil de predecir. Las causas de las cizalladuras pueden variar 
según el lugar. En algunos sitios se deben a reventones, columnas localizadas de aire descendente, mientras 
que en otros lugares las cizalladuras pueden ser consecuencia de fenómenos meteorológicos de mesoescala. 
Por lo tanto, los algoritmos y técnicas que se utilizan para predecir las cizalladuras del viento causadas por 
reventones, como en Wolfson et al. (1994), no serán aplicables en un aeropuerto donde la cizalladura del 
viento y la turbulencia surgen de las condiciones locales pero de escala mayor. Este trabajo presenta la im-
plementación y aplicación de redes neuronales caóticas oscilatorias (CONN) para predecir la brisa marina y 
la cizalladura del viento que se originan en los fenómenos meteorológicos de mesoescala en el Aeropuerto 
Internacional de Hong Kong. Utilizando datos históricos locales proporcionados por el Observatorio de Hong 
Kong se muestra, a partir de simulaciones, que CONN es capaz de predecir los movimientos del viento y 
hasta cizalladuras con un nivel razonable de precisión.

ABSTRACT

Wind shear, sudden change in the wind direction and speed, is a familiar hazard to aviation as well as a complex 
and hard-to-predict phenomenon. The causes of wind shear may be different in different locations. In some 
places it is caused by microbursts, viz. localized columns of sinking air brought by thunderstorms, while in other 
places wind shear may result from mesoscale weather phenomena. Thus, algorithms and techniques used to 
predict wind shear caused by microbursts, as in Wolfson et al. (1994), will not be applicable at an airport where 
wind shear and turbulence arise from larger-scale but local conditions. This paper presents the implementation 
and applications of chaotic oscillatory-based neural networks (CONN) for predicting sea breeze and wind shear 
arising from mesoscale weather phenomenon at the Hong Kong International Airport. Using historical local 
data provided by the Hong Kong Observatory, we show from simulations that CONN is able to forecast the 
short-term wind evolution and even wind shear events with a reasonable level of accuracy.
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1. Introduction
The term wind shear refers to a change in the wind direction and speed that typically lasts from 3 to 
40 seconds and results in a sustained change in the headwinds experienced by aircraft. A decrease 
in headwind will result in decreased lift and this in turn may mean that an aircraft fails to fly at its 
planned flight path (HKO, 2010). 

While wind shear is a familiar hazard to aviation, it is also a complex and hard-to-predict 
phenomenon. One particular difficulty is that the causes of wind shear may be different in different 
locations. In some places wind shear is caused by microbursts, viz. localized columns of sinking 
air, while in other places wind shear may result from mesoscale weather phenomena associated 
with seasonal prevailing winds and local topographies. Thus, algorithms and techniques used 
to predict wind shear caused by microbursts, as in Wolfson et al. (1994), will not be applicable 
at an airport such as Hong Kong International Airport (HKIA), where the main causes of wind 
shear and turbulence are strong winds blowing across the local hills (Pérez-Munuzuri et al., 
1996; Shun, 2004), the disturbed airflow associated with tropical cyclones, and the fact that at 
HKIA winds turn westerly over the western part of the coastally-sited airport in an environment 
of prevailing easterly winds due to sea breeze (HKO, 2010). Wind shear is not uncommon at 
HKIA, where it is experienced at significant level by about one in 500 arriving and departing 
flights and as moderate to severe turbulence in around one in 2000 flights, with many occurrences 
being in non-rainy and clear-air conditions (HKO, 2010).

A further difficulty in the prediction of wind shear is that it is hard to model, not least because 
it arises over very short time periods. Artificial Neural Networks (ANN) have been applied with 
success to various time series prediction problem and even weather prediction problems, and may 
be useful in this regard.

Han et al. (2004) try to model and predict chaotic series based on a recurrent predictor neural 
network. Wang and Fu (2005), and Wang et al. (2001) present the use of fuzzy neural networks, 
multi-layer perceptor neural networks (MLP) and radial basis function neural networks in data 
dimensionality reduction, classification, and rule extraction. Castillo and Melin (2002) make use 
of hybrid intelligent systems for the estimation of the fractal dimension of a geometrical object. 
On the other hand, Mitra et al. (2010) used neural network approach for temperature retrieval. 
Bilgili et al. (2007) used hourly mean wind speeds and ANN to predict mean monthly wind speeds. 
More and Deo (2003) used ANN and wind forecasts to predict the power output of wind turbines. 
Öztopal (2006) used ANN in predicting the wind potential of various regions. Barbounis et al. 
(2006) used ANN to forecast long-term wind speeds and their potential for use in generating wind 
power. In all of these cases, however, the predictions were only of mean hourly or monthly wind 
velocities and covered relatively large regions, making them inapplicable to very short time frames 
and localized considerations of airport wind shear problems.

