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RESUMEN

El objetivo de este estudio es capitalizar el detalle espacial del Landsat y la regularidad temporal de las 
adquisiciones de MODIS utilizando una aproximación de fusión (Spatial and Temporal Adaptive Reflec-
tance Fusion Model, STARFM). Específicamente, se pronosticó la reflectancia de superficie de 30 m del 
Landsat-7 Enhanced Thematic mapper plus (ETM+) para un período de ocho años (2002-2009) como el 
producto de la reflectancia observada de superficie (MOD09Q1) ETM+ y MODIS sobre los datos ETM+ 
observados y pronosticados. El análisis de pixeles de los datos ETM+ observados de las estaciones de cultivo 
de invierno y verano mostró que el método de predicción fue más preciso para el infrarrojo cercano (NIR, 
por sus siglas en inglés) (media r2 = 0.87, p ≤ 0.01) en comparación con la banda del rojo ( media r2 = 0.65, 
p ≤ 0.01). Se calculó el índice de vegetación en diferencias normalizadas (NDVI, por sus siglas en inglés) 
de la reflectancia Landsat observada y pronosticada. Se comparó la diferencia entre el NDVI de los datos 
ETM+ observados y pronosticados (predicción residual) y los residuales temporales de los datos Landsat y 
MODIS en dos fechas diferentes. Se encontró que que los residuales pronosticados para el NDVI (valor de la 
media espacial 0.0085) fueron significativamente menores que los residuales temporales (valor de la media 
espacial para MODIS 0.056 y 0.051 para ETM+ observados) lo que implica que el método de predicción fue 
mejor que la sustitución temporal de pixeles. Al investigar la tendencia de los valores sintéticos ETM+ del 
NDVI durante una estación de crecimiento se descubrió que los patrones fenológicos son bien capturados. 
La comparación directa entre los valores del NDVI obtenidos de MODIS y de imágenes sintéticas ETM+ 
muestra buena consistencia de la dinámica temporal pero también un error sistemático que puede ser leído 
como un sesgo (sobre estimación del NDVI MODIS). También se estudió la relación entre el NDVI ETM+ 
sintético y los datos de precipitación observada y de evaporación y se observó que la precipitación mensual 
total y la evaporación mensual del mes precedente tiene coeficientes de correlación mayores ( r2 = 0.56 y r2 
= 0.59) que la media mensual del NDVI ETM+ sintética.

ABSTRACT

The aim of this study is to capitalize on the spatial detail of Landsat and the temporal regularity of MODIS 
acquisitions using a fusion approach (Spatial and Temporal Adaptive Reflectance Fusion Model, STARFM). 
Specifically, the 30 m Landsat-7 ETM+ (Enhanced Thematic Mapper plus) surface reflectance was predicted 
for a period of eight years (2002-2009) as the product of observed ETM+ and MODIS surface reflectance 
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(MOD09Q1) on the predicted and observed ETM+ dates. A pixel based analysis for observed ETM+ dates 
covering winter and summer crop seasons showed that the prediction method was more accurate for NIR 
(mean r2 = 0.87, p ≤ 0.01) compared to red band (mean r2 = 0.65; p ≤ 0.01). The NDVI was computed from 
observed Landsat and predicted surface reflectance. The difference between NDVI from predicted and ob-
served ETM+ data (prediction residual) was compared with the temporal residuals of NDVI from observed 
Landsat and MODIS data at two different dates. The prediction residuals for NDVI (spatial mean value of 
0.0085) were found to be significantly lower than the temporal residuals (spatial mean value of 0.056 for 
MODIS and 0.051 for observed ETM+) implying that the prediction method was better than temporal pixel 
substitution. Investigating the trend in synthetic ETM+ NDVI values over a growing season revealed that 
phenological patterns were well captured. A direct comparison between the NDVI values obtained from 
MODIS and synthetic ETM+ images has shown a good consistency of the temporal dynamics but a systematic 
error that can be read as bias (MODIS NDVI over estimation). The relationship between synthetic ETM+ 
NDVI with observed precipitation and evaporation data was also studied and it was observed that monthly 
total precipitation and monthly evaporation of the preceding month have higher correlation coefficients (r2 
= 0.56 and r2 = 0.59) with mean monthly synthetic ETM+ NDVI.

