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RESUMEN

Las sequías ocurren cuando las lluvias disminuyen o cesan durante días, meses o años. En el último quin-
quenio se registraron varias sequías meteorológicas en Venezuela, las cuales impactaron negativamente los 
sectores hidroeléctrico y agrícola. En este trabajo se desarrolló y validó un modelo de alerta temprana para la 
ocurrencia de sequías meteorológicas en el país, con el objeto de proporcionar a las instituciones que admi-
nistran los recursos hídricos una herramienta que permita mejorar la planificación de su uso. Para desarrollar 
el modelo se utilizaron las series pluviométricas de 632 estaciones. La identificación de los episodios secos se 
realizó a través del índice estandarizado de precipitación (SPI, por sus siglas en inglés). Se utilizó un análisis 
de componentes principales asociado a un sistema de información geográfica para delimitar subregiones 
homogéneas (SH) geográficamente continuas, según el SPI. En cada SH se seleccionó una estación repre-
sentativa (estación de referencia, ER) y se aplicó un análisis de correlación desfasada entre las series SPI en 
las ER y series de anomalías de 10 índices de variables macroclimáticas (VM). Las cuatro VM desfasadas 
con mayor correlación lineal en cada ER se organizaron en tres niveles (–1, 0 y +1), usando los cuartiles Q2 
y Q4 como valores de truncamiento. Las series SPI se expresan en cuatro rangos: no seca, moderadamente 
seca, severamente seca y extremadamente seca. Se determinó la probabilidad condicional de ocurrencia 
de los cuatro rangos de SPI en cada combinación en que pueden presentarse las cuatro VM desfasadas. Se 
validaron los modelos en cada ER con las series de SPI provenientes de 20 estaciones pluviométricas del 
Servicio de Meteorología de la Fuerza Aérea Venezolana. Los resultados indican que los modelos detectan la 
ocurrencia de eventos ES con un acierto que varía de 85.19 a 100%; el acierto es directamente proporcional 
a la longitud de los registros usados en el desarrollo del modelo. El método puede aplicarse en cualquier país 
que disponga de series pluviométricas largas, continuas y homogéneas.

ABSTRACT

Droughts occur when rainfalls diminish or cease for several days, months or years. In the last five years 
several meteorological droughts have occurred in Venezuela, impacting negatively water supply, hydro-
power and agriculture sectors. In order to provide institutions with tools to manage the water resources, a 
probabilistic model has been developed and validated to predict in advance the occurrence of meteorological 
droughts in the country using monthly series of 632 rainfall stations. The standardized precipitation index 
(SPI) was used to identify dry events of each rainfall series. A principal component analysis associated to 
a geographic information system was used to define geographically continuous homogeneous sub-regions 
(HS) for the values of SPI. For each HS a representative station was selected (reference station, RS). A 
lagged correlation analysis was applied to the SPI series of the RS and the corresponding series of anomaly 
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indices of 10 macroclimatic variables (MV). The four MV with higher correlation in each RS were orga-
nized into three levels (–1, 0 and +1), using the quartiles Q2 and Q4 as values of truncation. The SPI series 
are expressed in four ranges: non-dry, moderately dry, severely dry and extremely dry. The conditional 
probability of occurrence of the four ranges of SPI was determined in every combination that can occur in 
the four VM best correlated. The resulting model in each RS was validated using the SPI series from 20 
meteorological stations operated by the Servicio de Meteorología de la Fuerza Aérea Venezolana (Mete-
orological Service of the Venezuelan Air Force) which were not used in the development of the models. 
Results indicate that models detected the occurrence of ES with an accuracy ranging from 85.19 to 100%; 
the success is directly proportional to the length of records used in the development of the model. This 
methodology could be applied in any country that has long, continuous and homogeneous rainfall series.

Keywords: Meteorological drought, Venezuela, forecast models.

1.	 Introduction
In the last decade the frequency of occurrence of ex-
treme meteorological droughts in South America has 
increased. During 2005, the river flows of southwest 
Amazonia were strongly affected by drought (Maren-
go, 2009); in 2009, fires in Colombia destroyed 13 000 
hectares of forest and farmland as a result of droughts; 
in late 2010, Uruguay and Argentina declared a 
national joint emergency responding to a drought 
that was spread in both nations. In the same period, 
Bolivia also suffered severe socioeconomic damages 
as a consequence of droughts, especially in the cattle 
industry sector. Extreme dry seasons occurred in 
Venezuela from 2001 to 2003 and in 2007, causing 
an alarming reduction of reserves in the dams that 
supply water systems in the country and forcing water 
companies to implement rigorous rationing plans in 
major cities. In 2010 the occurrence of a persistent 
drought caused a significant reduction in the contri-
bution of flow to the Simón Bolívar hydroelectric 
power station, creating huge gaps in the supply of 
energy, due to the fact that this plant provides over 
90% of hydropower and 65% of the total energy 
consumed in the country. This event prompted the 
Venezuelan state to enact a power-rationing program 
for almost a year.