One way to deal with the short-term nature of wind shear prediction is to apply chaotic neural 
networks (Kwong et al., 2008; Wong et al., 2008) which model the non-linear behavior of neurons, 
activating a neuron with a non-linear output function, thereby providing for much more complex 
behavior than the simple thresholds functions used in conventional ANN. Chaotic behavior offers 
weather forecasting with a rich library of useful behaviors (Zhang et al., 1998). Neural network 
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architectures and learning algorithms involving chaos have been used for the storage in memory of 
analog patterns (Imai et al., 2005). While it is hard to apply chaos theory to long-term prediction, 
it seems that, owing to its ability to focus on the simple deterministic relationships between what 
would appear to be random-looking data, it may be well-suited to short-term prediction, especially 
when a good model is lacking (Zeng et al., 1993). 

In this paper, we propose two applications that use chaotic oscillatory-based neural networks 
(CONN) to forecast the evolution of winds along the glide path and runway. One proposed application 
makes use of wind data measured by an automatic weather station (AWS) for the sea breeze forecast, 
while another makes use of accurate Doppler velocities measured by using LIDAR (Light Detection 
And Ranging data). Those data were collected by Hong Kong Observatory (HKO) at HKIA. 

An AWS enables measurements at remote areas and typically consists of data logger, battery, 
telemetry and meteorological sensors with an attached solar panel or wind turbine and mounted 
upon a mast. AWS can measure the meteorological data including temperature, wind speed, wind 
direction, humidity, pressure, rainfall and visibility.

LIDAR is an optical analogue of RADAR (RAdio Detection And Ranging). It uses a ground-
based pulsed laser to measure the velocity of aerosols in the air. LIDAR has previously been used 
to detect occurrences of wind shear, with high accuracy (Shun and Chan, 2008), but there has been 
little research into using it to forecast wind shear. 

The two proposed applications were tested in simulations and their predictions were compared 
with historical data. The applications were able to forecast the time, location and magnitude of 
sea breeze or wind shear event with considerable accuracy. This paper is organized as follows. 
Section 2b describes chaotic oscillators, which form the basis of our chaotic oscillatory-based neural 
networks (CONN) approach. Section 2c presents our methodology for applying CONN on wind 
shear forecasting. Section 3 presents our simulation and simulation results. Section 4 presents our 
conclusion and an outline for future work.

2. Methodology
The paper would discuss a Sea Breeze Forecast System (SBFS) for the forecasting of wind changes 
associated with sea breeze at HKIA, and a Wind Shear Forecast and Alerting System (WSFAS) 
for the short-term forecasting of significant windshear due to sea breeze or terrain disruption of 
the airflow at the airport. Both systems share a similar system architecture, they both contain, i) a 
series of data preparation processes for data cleaning, filtering, normalization, etc. and ii) Chaotic 
Oscillatory Based Neural Network as the learning unit and forecast engine. For the WSFAS, there 
will be a wind shear detection process after the CONN learning and forecast engine for capturing 
the wind shear events in the forecast. 

a) Data preparation
We have made use of the data for the wind shear forecast and alerting, including, air temperature, 
sea temperature, wind direction and wind speed from AWS that is located along the runway for 
the sea breeze forecast and Doppler velocity data derived from glide path scans of LIDAR for 
wind shear forecast. These collected meteorological data are processed by different preparation 
processes before being fed into the CONN model for learning.
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The AWS data are pre-processed with those invalid and missing data removed. They are then 
converted from 1-minute data into 10-minute mean values.