Keywords: Landsat, modis, blending, NDVI, precipitation, evaporation.

1. Introduction
Accurate and timely information on the location and area of major crop types has significant 
economic, food, policy, and environmental implications. While all dimensions of remotely sensed 
data are relevant, for practical purposes it is the temporal information that has been most useful 
for monitoring of major crop types with remote sensing (Smith and Ramey, 1982; Badhwar, 
1984; Hall and Badhwar, 1987; Price et al., 1997; Wardlow et al., 2007). At any point during 
the growing season, crops are at different stages of maturity, and these stages are manifested as 
differential levels of spectral reflectance in remotely sensed signals, thereby building a crop-specific 
temporal record. Hence, by monitoring spectral indices that are sensitive to vegetation cover over 
time, it is possible to distinguish crops and other land-cover types. Despite the availability of 
long term satellite observations, temporal monitoring of crop types and crop health has not been 
widely operational for crop acreage assessment. Two reasons contribute to this absence. First, the 
spatial detail comes at the cost of reduced temporal availability: due to predetermined acquisition 
strategies and obstructions by clouds, only a few medium or high spatial resolution images are 
usually available during critical growing periods.  Even if the necessary image data were available, 
the increased number of datasets makes the cost prohibitive for operational applications. Second, 
lower spatial resolution data such as Moderate Resolution Imaging Spectroradiometer (MODIS) 
provide extensive coverage at continental and global scales, but lack the ability to reveal specific 
details on the fields of interest. Thus many of the pixels generated by coarse resolution sensors are 
not characteristic of any one crop but relate to a mixture. 

The potential solution to provide more frequent high resolution surface observations is to fuse 
Landsat observations with data from other remote sensing systems, such as MODIS. The MODIS 
instrument offers new possibilities for large area crop mapping by providing a near-daily global 
coverage of science-quality, intermediate resolution (250 m) data since February 2000 at no cost 
to the end user (Justice and Townshend, 2002). The Terra platform crosses the equator at about 
10:30 A.M. local solar time, roughly 30 min later than Landsat-7 ETM+. Their orbital parameters 
are equal, and as such the viewing (near-nadir) and solar geometries are close to those of the 
corresponding Landsat acquisition. The Terra/Aqua MODIS provides frequent coarse-resolution 
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observations, revisiting the globe once to twice per day. The MODIS observations include 250-m 
spatial resolution for red (band 1) and near-infrared (NIR) (band 2) wavebands and 500-m spatial 
resolution for other five MODIS land bands (band 3-7). The MODIS land bands have corresponding 
bandwidths to the Landsat ETM+ sensor except their bandwidths are narrower than ETM+.

Landsat fusion is not straightforward however because the radiometric consistency of Landsat data 
may change spatially and temporally, due to atmospheric and phenological variations, differences in 
illumination and observation angles, cloud and shadow contamination, and sensor calibration changes 
(Coppin et al., 2004; Song and Woodcock, 2003). Many studies have been carried out on fusion of two 
different satellite data (Carper et al., 1990; Shettigara, 1992; Acerbi et al., 2006). The recent fusion 
studies based on Landsat and MODIS data of 500 m 16-day MODIS have been carried out to monitor 
forest cover on a 8-day basis (Roy et al., 2008; Hansen et al., 2008; Hilker et al., 2009). The current 
Landsat and Terra satellites are in the same polar orbit, with Landsat ETM+ observations occurring 
approximately 15 min before MODIS Terra nadir observations. Recognizing the complementary 
aspects of these systems, Gao et al. (2006) developed an empirical fusion technique, the spatial and 
temporal adaptive reflectance fusion model (STARFM), to combine 30 m Landsat ETM+ data with 
daily 500 m MODIS reflectance data. STARFM predicts changes in reflectance at Landsat’s spatial 
and spectral resolution using high temporal frequency observations from MODIS. STARFM predicts 
reflectance at up to daily time steps, depending on the availability of MODIS data. 