Due to the geographical location of Venezuela 
(north of South America, between 1-12º N and 60-
74º W) the spatial and temporal distribution of rain-
fall is influenced largely by alternating migration of 
the Inter-Tropical Convergence Zone (ITCZ), which 
is the main mechanism for generating rainfall in the 
area. The dry season occurs during the astronomical 
winter (November-March) as a consequence of an 
anticyclonic situation in height, which affects almost 
the entire country. There is an inversion in the middle 
of the troposphere, which inhibits the formation of 

cloud cores of major vertical development. During this 
season, localized convective rains of short duration 
and high intensity occur, as well as some tropical dis-
turbances, such as residual cold fronts of subtropical 
origin that favor the occurrence of atypical rainfall in 
some areas, particularly the coastline area (Velásquez, 
2000).

The spatial and temporal pattern of rainfall and the 
geographical location of major urban and industrial 
centers of the country, play an important role in the 
management of water resources because a great part 
of the population is concentrated in areas of lower 
water availability. In the south of the Orinoco River 
the use of water resources does not cause conflicts 
between different users because its availability is far 
larger than the demand; however, the vulnerability to 
droughts increases in the region of the coastline and 
coastal mountain range due to increased population 
density and the resulting industrial development, 
which causes a water deficit by increasing the mag-
nitude of demand. The vulnerability is also due to 
the following factors related to the characteristics of 
climate: (1) about 95% of the country’s reservoirs are 
located in watersheds with arid or semi-arid weather; 
(2) larger units of agricultural production (livestock 
and cereal production) are concentrated in Venezu-
elan plains, where a system of rainfed production 
prevails; (3) most of the agribusiness sector uses 
cereals to produce food for massive consumption, 
so the domestic market for grain, meat products and 
sub-products is directly affected by the occurrence 
of drought that persists for several days or months 
in the primary production units; and (4) only 5.7% 
of Venezuela’s farmlands have operating irrigation 
systems (Ovalles et al., 2007).

Extreme rainfall events (droughts and torrential 
rains) in Venezuela are related to the occurrence of 
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one of the stages of the El Niño-Southern Oscilla-
tion (ENSO) phenomenon, with persistent thermal 
anomalies in the surface of the North and South 
Atlantic Ocean and/or inversion in the direction and 
intensity of winds over the tropic. These synoptic 
conditions in the ocean-atmosphere subsystems and 
their interactions influence the spatial and tempo-
ral distribution of rainfall (Cárdenas et al., 2002; 
Mendoza and Puche, 2005; Paredes et al., 2007). 
Consequently, it appears that the analysis of the 
dependence between meteorological droughts and 
macroclimatic variables, expressed as standard-
ized anomalies, could be a useful tool to predict 
the occurrence of such meteorological droughts in 
Venezuela (Martelo, 2004; Guevara and Paredes, 
2007; Paredes and Guevara, 2008). A first approx-
imation to this method was proposed by Paredes 
and Guevara (2010) with the aim to predict the oc-
currence of early meteorological droughts in some 
homogeneous sub-regions of Venezuelan’s plains 
(depending on the inter-annual severity of the dry 
season), with satisfactory results.

Despite the economic impacts that droughts have 
always caused, Venezuela does not have a formal 
early warning system for extreme weather phenom-
ena. However, it should be said that the Servicio de 
Meteorología de la Aviación Militar Venezolana 
(SEMETAVIA, Weather Service of the Venezuelan 
Military Aviation), in conjunction with the Obser-
vatorio Nacional de Eventos Extraordinarios (ONE, 
National Observatory of Extraordinary Events) of 
the University of Zulia, has been using experimen-
tally the climate predictability tool (CPT) developed 
by the International Research Institute for Climate 
and Society (IRI) to produce forecast maps of rain-
falls at national, seasonal and quarterly scales. CPT 
uses three statistical methods: (1) canonical correla-
tion analysis, (2) principal components regression, 
and (3) multiple linear regressions. The predictor 
variables are: sea surface temperature (SST) in the 
Niño3 region of the Pacific, North and South Atlan-
tic, and Caribbean Sea, measured in the previous 
month of the quarter to be forecasted (CIIFEN, 
2010). SEMETAVIA produces monthly a thematic 
map with regional iso-probability of precipitation 
for the quarter evaluated. The main limitations of 
the CPT are: (1) it does not consider predictors 
associated with the atmosphere subsystem, and (2) 
it uses a constant gap of three months between the 

predictors and rainfall in the reference stations of 
SEMETAVIA. Some constraints are considered, 
because certain variables associated with wind fields 
in the upper troposphere, such as the quasi-biennial 
oscillation at 50 mb (QBO50), can modulate the 
severity of extreme rainfall events (Cárdenas et 
al., 2002); on the other hand, a highest degree of 
linear association between macroclimatic variables 
and precipitation can also occur at different lags, 
including a three months lag (Martelo, 2004).

To provide a tool to the Venezuelan water resources 
authority that aids to confront the droughts and reduce 
their impacts, a model was developed and validated 
to predict the early occurrence of such phenomenon 
based on the conditional probability of the standard-
ized precipitation index (SPI) of McKee et al. (1993). 
This article describes the fundamentals of the model, 
the methodology used and the main results.