The LIDAR data are pre-processed with quality control algorithm (Chan et al., 2006). 
Outliers are detected by comparing each piece of radial velocity with neighboring data points. 
If the difference between them is larger than a predefined threshold, it will be smoothed using 
a median-filtered value. The threshold is determined from the frequency distribution of the 
difference in the velocities of the adjacent range/azimuthal gates of the LIDAR over a long 
period of time. Data quality control is kept to a minimum in order to avoid smoothing out 
the genuine wind fluctuations of the atmosphere (Chan et al., 2006). If data is missing from a 
particular location, any available valid velocity data from neighboring positions or time frames 
is used to derive a replacement velocity value through a linear interpolation of the velocities at 
the neighboring points.

For the Sea Breeze Forecast System, each set of training data is combined based on the 
measurement of different AWS located along the runways and sea breeze around the HKIA at the 
past one hour. The training data including the air temperature, sea temperature, wind direction and 
wind speed are used to train the model which is expected to capture the see breeze movement, 
therefore be able to provide prediction for wind direction and wind speed along the runways. The 
time interval between two training sets is set at 10 minutes; for the WSFAS, each set of training 
data is for the glide path at a specific time. It includes the Doppler velocities on a slant range, 
angle of elevation, and azimuth. These are used to train the model to predict Doppler velocities 
along the glide path in the upcoming three minutes. The time difference between two training sets 
varies from 3 to 4 minutes.

For both SBFS and WSFAS, the training and testing data sets are normalized between minimum 
(–1) and maximum (+1) before training and testing of the CONN. 

b) Chaotic oscillatory based neural network
The CONN is made up of a MLP neural network and a Lee oscillator (retrograde signaling) model 
(LOM) with various parameter settings. The MLP neural networks are constructed by one or two 
hidden layers with several neurons, and the activation function of the neurons in the hidden layer(s) 
and output layer are replaced with the LOM (Fig. 1) rather than with the sigmoid or hyper tangent 
function as in conventional neural networks.

The LOM exhibits chaotic progressive growth in its neural dynamics, it can be used as an 
effective chaotic bifurcation transfer unit in neural networks. The LOM model consists of the 
neural dynamics of four constitutive neural elements: u, v, w and z. The neural dynamics of each 
of these constituent neurons are given by:

u(t + 1) = f [a1 u(t) – a2 v(t) + a3 z(t) + a4 I(t) – θu] (1)
v(t + 1) = f [b1 u(t) – b2 v(t) – b3 z(t) + b4 I(t) – θv] (2)
w(t+1) = f [I(t)] (3)
z(t) = f [v(t) –u(t)] e–kI2(t)

 +w(t) (4)
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where u(t), v(t), w(t) and z(t) are the state variables of, respectively, the excitatory, inhibitory, input 
and output neurons; f( ) is the hyperbolic tangent function; a1, a2, a3, a4, b1, b2, b3 and b4, are the 
weight parameters for these constitutive neurons; θu and θv are the thresholds for excitatory and 
inhibitory neurons; I(t) is the external input stimulus, and k is the decay constant. 

c) Training and testing of the CONN
The CONN is trained with a month of the preprocessed data, which is formatted into time intervals 
using a back propagation learning algorithm. A momentum term is used to speed up convergence 
and avoid local minima. It learns from the root mean square error between the predicted result and 
the measured value from AWS in Sea Breeze Forecast System or LIDAR in WSFAS through back 
propagation. In the testing process, the neural network uses the experience gained in the training 
process to generate the forecast for the next time intervals.

Figure 2 shows the structure of the CONN learning unit and forecast engine that have been 
used in the following simulations. For the SBFS, the meteorological data collected from the 
AWS located along the runway and the sea around the HKIA in the past one hour are the inputs 
(Vin) to the neurons of input layer. The outputs (Vout) would be the forecast of wind speed and 
direction in the next time frame at the location of AWS along the runway and around the HKIA. 
For the WSFAS, the current wind pattern along the selected glide path (Vin), which is measured by 
the LIDAR system, is fed into the CONN through the input nodes in the input layer. The forecast of 
the winds along the selected glide path (Vout) in the next time frame can be obtained at the output 
node in the output layer. 

For both CONN forecast systems, neurons in hidden layers and output layer produce the output 
of the chaotic oscillator based on the corresponding external stimulus received from the connected 
neurons in the previous layer. There can be one to two hidden layers with several hidden neurons 
within. The number of hidden layers and hidden neurons are chosen experimentally since there is 
no simple clear-cut method for determining these parameters. 