The objective of this study was to investigate the suitability of the prediction algorithm for 
generating synthetic (predicted) ETM+ surface reflectance for near-infrared (NIR) and red bands 
and derivation of NDVI using these synthetic surface reflectances. The assessment of the quality 
of the synthetic ETM+ reflectance by comparing these predictions with surface reflectance values 
from observed ETM+ images acquired through out two growing seasons over a period of eight 
years (2002-2009). To generate the NDVI time series from synthetic ETM+ data for the assessment 
of seasonal changes (i.e. changes due to vegetation green-up and leaf senescence) in vegetation 
cover and vegetation status over the study site, for which the potential of acquiring frequent higher 
spatial resolution data (and therefore the potential for mapping of vegetation dynamics) is otherwise 
low. Finally, the relationship between NDVI from synthetic ETM+ data with precipitation and 
evaporation for its potential use in hydrological applications are investigated.

2. Methods
2.1 Study area 
The study area is Mawana subdivision of Meerut district of Uttar Pradesh state depicted by the red 
polygon shown in Figure 1, covering an area of about 1250 km2. The land cover is predominantly 
cropland with scattered trees and bushes. This area is about 75 km from the national capital Delhi. 
The study area was chosen mainly because of three important factors (1) The identified location 
represents the agroclimatic conditions of a large part of northern India, where sugarcane occupies 
around 2 million ha and rice-wheat is grown in about 10 million ha. This area comes under Indo-
Gangetic plains, where applications of organic matters in soil have gone down drastically resulting 
in decline of crop productivity, (2) The availability of continuous satellite data as the study site 
lies at the middle of tiles where Landsat-7 ETM+ has no missing lines due to SLC off, (3) The 
availability of continuous observed meteorological parameters like temperature, rainfall, evaporation 
and wind over a period of 15 years (1995-2009) over the study site.
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Figure 2a shows the RGB with R (red), G (NIR), and B (green) bands of Landsat-7 ETM+ image 
of 15 September 2009 to have an idea about the land cover type of study site. There are basically 
two types of land cover found in the RGB (Fig. 2a), namely crop and non crop land cover types. 
The pink color shows non cropland, the Ganges river in the eastern part of region and villages in the 
image while the green colour shows the crop land cover. The maximum temperature in the region is 
about 45 ºC in summer while minimum is about 5 ºC in winter. The region receives approximately 
950 mm of rainfall during the year. Out of that, about 90% of the rain occurs in the monsoon 
months i.e. July to middle of September (Fig. 2b). The average depth of the water table is 6.0 m 
in the study area. The soil characteristics vary in the study area from sandy loam in the western 
part of the area to highly clay loam in the eastern part of the area in Khadar of the river Ganges. 

2.2 Satellite data
Two pairs of contemporary images, acquired by the sensors Terra-MODIS and Landsat-7 ETM+, 
respectively, were used in the present study. The eight days MODIS composites (MOD09Q1) of 

Fig. 1. Map of the study area. The study site encompasses a Landsat scene 
(185 × 185 km2) of 15 September 2009 as R (red), G (NIR), B (green) 
image near Delhi, India.
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Fig. 2. (a) Shows RGB image as R (red), G (NIR), B (green) of 14 February 
2010 for land cover types; (b) shows the annual variation of rainfall over 
the study site from 2002-2009.
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surface reflectances (NIR and red) with a spatial resolution of 250 m for eight years (2002-2009) 
were obtained from the EOS data gateway of NASA’s Goddard Space Flight Center (http://redhook.
gsfc.nasa.gov). Landsat-7 ETM+ orthorectified images (path 146, row 040) were acquired through 
the USGS GLOVIS portal (http://glovis.usgs.gov/) for the same period. The details of Landsat-7 
ETM+ and corresponding MODIS tiles used in this study are given in Table I. 