2.	 Data and methodology
2.1 Study area
This study covers the entire surface of the Bolivarian 
Republic of Venezuela and uses four variables of 
Pacific Ocean El Niño sub-regions, two variables of 
the Atlantic Ocean (north and south) and one variable 
of the Caribbean Sea, as indicated in Figure 1.

2.2 Research phases
2.2.1 Phase I. Regionalization of rainfall anomalies

1. A preliminary database (PDB) was developed 
with 632 weather stations in Venezuela that have 
rainfall records. The information concerning the 
PDB were longitude, latitude, serial, name, type, state 
where the stations are located, operating agency, and 
period (starting year-final year).

2. From the PDB, stations with rainfall series that 
met the following criteria were selected: (a) 20 or more 
years of continuous records (no missing data), and (b) 
homogeneous series of annual rainfall, as monitored 
by the statistical test of Easterling et al. (1996). The 
AnClim software (Štěpánek, 2005) was used for the 
analysis. The selected series were called sample se-
ries (SS). The use of the climatic standard proposed 
by the WMO (1990) and discussed by Guttman 
(1998) was discarded, because of the heterogeneity 
in the beginning and ending dates of the series and 
the high percentage of missing data (climatic normals 
01/01/1961 to 31/12/2000). Due to their different 
lengths of records, SS were divided into two groups: 
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(a) SS of the northern side of the country, consisting 
of 234 stations located at the north of the Apure and 
Orinoco rivers, with a common record period from 
1983 to 1993; and (b) SS of the southern side com-
prising the states of Delta Amacuro, Bolívar, Apure, 
and Amazonas with 23 stations and a common period 
from 1971 to 1991.

3. The SPI of McKee et al. (1993) was calculat-
ed for every station in both groups. The SPI series 
obtained as indicated are hereafter referred to as 
north SS and south SS.

4. The normality of the frequency distribution 
of north and south SS series was checked using 
the Shapiro-Wilk W test (de la Fuente, 2005) and 
the STATISTICA 7™ software. Only 247 stations 
passed the normality W test (p < 0.01). At this point, 
stations without a normal frequency distribution were 
discarded. 

5. A principal component analysis (PCA) with 
Varimax rotation and Kaiser normalization (Pérez, 
2004) was applied separately to both groups of sta-
tions (north and south SS) that passed the normality 
W test. The SPSS 10™ software was used with 
following results:

(a)	For the north SS group, the sampling adequacy 
measure of Kaiser-Meyer-Olkin was 0.697 
(KMO index); the Bartlett test of sphericity 
was significant (χ2 = 62268.174, p < 0.01);  
and 42 factors were retained with auto values 
greater than one, explaining 78.69% of the total 
variance. The reproduced correlation matrix 

has 154 non-redundant residues with absolute 
values greater than 0.05 (< 1%). 

(b)	For the south SS group, the sampling adequa-
cy measure of Kaiser-Meyer-Olkin was 0.924 
(KMO index); the Bartlett test of sphericity is 
significant (χ2 = 2939.16, p < 0.01); and four 
factors are retained with auto values greater 
than one, explaining 60.18% of the total 
variance. The reproduced correlation matrix 
has 81 non-redundant residues with absolute 
values greater than 0.05 (32%).

6. To classify the stations (north and south SS), 
the rotated component matrices generated as ex-
plained in the previous point were used, according 
to the belonging factor given by the PCA analysis 
(32 groups on the north and four on the south).

7. The stations and their corresponding factor were 
depicted on a geographic information system (GIS) 
developed using the software ArcMap™ 9.2; closed 
polygons were drawn around the stations having a 
common factor, and stations geographically located 
outside with continuous polygons were discarded. In 
this manner 31 polygons were generated, which are 
here referred as homogeneous sub-region (HS). The 
stations grouped in each HS were characterized by 
their spatial coverage, altitude above sea level, mean 
annual rainfall, and occurrence of the dry season 
identified by a rainfall coefficient (Carrillo, 1999).

8. A representative station was selected for each HS 
based on the following criteria: (1) the SS of the station 
has the largest record of observation; (2) the station’s 
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altitude, mean annual rainfall and dry season have the 
highest percentage of occurrence. The selected station 
is called hereafter reference station (RS). A total of 29 
RS were generated in this way, which represent from 
the statistical point of view all of the stations included 
in one HS.

2.2.2 Phase II. Lagged linear correlation analysis
1. For the lagged correlation analysis, the 

standardized anomaly series of the macroclimate 
variables (MV) given in Table I were used as inde-
pendent variables. The continuous rainfall series of 
the RS with no missing data was considered as the 
dependent variable. 

2. The MVs given in Table I and the continuous 
rainfall series of each RS have different length of 
records; however, the common starting month is 
June 1979. A total of 23 RS with a minimum of 10 
years of monthly common records were selected, 
and eight of these stations were discarded. 