Experiments show that different parameter settings used with the LOM result in different 
performance in various weather phenomenon. There is only one parameter setting for the Sea Breeze 

Fig 1. Lee oscillator (retrograde signaling) 
model (Wong et al., 2008).

U

V

Z

a3

a1

a2

a4

b3

b1

b4

b2

W

I(t)

I(t)

e–kl*1

e–kl*1 Decay
operator

Decay
operator

Output
neuron

Excitatory
neuron

Inhibitory
neuron



402 K. M. Kwong et al.

Forecast System; but two different parameter settings are used for the WSFAS. Those parameters 
used in the SBFS and WSFAS were also chosen experimentally. Table I presents the values of the 
parameters that are used with the LOM in the hidden layers and output layer of the Sea Breeze 
Forecast System; while Table II presents the values of the parameter settings that are used with 
the LOM in the hidden layers and output layer of the WSFAS, which are labeled as characters 
A and B in the hidden layers and output layer, respectively, in Figure 2.

Table I. Values of the parameters used in the oscillator 
in the Sea Breeze Forecast System.

Parameters Lee oscillator (retrograde signaling) 
with parameter

a1 –0.8
a2 0.6
a3 0.5
a4 0.8
b1 0.4
b2 0.7
b3 0.9
b4 0.5
k 10.0
θu 0.0
θ 0.0

Table II. Values of the parameters used in the Wind 
Shear Forecast and Alerting System.

Parameters Lee oscillator (retrograde signaling)
with parameter sets

Set A Set B

a1 1.0 –0.7
a2 –1.0 0.6
a3 1.0 –0.5
a4 –1.0 0.4
b1 1.0 –0.7
b2 –1.0 0.6
b3 1.0 –0.5
b4 –1.0 0.4
k 50.0 50.0
θu 0.0 0.0
θv 0.0 0.0

Fig 2. The structure of the CONN learning unit and  
forecast engine.

A

A

A
A

A

B

Input layer

Vin n Vout n

Vout 2

Vout 1

Vin 2

Vin 1

bias

bias

bias

bias

bias

bias

bias

N

N

N

N

N

N

N

Hidden layer Output layer

B



403Chaotic oscillatory based neural network for wind prediction problems

Figures 3 and 4 show the bifurcation diagrams of the LOM with parameter sets A and B. The 
x-axis represents the external stimulus (I) from the connected neurons in the previous layer to 
the chaotic oscillator. The y-axis represents the output of the chaotic oscillator corresponding 
to the external stimulus. The response of the LOM to an external input stimulus with parameter 
sets A and B can be categorized into two regions, the sigmoid-shape region and the hysteresis 
region. The former denotes the non-chaotic neural activities in the oscillator. The latter denotes 
the chaotic behavior that results when a weak external input stimulus is received.

In our previous work (Kwong et al., 2008), the parameters which were used in individual neurons 
were predefined before the start of training process and the training process only focused on tuning 
the weights among different layers of neurons. As the shape of the bifurcation is predefined, the 
responses of the LOM are limited to the outermost shell of the chaotic region.

Fig 4. Bifurcation diagram of Lee oscillator (retrograde 
signaling) model for parameter set B.
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Neural oscillators depend on parameters that have to be tuned to achieve the desired performance. 
However, since neural oscillators have highly nonlinear dynamics, parameters of neural oscillators 
are difficult to tune (Arsenio, 2000, 2004). Although there has been work on chaos control and 
tuning of the parameters of neural oscillator, most of it concentrates on oscillation control or the 
frequency, amplitude and phase of the neural oscillator (Arsenio, 2000; Arsenio, 2004; Miyakoshi 
et al., 2000; Hirasawa et al., 2000). Little work has considered the shape of the bifurcation diagram 
used as the transfer function in CONN.

Experimental variation in the number of iterations of the same parameters set during the training 
process allows CONN to produce different possible changes in the chaotic region of the LOM. 
Figures 5 and 6 show the appearance of the LOM for parameter set A at iterations 4 and 10.

In order to increase the learning ability and flexibility of the CONN model, the training process 
of the Wind Shear Forecast and Alerting System not only tunes the bias of neurons and the weights 
between input layer, hidden layer and output layer, it also adjusts the number of iterations of the 
LOM in the output layer neurons. As the time required computing the LOM is directly proportional 
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Fig 5. Lee oscillator (retrograde signaling) model for 
parameter set A with iterations number 4.
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to the number of iterations that are assigned, it is also possible to improve the performance of the 
CONN, reducing the time required for less necessary iterations by adjusting the number of iterations 
used in each individual neuron during the training process. 