Precise registration and orthorectification of remote sensing images are the basic processes 
for quantitative remote sensing applications, especially for multi-temporal image analysis. Image 
registration is often very time-consuming, sometimes taking months to collect an adequate number of 
ground control points (GCPs). Many methods have been and continue to be developed for automatic 
or semi-automatic image registration (Hanaizumi and Fujimura, 1993; Dare and Dowman, 2000; 
Zhang and Zhang, 2001; Ali and Clausi, 2002; Bentoutou et al., 2005). These methods describe 
algorithms and functional forms rather than the use of particular software. Therefore, implementation 
of these methods will be difficult to end users. This work took advantage of a free application 
called ITPFIND (Kennedy and Cohen, 2003) that automatically finds image reference points for 
image rectification, in order to produce accurately registered images in a relatively short amount 
of time operationalized in IDL (ITT Visual Information Solutions, Boulder CO). Subsequently, 
image to image registration was carried out from these points using the ENVI software package. 

Image registration is the process of making an image conform to another image and involves 
georeferencing if the reference image is already rectified to a particular map projection. Thus 
image to image registration is usually used for time series data like multi-temporal images over 
the same region in order to place the same coordinate system to disparate images. The Landsat-7 
ETM+ image was manually corrected using ground control points (GCPs) and thereafter it was 
considered as reference image for image to image registration of all the remaining images as given 
in Table I. For example, Figure 3(a and b) shows the Landsat-7 ETM+ image on 2 March 2007 

Table I. The details of Landsat-7 ETM+ and corresponding MODIS tile used for this study.

S. No. Landsat-7 ETM+ (path = 140,row = 040) MODIS (tile = h24v06)

1  20 March 2002  22 March 2002
2  28 September 2002  29 September 2002
3  7 March 2003  6 March 2002
4  1 October 2003  30 September 2003
5  25 March 2004  22 March 2004
6  1 September 2004  2 September 2004
7  12 March 2005  14 March 2005
8  6 October 2005  8 October 2005
9  27 February 2006  26 February 2006

10  23 September 2006  22 September 2006
11  2 March 2007  6 March 2007
12  12 October 2007  16 October 2007
13  4 March 2008  6 March 2008
14  28 September 2008  29 September 2008
15  7 March 2009  6 March 2009
16  15 September 2009  14 September 2009
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as reference image and 12 October 2007 as input image. Table II provides the predicted x, et al. 
coordinates for the selected warp, the x and et al. error, and the Root Mean Square (RMS) error 
after the selection of at least four GCPs from GCP list. However, it is better to select sufficient 
number of GCPs to conduct a first-degree polynomial warp and calculate the total error and the 
RMS error for each point. The RMS error is minimized by refining the positions of the pixels 
with the largest errors or by removing them. If only few GCPs are available, place them near the 
image corners or widely scatter them throughout the image (Fig. 3). For rectification, first order 
polynomial transformation equations were derived and a bilinear interpolation resampling method 
was used to determine the pixel values of the new rectified image with a size of 30 by 30 m. The 
total RMS error of the registered images was 0.68 pixel, which was quite low to accept the RMS 
error limit required for the fusion of satellite data. 

The radiometric and atmospheric corrections were applied to Landsat-7 ETM+ scenes. The 
equations and parameters to convert calibrated Digital Numbers (DNs) to physical units, such as 
at-sensor radiance or TOA reflectance utilized in this study are from the previous studies (Chander 

Table II. Statistical analysis of coregistration of Landsat-7 ETM+ NIR using 2 March 2007 as reference 
image and 12 October 2007 as input image.

GCPs Reference
(x)

Reference 
(et al.)

Input
(x)

Input
(et al.)

Predict
(x)

Predict
(et al.)

Error
(x)

Error
(et al.)

RMS

1 3910 2286 4050 2316 4049.8 2316.28 –0.2 0.28 0.35
2 4187 2293 4327 2323 4326.56 2323.61 –0.44 0.61 0.75
3 4434 2343 4574 2373 4573.87 2373.19 –0.13 0.19 0.23
4 3791 2562 3931 2592 3931.06 2591.91 0.06 –0.09 0.11
5 4150 2519 4290 2549 4290.98 2547.63 0.98 –1.37 1.68
6 3782 2800 3922 2830 3922.12 2829.83 0.12 –0.17 0.21
7 3723 3027 3863 3057 3862.59 3057.57 –0.41 0.57 0.7
8 3773 3217 3913 3247 3913.16 3246.77 0.16 –0.23 0.28
9 4427 3301 4577 3317 4576.86 3317.2 –0.14 0.2 0.25