3. The SPI values for the selected RS are calcu-
lated for the common observation period of rainfall 
and MV anomalies. 

4. The Pearson correlation analysis between the 
SPI series in each RS and the MV anomalies given 
in Table I was applied. In the analysis, MV anoma-
lies were lagged from 1 to 24 months with respect 
to the SPI series. For the correlation cases where 
the absolute value of Pearson coefficient reaches its 
maximum, the statistical significance of the correla-

tion coefficients is calculated. The results are given 
in Table II. As mentioned above, RS with less than 
10 years of simultaneous common data of rainfall 
and MV anomalies were discarded.

2.2.3 Phase III. Structure and validation of forecast 
models

1. In each RS, the four MV (predictor variables) 
with the highest degree of correlation were identi-
fied, as well as the associated lag. A database was 
structured so that each VM was shifted temporarily 
in connection with the SPI series, for as many months 
as the lag indicated in Table II. 

2. Next, the MV series of Table I were grouped 
based on the location of each record in relation to quar-
tiles Q2 and Q4, assigning them the following levels:

•	 –1: if VM ≤ Q2; negative signal
•	 0: if Q4 ≥ VM ≥ Q2; neutral signal
•	 +1: if VM ≥ Q4; positive signal

As indicated above, the SPI series are categorized 
as follows:

•	 SPI ≤ –2.00: month with an extremely dry 
condition (ED)

•	 –2.00 < SPI ≤ –1.50: month with a severely 
dry condition (SD)

•	 –1.50 < SPI ≤ –1.00: month with a moderately 
dry condition (MD)

Table I. Time series anomalies used in the lagged correlation analysis.

Name of the standardized
anomaly of MV

Acronym Source of the series

SST of the far western Pacific region NI12 http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices 
SST of the central Pacific region NI4 http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices
SST of the east-central Pacific region NI34 http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices
SST of the eastern Pacific region NI3 http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices
SST of the north Atlantic region ATLN http://www.cpc.ncep.noaa.gov/data/indices/sstoi.atl.indices  
SST of the south Atlantic region ATLS http://www.cpc.ncep.noaa.gov/data/indices/sstoi.atl.indices
SST of the Caribbean Sea region* ACAR http://www.esrl.noaa.gov/psd/data/correlation/CAR.data  
Standardized anomaly of the southern 
oscillation SOI http://www.cpc.ncep.noaa.gov/data/indices/soi  
Standardized anomaly of the quasi-biennial 
oscillation QBO50 http://www.cpc.ncep.noaa.gov/data/indices/qbo.u50.index  
Standardized anomaly of the equatorial 
zonal winds index at 200 mb ZON200 http://www.cpc.ncep.noaa.gov/data/indices/zwnd200  

* Without normalization.
SST: Sea surface temperature.
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Table II. Results of the Pearson correlation lagged analysis between SPI series in each RS and the MV anomalies.