The mechanism is that a randomly generated iterations number (N) will be assigned to each 
neuron in both hidden and output layers during initialization of the neural network. Neurons in 
the output layer will produce five different outputs by using the assigned iteration number. For 
example, if value 10 is assigned to the first neuron in the hidden layer during initialization, this 
neuron will produce five outputs by using N ± 2 (in this example N = 8, = 9, = 10, = 11 and = 12 
are to be used) with the same parameter set in the current epoch of training. After comparing the 
outputs with the actual measured data from LIDAR, the output with the smallest error value will 
be selected as the output of that neuron. On the other hand, the N that produces the output with the 
smallest error will be used to update the old N of that neuron in that training epoch and will be the 
initial iteration number for that neuron in the next epoch. Once the changes of the iteration number 
in an individual neuron become steady, the mechanism that updates the iteration number in that 
neuron will stop. We assume that the neural oscillator used in that neuron is already well trained.

By varying the iteration number, different possible changes in the chaotic region of the chaotic 
oscillator are tested and selected heuristically in the training process. The use of the chaotic oscillator 
is no longer limited to the outermost shell of the chaotic region produced by a fixed number of 
iterations assigned at the initialization of CONN.

d) Wind shear detection in the forecast result
The Hong Kong Observatory has developed an algorithm called the GLide-path scan Wind shear 
alerts Generation Algorithm (GLYGA), which detects wind shear automatically from headwind 
profiles generated from LIDAR data (Chan et al., 2006; Shun and Chan, 2008). By combining 
GLYGA and the forecasted results that are produced by CONN, it is possible to forecast wind 
shear events. We do this by first combining the forecast radial velocities along a glide path to 
construct a headwind profile. Differences between the velocities of adjacent data points in the 
headwind profile are calculated to construct a velocity increment profile which is used to magnify 
the change of velocities and make it easy to capture wind shear ramps, namely, the peaks and 
troughs in the velocity increment profile. Next, the ramps are detected by comparing each data 
point of the profile with the neighboring points on two sides. The wind shear ramps detected 
from a headwind profile are prioritized using a normalized wind shear value ΔV/H1/3, suggested 
by Jones and Haynes (1984), where ΔV is the total change in the headwind and H is the ramp 
length. If any one of the wind shear ramps exceeds 14 knots (Shun and Chan, 2008), an alert 
message is generated. 

3. Simulation
In this section, we will go through two simulations, one simulation is the forecast of sea breeze by 
CONN and the other simulation is the forecast of wind shear event by CONN. Reader may refer 
to our previous work (Kwong et al., 2008) for the comparison of CONN and simple MLP neural 
network in the wind forecast application. 
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a) Sea breeze forecast by CONN with AWS data
We tested the sea breeze forecast ability of CONN by using a typical sea breeze case on 13 November 
2007. As all the AWS worked normally and most of the necessary data were valid for training and 
testing, it was a good case for catching the sea breeze by using CONN. In order to obtain the optimal 
learning effort, the data of the whole past month were used as the training data set, and the testing 
data set was extracted from the AWS database. A set of 4140 training records from 16 October 2007, 
05:01:00 (UTC) to 12 November 2007, 16:00:00 (UTC) were used and these data included the air 
temperature, sea temperature, wind direction and wind speed recorded by the chosen AWS. 

The wind barbs in Figure 7 show the wind recorded between the time 13 November 2007, 05:50:00 
and 06:00:00 (UTC) by the AWS and the numbers beside them are the corresponding temperatures at 
sea or air. As shown in the wind maps, the overall wind direction is changing from easterly to westerly 

Fig. 7. Winds inside and around HKIA for the sea breeze event on 13 November 2007.
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over the western part of the two runways. Letters A to G in Figure 7 indicate the corresponding 
location of AWSs that are affected by the sea breeze in the following hour. 