Total RMS error : 0.6884

	  
Fig. 3(a) Coregistration of Landsat-7 ETM+ NIR using 2 March 2007 as 

reference image and (b) 12 October 2007 as input image.
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and Markham, 2003; Chander et al., 2007; Markham et al., 2004). Images were atmospherically 
corrected using the Quick Atmospheric Correction (QUAC) module (Bernstein et al., 2005) of 
environment for visualizing images (ENVI) processing package. Following STARFM algorithm 
input requirements, the MODIS data were reprojected to the geographical projection using the 
MODIS reprojection tool (Kalvelage and Willems, 2005), clipped to the extent of the available 
Landsat imagery, and resampled to a 30 m spatial resolution with nearest-neighbor resampling to 
maintain the MODIS pixel values and 30 m output pixel dimensions to reduce nearest-neighbor 
resampling pixel shifts (i.e., position errors) (Roy and Dikshit, 1994). These datasets were forced 
to assume the same size in order to make the results comparable. The basic features of the two 
sets of data are given in Table III.

3. Results
3.1 Evaluation of synthetic ETM+ imagery
The spatial and temporal adaptive reflectance fusion model (STARFM) developed by Gao et al. 
(2006) predicts pixel values based upon a spatially weighted difference computed between the ETM+ 
and the MODIS scenes acquired at date T1, and the ETM+ T1-scene and one or more MODIS scenes 
of prediction day (T2), respectively. The input pairing (T1) criteria for the prediction of synthetic 
ETM+ (T2) was based on least amount of cloud cover (almost 0%) and minimal temporal difference 
in order to reduce the likelihood for changes in land cover resulting from harvesting or phenological 
changes. The input pairs (T1) used in this study are given in Table I. The study area comprises winter 
and summer crops. Generally, late February or early March is the peak time (middle of season) 
for winter and September or October are peak time for summer crops. The algorithm yielded 46 
(eight days composites) high spatial resolution, synthetic ETM+ images for the growing seasons 
(December to April for winter crop and May to December for summer crop) using an ETM+, for 
example MODIS scene acquired on 4 March 2008 and 28 September 2008 as the T1 images, and 
eight day MODIS composites between January to December 2008 as the T2 images for prediction 
(Table I). Also, the validation was not done for June, July and August months because of non 
availability of cloud free observed ETM+ images and also excluding input image pairs (Table I).

Figures 4(a-f) and 5(a-f) show a per-pixel comparison between observed and predicted ETM+ 
NIR, and red surface reflectance for the winter and summer crops. The first row shows the scatter 
plots for NIR band and second row for red band. The relationship between observed and predicted 
pixel values closely followed the 1-to-1 line for the NIR compared to that of red reflectance 
(Figs. 4(a-f) and 5(a-f)). Some deviations from this 1-to-1 line, however, were found for the NIR 

Table III. Landsat ETM+ bands and the corresponding MODIS bands used in 
this study.

Bandwidth Specifications
(nm)

Terra- MODIS Landsat-7 ETM+

Band 1: 620-670
Band 2: 841-876

Band 3: 630-690
Band 4: 780-900

Spatial resolution (m) 250 30
Radiometric resolution (bits) 12 bits 8 bits
Data frequency Daily 16 Days



50 D. Singh

towards the end of the summer crops period (Fig. 5(a)) and during the month of December when 
harvesting of sugarcane progresses (Fig. 5(c)). The harvesting of summer crops (sugarcane) and 
simultaneously sowing of winter crops (wheat) during the month of December creates a complex 
mixture of land cover type, as a result the scatter plots (Figs. 5a and 5c) are bit noisy and also the 
coefficients of determination are also relatively low (r2 = 0.87 and r2 = 0.82). The ability of 30 m 

	  
Fig. 4. Per-pixel comparison between observed and predicted ETM+ reflectance for three different observed 
ETM+ dates for winter crops. The first row represents the reflectance values for the NIR and second row 
for red band, respectively.