HS NI12 NI4 NI34 NI3 ATLN ATLS ACAR SOI QBO50 ZON200

RS1 –0.177* –0.117 –0.134 –0.160 0.143 0.171* –0.171* 0.135 0.033 0.145
–2 –1 –1 –2 –4 –2 –23 –1 –5 –1

RS2 –0.147 –0.117 –0.125 –0.148 –0.144 –0.125 –0.104 0.101 –0.077 0.162*
–18 –17 –18 –18 –22 –14 –17 –16 –18 –15

RS3 0.068 0.222* 0.199* 0.154* –0.165* –0.194* –0.201* –0.224* –0.125* –0.166*
–8 –7 –7 –7 –22 –13 –23 –6 –11 –4

RS4 –0.263* –0.141 –0.197* –0.249* 0.177 0.178 0.222* 0.203* 0.117 0.226*
–3 –5 –2 –2 –10 –20 –12 –1 –7 –1

RS5 0.177* 0.147* 0.169* 0.184* –0.113 –0.150* 0.075 –0.154* –0.141* –0.153*
–16 –13 –12 –12 –14 –20 –12 –11 –16 –10

RS6 –0.135 –0.177 –0.166 –0.168 –0.126 0.142 0.155 0.148 0.080 0.161
–4 –5 –5 –5 –5 –6 –23 –4 –8 –1

RS7 –0.227* –0.248* –0.277* –0.286* 0.142 0.198* 0.201* 0.239* 0.123 0.249*
–2 –8 –1 –1 –15 –9 –14 –1 –17 –1

RS8 –0.157 –0.096 –0.081 –0.136 –0.060 0.151 0.083 0.090 –0.141 0.096
–5 –17 –5 –5 –12 –16 –10 –7 –15 –6

RS9 0.064 0.079 0.082 0.094 0.151 –0.096 0.116 –0.110 0.083 –0.110
–1 –11 –11 –12 –16 –1 –12 –5 –13 –4

RS12 –0.201* 0.163 0.189* –0.205* 0.159 –0.119 0.147 –0.211* 0.155* –0.188
–1 –20 –19 –1 –15 –16 –13 –17 –9 –19

RS15 –0.142 –0.031 –0.074 –0.078 0.130 0.103 –0.171 0.030 –0.105 0.128
–7 –4 –13 –2 –1 –19 –18 –15 –14 –10

RS16 –0.154 –0.189* –0.236* –0.248* 0.156 0.160 0.117 0.193* –0.190* 0.287*
–3 –1 –1 –2 –1 –21 –13 –1 –16 –1

RS19 –0.152 –0.116 –0.117 –0.114 0.114 0.088 0.094 0.115 –0.105 0.095
–4 –17 –5 –5 –9 –15 –15 –4 –19 –7

RS20 –0.126 –0.108 –0.101 –0.143 0.120 –0.171 0.101 0.112 0.058 –0.131
–18 –18 –22 –24 –1 –1 –23 –23 –7 –5

RS22 0.223* –0.178 0.177 0.196* 0.210* –0.131 0.188* 0.186* 0.084 –0.210*
–24 –3 –24 –24 –17 –24 –20 –9 –6 –20

RS24 0.104 –0.119 –0.142 –0.133 0.209 –0.115 –0.123 0.138 –0.206 0.147
–16 –17 –1 –2 –1 –23 –17 –18 –11 –3

RS25 0.161 0.276* 0.257* 0.213 0.297* –0.251 0.342* 0.252 0.198 0.220
–13 –20 –19 –19 –12 –10 –9 –1 –5 –1

RS28 –0.188* –0.166 –0.174 –0.192* 0.095 0.093 0.126 0.120 –0.234* 0.160
–3 –3 –2 –2 –8 –7 –9 –7 –20 –3

RS35 –0.150 0.176* 0.194* 0.190* –0.133 –0.195* –0.115 –0.201* –0.121 –0.207*
–24 –7 –8 –11 –24 –14 –16 –7 –17 –4

RSS1 –0.132 –0.127 –0.146 –0.148 0.134 0.174 0.196* 0.078 –0.096 0.135
–2 –2 –1 –1 –15 –7 –21 –3 –1 –12

RSS2 –0.202* –0.246* –0.248* –0.252* 0.186* –0.210* 0.216* 0.158 –0.257* 0.213*
–2 –3 –2 –2 –16 –20 –19 –3 –22 –3

RSS3 0.121 0.107 0.098 0.111 0.125 0.154 0.195* –0.116 –0.129 –0.186*
–20 –14 –20 –20 –10 –3 –12 –4 –15 –4

RSS4 –0.103 –0.129 –0.128 –0.102 0.148 –0.101 0.241* –0.146 –0.189 –0.112
–19 –21 –21 –21 –1 –2 –23 –11 –11 –9

Note: The upper value of each square is the maximum Pearson correlation coefficient; the bottom value indicates the 
lag in months where the maximum value of the Pearson correlation coefficient occurred (top line).
HS: Homogeneous sub-region.
*p ≤ 0.01 (significant at a significance level of 99%). 
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•	 –1.00 ≤ SPI: month with a non-dry condition 
(ND)

3. With the three levels of the four predictor MV 
series and the four levels of SPI series, 81 possible 
combinations can be set in each RS. Furthermore, 
the probability of observed occurrence of ND, MD, 
SD, and ED conditions in each combination was 
calculated (total probability of Bayes [Cofiño, 2002; 
Evans, 2005]).

4. The models associated to each RS developed 
as indicated above were validated using 20 weather 
stations with continuous rainfall series operated by 
the Venezuelan Air Force. For the validation, the 
weather station located within the HS was selected 
and included in the GIS.

5. The homogeneity of the validation station 
series was verified by means of the statistical test of 
Easterling et al. (1996), using the AnClim software 
(Štěpánek, 2005). The corresponding SPI series were 
also categorized as follows:

•	 SPI ≤ –2.00: month with an ED condition
•	 –2.00 < SPI ≤ –1.50: months with an SD 

condition
•	 –1.50 <SPI ≤ –1.00: month with an MD con-

dition
•	 SPI ≤ –1.00: months with an ND condition

6. The validation level was established by calcu-
lating the percentage of right prediction successes 
with the RS models for the common period of valida-
tion station SPIs and predicted MVs. The prediction 
is considered a success when the model predicts a 
scenario (ED, SD, MD, ND) regardless of the asso-
ciate percentage of occurrence; otherwise the success 
is labeled as a false alarm.

3.	 Results and discussion
3.1 Regionalization of rainfall anomalies in Venezuela
The spatial clustering of rainfall stations based on the 
factor given by the PCA allows the establishment of 
HSs, which differ from one another mainly in the total 
annual rainfall, and in a lesser extent in the occurrence 
of the dry season, the altitude and the proximity and 
orientation of the station with respect to the high 
mountain chains. A total of 32 HSs were identified in 
the north of Apure and Orinoco rivers, and only four 
in the rest of the country. Based on the spatial cover-

age of the HSs, droughts have a more homogeneous 
behavior over bigger areas on the southern facade than 
in the north face (Fig. 2). This could be an indication 
that the spatial homogeneity of droughts in the north 
of the country is affected by terrain geomorphology, 
height of the mountains units, leeside, and line-up of 
the sites in relation to the prevailing direction of trade 
winds (surface winds).