In Figure 7a, the wind barb at location A is northward-pointing while the wind barbs at locations 
B, C, D, E and F are westward-pointing at 04:50:00 (UTC). As the sea breeze starts to affect the 
glide path at 05:00:00 (UTC) (see part b), the wind barbs at locations A and C change and point 
toward the northeast; 10 minutes later, the wind barb at location B (see Fig. 7c) changes and points 
to the northeast. Later on, the sea breeze affects the runway end and changes the pointing direction 
of wind bards at locations D and E at 05:20:00 (UTC), 05:30:00 (UTC) and 05:40:00 (UTC) as 
shown in Figures 7d, 7e and 7f, respectively. Finally, the sea breeze passes through the HKIA and 
changes the pointing direction of wind bards at locations F and G from pointing west to pointing 
east at 05:50:00 (UTC) and 06:00:00 (UTC), respectively (see Fig. 7g and 7h).

As the change of wind direction is one of the most significant features of sea breeze, the following 
simulations will focus on capturing the changes of wind direction. The forecast start-time of the 
testing case was 13 November 2007, 05:00:00 UTC in order to see if the CONN could predict the 
change of wind direction. 

Figures 8 to 10 show the preliminary forecast result from the CONN Sea Breeze Forecast System at 
three different locations, the western end of the south runway (R1W), the middle of the south runway 
(R1C) and the eastern end of the south runway (R1E). In Figures 8, 9 and 10, the x-axis presents the 
time steps in seconds and y-axis presents the wind direction in degrees. Time step 1 means the first time 
step after the starting time of forecast, i.e. 05:10:00 UTC in the experiment, and each time step is set 
at 10 minutes after the previous one. The blue lines in the figures show the actual measurement of 
10-min averaged wind direction by AWS at different locations (Fig. 8 for location R1W, Fig. 9 for 
location R1C and Fig. 10 for location R1E). And the red lines show the forecast made by CONN.

In this simulation, the forecast results produced by CONN are comparable with the actual reading 
recorded from AWS. The CONN forecasts not only capture the change in wind direction from 100 to 
250 degrees between the time steps 2 to 5 as shown in Figures 8 and 9 successfully, but also the steady 
wind direction in Figure 10. Future studies of short-term forecasting of sea breeze would look at the 
possibility of forecasting the wind direction change in the airport area before this change takes place 
over the AWS (weather buoys) to the west of HKIA, as well as retreat of sea breeze over the airport.

Fig 8. Comparison of actual measured wind direction by AWS 
and the predicted wind direction by CONN at location R1W. 
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b) Wind shear forecast by CONN with LIDAR data
We also tested CONN for the wind shear forecast and alert ability by using another set of sea 
breeze data measured by LIDAR from 6 January 2009. This date was chosen because it was a 
day of significant wind shear with large wind shear ramps. A training set was constructed from 
the data recorded by LIDAR between 1 December 2008, 02:42:46 (UTC) and 1 January 2009, 
06:03:57 (UTC) and a testing set was constructed from the data recorded between 6 January 
2009, 04:03:09 (UTC) and 04:54:58 (UTC). 

Figure 11 shows the overall changes of the headwind along the glide path 07RA between 6 
January 2009 04:05 (UTC) and 04:53 (UTC). Figure 12 shows the forecast of the headwind profile 
along the glide path 07RA made using the current CONN model. The x-axis shows the distance 
from the end of the runway in nautical miles (NM) and the y-axis shows the headwind velocity in 
meters per second. The various gray lines indicate the wind field along the glide path at different 
moments. 

Figure 13 shows headwind profiles obtained by applying the GLYGA algorithm with the actual 
observed LIDAR data and simulation results for the sea breeze for the period from 6 January 2009 

Fig 9. Comparison of actual measured wind direction by AWS 
and the predicted wind direction by CONN at location R1C.
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Fig 10. Comparison of actual measured wind direction by 
AWS and the predicted wind direction by CONN at location 
R1E.
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at the arriving runway corridor 07RA with different time slots. Those small figures on the left 
are the forecasts made by CONN. The small figures on the right are the actual observations from 
LIDAR. The x-axis is the distance away from the end of the runway in nautical miles. The y-axis 
on the left is for the headwind measured in knots. The y-axis on right hand side is the altitude of 
the glide path measured in feet. The detected wind shear ramp(s) are highlighted. 