	  
Fig. 5. Same as Figure 4, but for summer crops. 
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resolution synthetic ETM+ images for the predictability of changes depends upon the capacity 
of MODIS to detect these changes, particularly when they occur in vegetation structure or stand 
composition or at sub-pixel ranges (Gao et al., 2006). Complex mixtures of land cover type are a 
challenge for all methods of data fusion. Therefore, it will be difficult to identify or spatially define 
individual change events as it is not possible to depict changes occurring in the sub-MODIS pixel 
range. As a result, the algorithm in its current form seems less suited for the prediction of changes 
in vegetation structure (such as originating from clear cut harvesting or thinning) or changes in 
land cover. Changes will also not be detected by STARFM when two contradicting changes occur 
within a coarse resolution pixel simultaneously and compensate for each other (Gao et al., 2006). 

The validation of synthetic ETM+ with observed ETM+ has been carried out for the images 
which are not used as input pairs (T1) in this study as given in Table I. Therefore, it may be stated 
that regression analysis was carried out on two independent set of observations. The validation 
was carried out for winter and summer crops for all the eight years and statistical results are given 
in Table IV. The first column in each sub-table shows the coefficient of determination, the second 
column shows the intercept and the third column shows the slope of the relationship between 
observed and predicted. A two-sided t-test was used to determine whether there is a statistically 
significant difference between observed and predicted surface reflectance. Table IV shows the 
reasonably consistency in the results for all the eight years (2002-2009) with different dates of 
input pairs from year to year. The highest correlations between observed and predicted pixel values 
were found for the NIR band (0.76 ≤ r2 ≤ 0.92, p ≤ 0.01), while the red band yielded slightly 
weaker relationships (0.64 ≤ r2 ≤ 0.69, p≤ 0.01) (Table IV). In most of the cases the intercepts of 
the relationship between observed and predicted images were greater than zero (Table IV) which 
can be interpreted as a noise signal likely due to atmospheric and BRDF effects. These findings 
are also confirmed by previous studies (Gao et al., 2006; Hilker et al, 2009).

Table IV. Regression analysis of the observed versus predicted ETM+ images, whose prediction 
date was closest to the observed scenes.

Observed ETM+ scenes
NIR red

r2 a b r2 a b

 31 January 2002 0.895 0.007 0.763 0.653 0.014 0.827
 14 October 2002 0.918 0.058 0.931 0.665 0.037 0.784
 8 April 2003 0.879 0.071 0.952 0.647 –0.008 0.849
 2 November 2003 0.914 0.009 0.895 0.659 0.027 0.763
 10 April 2004 0.873 –0.006 0.927 0.653 0.019 0.838
 19 October 2004 0.853 0.083 0.914 0.662 –0.037 0.746
 13 April 2005 0.879 0.042 0.883 0.651 0.006 0.682
 7 November 2005 0.897 0.017 0.987 0.664 0.032 0.795
 31 March 2006 0.916 0.008 0.912 0.648 0.019 0.743
 9 October 2006 0.852 0.093 0.947 0.659 –0.041 0.689
 3 April 2007 0.836 0.097 0.885 0.643 0.008 0.796
 13 November 2007 0.871 0.069 0.918 0.661 –0.028 0.829
 24 April 2008 0.765 –0.008 0.994 0.636 0.036 0.876
 14 October 2008 0.877 0.025 0.881 0.698 0.017 0.646
 24 April 2009 0.882 0.005 0.917 0.657 0.019 0.835
 17 October 2009 0.913 0.041 0.935 0.669 0.037 0.738
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The spatio-temporal variation of the NDVI is illustrated in Figure 6 over the study area. The 
absolute difference of NDVI values (temporal residuals) from MODIS data on 28 September 2008 
(Part a) and 15 October 2008 (Fig. 6b), and observed ETM+ data on 28 September 2008 (Part 
6d) and 14 October 2008 (Part 6e) were computed and shown in Figure 6 (c and f), respectively. 
Similarly, the prediction residuals were computed from the absolute difference of NDVI values 
from synthetic ETM+ data on 15 October 2008 and observed ETM+ data on 14 October 2008 
(Fig. 6(i)). Close examination of the NDVI derived from predicted ETM+ data reveals a faint 
blocky pattern that corresponds spatially to the locations of the resampled 250 m MODIS pixel 