Comparing the Venezuelan climatic types (Koep-
pen classification) with the distribution of HSs, there 
are analogies between the two patterns, especially 
in geographical areas with dry climates. Some HSs 
and areas with climates of the type BWI or BShi are 
overlapped as are the cases of Margarita Island and 
RS7, the bay of El Tablazo and RS1, Lara’s depres-
sion and SR8 (Fig. 2). On the contrary, there is not a 
clear association between climate type and the HSs 
in regions with warm rainy weather (Afi, Ami or 
Aw), as are the cases of Sierra of Maigualida, Brazo 
Casiquiare Penillanura or the southwest quadrant 
of Guayana Macizo, where the RS4 encompasses 
heterogeneous environments from the point of view 
of the amount and distribution of the annual rainfall. 
This differentiation could be explained by the fact 
that the physical mechanism that generates meteo-
rological droughts (rainfall anomalies, in general) is 
more complex in humid regions than in those with 
a predominantly dry or arid weather, which are less 
affected by the double shift yearly occurrence of the 
Intertropical Convergence Zone (Goldbrunner, 1984; 
Pulwarty et al., 1992).

3.2 Correlation analysis between SPI series of RS 
in each HS and anomalies of MVs for different 
monthly lags 
Results of the correlation analysis between SPI and 
MV are given in Table II. The magnitude and sign 
of linear correlation, as well as the lag time between 
the SPI and the Pacific Ocean indexes NI12, NI4, 
NI34, and NI3, vary from one RS to another. In 
general, the higher correlation coefficients occur in 
the northeast flank of the country and in the west-
ern region (Zulia state). The same behavior can be 
observed in Table II for the Southern Oscillation 
Index (SOI). Although the ocean and atmosphere 
subsystems are coupled together, the dynamic of the 
physical phenomena differs, so that with a common 
start time they generate different responses according 
to the degree of lagging. The general circulation of 
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the atmosphere takes only a few weeks, while the 
ocean circulation could be expanded for several years 
(Deza et al. 2003; Bobba and Minetti, 2010). Based 
on the above discussion, the SOI should be a better 
predictor variable for the rainfall anomalies (SPI) in 
each RS, in connection with the occurrence of the 
extreme ENSO phases (El Niño-La Niña). This fact 
justifies the consideration of this variable only for the 
development of the prediction models.

Results given in Table II show that the thermal 
anomalies in the Pacific and Atlantic oceans, the Ca-
ribbean Sea and the wind fields in the tropical upper 
troposphere and stratosphere, have a synergic effect 
on the precipitations in each HS. This fact is evident 
for the case of region RS25. Moreover, it could be 
inferred that oceanic and atmospheric signals of great 
magnitude, expressed in the form of anomalies, can be 
amplified, mitigated or canceled each other, demon-
strating a complex interaction between the ocean 
and atmosphere subsystems, which in turn could be 
undergoing alterations by the global climate change.

3.3 Structure and validation of predictive models in 
the homogeneous subregions
As an example of predictive model development, 
the structure corresponding to the forecast model 
of HS and its reference station RSS3 (Fig. 2) will 
be described here. For this subregion the four mac-
roclimatic indices that best correlate with the SPI 
of RSS3 are ACAR, ATLS, QBO50 and ZON200, 

whose correlation coefficients and corresponding 
monthly lags are 0.195, –12; 0.154, –3; –0.129, –15; 
and –0.186, –4, respectively. The common period of 
both series (SPI and selected MV) is from September 
1980 to December 2001, with a total of 256 consec-
utive months. 

Table III presents the quartiles of the four selected 
predictor variables and their corresponding lags with 
respect to SPI. The macroclimatic variable ATLS 
shows the highest correlation coefficient at lag –3 
months, allowing a prognosis of three months in 
advance when using this variable. 

The probability of occurrence of the above cate-
gorized dry events (ND, MD, SD, and ED) are given 
in Table IV for different structure combinations of 
the observed predictors and corresponding monthly 
lags (macroclimatic indices best correlated with the 
SPI of the RS in RSS3 as given in Table III). 

A simplified flow diagram to organize the sea-
sonal drought forecast weather is given in Figure 3. 

Fig. 2. Homogeneous sub-regions according to the rainfall anomalies expressed by the 
SPI, which have an RS.

Table III. Quartiles of the predictor variables in RSS3 for 
the period: September 1980-December 2001.

Predictor
index

Q2 Q4 Lag relative 
to SPI (months)

ACAR –0.079 0.148 –12
ATLS –0.130 0.320 –3
QBO50 –0.925 0.835 –15
ZON200 –0.600 0.600 –4
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Table IV. Observed probability of occurrence for the given model structure and corresponding lag in the RS of RSS3 
for the common period September 1980-December 2001.