In this simulation, the forecast predicted most of the actual observed wind shear. In the period 
between 04:05 (UTC) and 04:56 (UTC) wind shear was successfully forecast for seven out of eight 
occurrences in 14 time slots. For example, one 14-knot wind shear ramp was observed between 0.3 
and 1.4 NM from the end of the runway at 04:17:06 (UTC). The GLYGA algorithm gave a 15-knot 

Fig 11. The observed movement of the sea breeze between 6 
January 2009 04:05 and 04:56 (UTC).
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Fig. 12. The forecast headwind velocity by CONN between 6 
January 2009 04:05 and 04:56 (UTC).
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Fig. 13. The headwind profiles that obtained by applying GLYGA algorithm with the forecast and the 
actual measured LIDAR data.
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Fig. 13. Continue
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wind shear ramp between 0.5 and 1.5 NM from the end of the runway at 04:17:06 (UTC). We also 
note that the region highlighted in our figures as a predicted wind shear ramp corresponds to the 
region where wind shear in fact occurred in the observed headwind profiles and were of a similar 
magnitude. In short, the CONN model was able to make good predictions of the incidence of both 
particular wind shear events and of the general location and magnitude of occurrences. Figure 14 
provides a scatter diagram comparing the observations and forecasts between 6 January 2009 04:05 
(UTC) and 04:56 (UTC). The forecasts can be seen to be fairly close to the actual observations. 

Table III shows the percentage of overlapping of the wind shear warning area between the 
CONN forecast and actual measured data in the simulation on 6 January 2009. Table IV shows 
the comparison of the wind shear ramp magnitude found in the forecast and the actual measured 

Fig. 13. Continue
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in the simulation on 6 January 2009. The reason of the overlap region and wind shear ramp 
magnitude values being zero at 04:09:08 is that the forecast ramp is smaller than the preset alert 
threshold. Fine tune of the alert threshold may help to improve the forecasting ability of the system.

Table IV. Comparison of the magnitude between the 
forecast and actual measurement in simulation.

Time (UTC) Forecast (knots) Actual (knots)

04:05:08 12 13
04:09:08 -- 14
04:13:07 15 16
04:17:06 12 17
04:21:05 17 15
04:25:04 19 18
04:29:03 16 18
04:33:03 17 18

Table III. Percentage of overlap between forecast 
and actual warning area in simulation.

Time (UTC) Percentage of overlap

04:05:08 18
04:09:08 0
04:13:07 70
04:17:06 100
04:21:05 90
04:25:04 80
04:29:03 100
04:33:03 90

Fig. 14. Forecasted versus observed wind velocities.
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It is fair to say that the performance of forecast drops as time progresses. Figure 15 shows the change 
of correlation coefficient of the forecast and actual measured data against time for a long trial. There 
is a sudden drop at around 180 minutes and some fluctuations of the correlation coefficient later. This 
sudden drop of correlation coefficient indicates the trained CONN begins to lose the skill. In order to 
keep making good forecast, re-training of the CONN with the latest updated data is required. More 
cases would be considered in future studies, including both establishment and retreat of sea breeze.

4. Conclusion
Using the AWS data and LIDAR’s Doppler velocity data for a mesoscale wind field, we tested 
CONN, a chaotic oscillatory-based neural network, for sea breeze and wind shear forecasting. 
Experimental results demonstrate that CONN is able to capture the occurrence and short-term 
evolution of sudden changes in winds at the runways in the vicinity of the Hong Kong International 
Airport. The second simulation also demonstrates that short-term Doppler velocities forecast 
using CONN can be transformed into headwind profile and processed with the wind shear alerting 
algorithm, GLYGA, that was developed by the Hong Kong Observatory. These alerts are shown 
to match actual observations made using LIDAR in terms of time, location, and magnitude of 
wind shear.

In future work we will continue to focus on investigating the winds along the glide paths 
and try to optimize the computational process and enhance the predictive capability of the 
CONN model by improving the learning algorithm and exploring new learning algorithms for 
both CONN and the Lee oscillator. We will also explore ways to automatically tune the initial 
parameter settings of the CONN and identify the most suitable parameter settings of the Lee 
oscillator for forecasting different types of wind fluctuations. We will try to improve the quality 
of the forecasts and the alert generating results. We will do this by comparing alert messages 
generated from actual LIDAR data, forecasts by CONN, and actual wind shear experienced by 
aircraft as given in pilot reports.
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Fig 15. Correlation coefficient versus time.
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