Model structure of  MV predictor  Observed probability of occurrence (%)

ACAR ATLS QBO50 ZON200 ND MD SD ED

–1 –1 0 0 90.00 0.00 0.00 10.00
–1 –1 0 1 75.00 25.00 0.00 0.00
–1 –1 0 –1 100.00 0.00 0.00 0.00
–1 –1 –1 –1 100.00 0.00 0.00 0.00
–1 –1 1 0 100.00 0.00 0.00 0.00
–1 0 0 0 71.43 14.29 0.00 14.29
–1 0 0 1 83.33 0.00 16.67 0.00
–1 0 –1 0 87.50 12.50 0.00 0.00
–1 0 –1 1 0.00 100.00 0.00 0.00
–1 0 –1 –1 100.00 0.00 0.00 0.00
–1 0 1 0 100.00 0.00 0.00 0.00
–1 0 1 1 75.00 0.00 25.00 0.00
–1 0 1 –1 80.00 20.00 0.00 0.00
–1 1 0 0 100.00 0.00 0.00 0.00
–1 1 0 1 100.00 0.00 0.00 0.00
–1 1 0 –1 100.00 0.00 0.00 0.00
–1 1 –1 0 100.00 0.00 0.00 0.00
–1 1 1 0 100.00 0.00 0.00 0.00
0 –1 0 0 66.67 22.22 0.00 11.11
0 –1 0 1 100.00 0.00 0.00 0.00
0 –1 0 –1 100.00 0.00 0.00 0.00
0 –1 –1 0 25.00 0.00 50.00 25.00
0 –1 –1 –1 100.00 0.00 0.00 0.00
0 –1 1 0 100.00 0.00 0.00 0.00
0 –1 1 1 100.00 0.00 0.00 0.00
0 –1 1 –1 100.00 0.00 0.00 0.00
0 0 0 0 85.71 0.00 14.29 0.00
0 0 0 1 90.91 9.09 0.00 0.00
0 0 0 –1 100.00 0.00 0.00 0.00
0 0 –1 0 87.50 12.50 0.00 0.00
0 0 –1 –1 80.00 20.00 0.00 0.00
0 0 1 0 91.67 0.00 8.33 0.00
0 0 1 1 100.00 0.00 0.00 0.00
0 0 1 –1 75.00 25.00 0.00 0.00
0 1 0 0 70.00 30.00 0.00 0.00
0 1 0 1 80.00 20.00 0.00 0.00
0 1 0 –1 100.00 0.00 0.00 0.00
0 1 –1 0 100.00 0.00 0.00 0.00
0 1 –1 –1 100.00 0.00 0.00 0.00
0 1 1 0 100.00 0.00 0.00 0.00
0 1 1 –1 100.00 0.00 0.00 0.00
1 –1 0 1 100.00 0.00 0.00 0.00
1 –1 –1 0 100.00 0.00 0.00 0.00
1 –1 –1 1 100.00 0.00 0.00 0.00
1 –1 1 0 100.00 0.00 0.00 0.00
1 0 0 0 100.00 0.00 0.00 0.00
1 0 0 1 62.50 37.50 0.00 0.00
1 0 0 –1 100.00 0.00 0.00 0.00
1 0 –1 0 100.00 0.00 0.00 0.00

(Continues)



320 F. J. Paredes and E. Guevara

Its routine forecast comprises the following steps:

1.	 The user selects the HS where the forecast is 
required, e.g. RSS3 (Apure).

2.	 The system identifies the four MV predictors of 
the SH of interest (for the example given in Ta-
ble III, these will be ACAR, ATLS, QBO50 and 
ZON200). The information is retrieved from a 
database that contains the data of all MV predic-
tors for each HS. 

3.	 The system identifies the corresponding monthly 
lag of each MV predictor in the HS of interest. 
For the example in Table III, the values will be 
–12, –3, –15, and –4, for ACAR, ATLS, QBO50, 
and ZON200, respectively.

4.	 The system identifies and reads the quartiles Q2 
and Q4 of each predictor MV in the HS of inter-
est. This information is part of the database (an 
example is given in Table III).

5.	 The system reads the anomalies of the predictor 
MV properly lagged in the HS of interest. This 
information should be contained in a database 
updated monthly using the original sources of 
the anomalies series: ACAR, ATLS, QBO50, and 
ZON200. Returning to the example and assum-
ing that it is necessary to predict the condition 
prevailing in the RSS3 on May 2011, the lagged 
anomalies will be 0.375 (ACAR), 0.450 (ATLS), 
0.070 (QBO50), and 2.600 (ZON200).

6.	 The system transforms each of the mentioned 
anomalies in a ternary numeric value: –1, 0 or 
+1, according to the position of the measure value 
compared with the quartiles Q2 and Q4.

7.	 The system determines the structure of the input 
signal, using the values from the previous step. 
A signal has four whole numbers (one for each 
predictor MV) and the ternaries. In our example, 
the input signal is +1, +1, 0, +1.

8.	 The system searches the code from the previous 
step in the structures contained in the HS model. 
If the code is part of the HS model, the user is 
informed about the observed probability of occur-
rence of a given dry condition (ND, MD, SD, ED) 
for the tested month. If the code is not contained in 
the HS model (not observed during the period when 
the predictor MV series and the SPI are contrasted), 
the user is warned that the system cannot emit a 
forecast. In the example, the forecast probability 
for May 2011 in SRS3 is 100.00% (ND), 0.00% 
(MD), 0.00% (SD), and 0.00% (ED).

The validation analysis of the model shows a 
good level of prediction accuracy for the occur-
rence of ED events with success rates higher than 
85.2%. In general, the percentage of right answers 
is directly proportional to the length of the obser-
vation period considered in the development of the 
model structure (as given in Table IV). Apparently 
the geographic location of the RSs (north or south 
facade) does not seem to influence the percentage 
of right answers when applying the models. The 
weather events with ND and MD conditions have the 
highest percentage of false alarms (around 21.16%); 
this suggests that, as a result of the way in which the 
model is generated, it does not discern adequately 
the occurrence of these events.

Table IV. (Continued)

Model structure of  MV predictor  Observed probability of occurrence (%)

ACAR ATLS QBO50 ZON200 ND MD SD ED

1 0 –1 1 100.00 0.00 0.00 0.00
1 0 1 1 100.00 0.00 0.00 0.00
1 1 0 0 100.00 0.00 0.00 0.00
1 1 0 1 100.00 0.00 0.00 0.00
1 1 0 –1 100.00 0.00 0.00 0.00
1 1 –1 0 100.00 0.00 0.00 0.00
1 1 –1 1 100.00 0.00 0.00 0.00
1 1 –1 –1 100.00 0.00 0.00 0.00
1 1 1 0 100.00 0.00 0.00 0.00
1 1 1 1 100.00 0.00 0.00 0.00

Note: This table shows only observed combinations.
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4.	 Conclusions
Weather stations in Venezuela are regionalized 
according to the magnitude and sign of rainfall 
anomalies expressed by the SPI index. PCA with 
standard Varimax rotation and Kaiser normalization 
allows identifying the stations with interrelated SPI 
that form groups with a high degree of homogeneity. 

The use of a GIS to represent those groups allows 
defining continuous geographic regions, the so-called 
HS. Gauging stations included in an HS region can 

be represented by an RS selected on the base of 
record length, occurrence of the dry season, alti-
tude, and annual mean precipitation. The generated 
homogeneous groups are of different sizes. The first 
component comprises the largest number of stations. 
The mean annual rainfall and, in a lesser degree, the 
orientation of the stations in relation to the mountain 
barriers appear to influence the formation of the HSs.

Extreme temperature anomalies in the Pacific 
(El Niño regions), the North and South Atlantic 

Fig. 3. Simplified flow chart showing the organization of the seasonal drought forecast based 
on the use of probabilistic models of the RSs.

Routine
forecast

Identify macro-climatic indices
predictors in the SH

Identify the lag of each of the 
VMs predictors in the SH

Identify Q2 and Q4 for each 
of the VMs predictors in the SH

Transforming the anomaly of each VM,
+1.0 or –1, depending on their position

relative to Q2 and Q4

Build the structure of the imput signal, the code
will be made up of 4 signs, one for each VM;

for example, +1.0 or –1

Contrast the imput signal with the
structures observed in the SH Database with the structures observed in each

SH, according to the VMs predictor and the
observed occurrence

Prepare forecast according to the 
response observed in the structure

contrasted

It is imposible
to develop a forecast

Was this structure 
observed in SH?

No

Yes

Get the anomaly of the VMs
predictors, laged

Indices ATLN, ATLS, SOI, QBO50 and ZON200 
in http://www.cpc.ncep.noaa.gov/data/indices and ACAR in

http://www.esrl.noaa.gov/psd/data/correlation/CAR.data

Database containing the 
VM predictors in each SH

Database with lags of each
VM predictors in each SH

Database with Q2 and 
Q4 of each VM predictor

on each SH

Database with indices
anomalies; monthly scale

Select SH
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and the Caribbean Sea have a differential effect on 
the occurrence of precipitation in Venezuela. These 
macroclimatic weather events alter temporarily 
the total normal rainfall, and may also change the 
spatial distribution pattern of rainfall on a regional 
scale. Between the occurrence of an oceanic or 
atmospheric anomaly and the occurrence of the 
resulting extreme rainfall event, there is a lag time 
of 1 to 23 months. Under certain conditions the oc-
currence of meteorological droughts is modulated 
by the changes in the pattern and intensity of air 
circulation in the tropical upper troposphere and 
stratosphere. The droughts of greater spatial cover-
age and persistence are the result of the interaction 
of several macroclimatic anomalies of different 
magnitude, sign, origin (oceanic or atmospheric), 
and time lag.

The developed predictive models based on the 
use of conditional probability tables allow pre-
dicting with an accuracy of more than 60% the 
occurrence of ED events in several areas of the 
country with an anticipation of one to 14 months. 
To minimize the uncertainty of the forecast, the RS 
should have a rainfall series with an extended length 
of rainfall records.

The structure of the proposed model is easy to pro-
gram and only requires continuous records of monthly 
precipitation; therefore, it should be easy to incorporate 
this model into an early warning system for drought 
weather (SATSM) in Venezuela or any other country 
where teleconnections play an important role in the 
occurrence of extreme rainfall anomalies.

Unlike the complex coupled general circulation 
atmosphere-ocean models, the proposed method uses 
simple algorithms and is easy to program, so it can 
easily be adapted to any Latin American country and 
the Caribbean regions, provided that there is enough 
rainfall data available. 
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