	  
Fig. 6. Illustrating spatio-temporal variation of NDVI; (a) and (b) are NDVI from MODIS(MOD09Q1) on 
28 September and 14 October 2008, (c) is the temporal residual (absolute value of (a-b)), (d) and (e) are 
NDVI from observed ETM+ on 28 September and 14 October 2008, (f) is the temporal residual (absolute 
value of (d-e)), (g) and et al. are NDVI from predicted ETM+ on 15 October 2008 and observed ETM+ on 
14 October 2008, (i) is the prediction residual (absolute value of (g-h)). Pat a, b, d, e, g and h are shown 
with the same contrast stretch.
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dimensions. This pattern is most evident across some of the fields (Fig. 6g). This is due to the 
fact that the dynamics of surface reflectance is different between one field and its neighbor (e.g., 
due to harvesting in one field and not in an adjacent field), underlying the fact that the method is 
less likely to be valid where the Landsat reflectance heterogeneity at the sub-MODIS pixel scale 
changes temporally. The NDVI from observed ETM+ data for 28 September (Fig. 6d) is higher 
than the 14 October 2008 (Fig. 6e) with many fields harvested by the later acquisition date. Despite 
the evident land cover change complexity, the NDVI from predicted ETM+ data on 15 October 
2008 captures many of the temporal changes (Fig. 6g). In general, the prediction residuals (spatial 
mean value of NDVI was 0.0085) was considerably lower than the temporal residuals (spatial 
mean value of NDVI from MODIS was 0.056 and predicted Landsat was 0.051) that correspond 
to 25 and 9% of mean observed values of NDVI (0.502 from observed Landsat and 0.527 from 
MODIS) on 14 and 15 October 2008, implying that the prediction method was on an average better 
than temporal pixel substitution. However, prediction residuals were also found to be higher than 
the temporal residuals at a few locations. The higher prediction residuals may be due to regions of 
textural change in addition to misregistration and resampling impacts that are greatest in regions of 
high spatial variation (Roy, 2000).

3.2 Evaluation of NDVI time series
The majority of ETM+ images used for the prediction of NIR and red surface reflectances were close 
to 100% cloud free. However, the NDVI calculated using predicted ETM+ NIR and red surface 
reflectances still include some contaminated pixels. There are many complications, limitations and 
causes of error associated with satellite data, including sensor resolution and calibration (Vermote 
and Kaufmann, 1995), digital quantization errors (Viovy et al., 1992), ground and atmospheric 
conditions (Tanre et al., 1992), and orbital and sensor degradation (Kaufmann et al., 2000). NDVI 
data sets are generally well-documented, quality-controlled data sources that have been pre-
processed to reduce many of these problems (James and Kallmi, 1994; Smith et al., 1997; Tucker 
et al., 2005). However, some noise is still present in the downloadable data sets and, therefore, 
NDVI time-series need to be smoothed before being used. Therefore, Savitzky-Golay (1964) 
filtering technique was used in order to remove the noise from NDVI time series. This technique 
was applied to smooth every pixel’s time series profile for eight year (2002-2009) period.

The scatter plots of synthetic ETM+ with observed ETM+ NDVI and the MODIS NDVI data 
from the nearest composite period are shown in Figures 7a and b, respectively. The observed 
ETM+ NDVI values close to 100% cloud free thus provide a reference value for the comparison 
of synthetic ETM+ and MODIS NDVI values. The total number observed ETM+ scenes used 
for this study was 58 over a period of eight years (2002-2009). The regression analysis between 
observed and synthetic ETM+ NDVI (Fig. 7a) carried out at 30 m spatial resolution while for 
MODIS NDVI (Fig. 7(b)), the synthetic ETM+ NDVI was resampled to 250 m spatial resolution. 
The mean value of closest synthetic ETM+ NDVI over the study area corresponding to observed 
ETM+ NDVI was used for the regression analysis. A strong linear relation exists between MODIS, 
observed and synthetic ETM+ NDVI (Fig. 7(a) and 7(b)) but with different regression coefficients, 
because of MODIS tendency to overestimate NDVI (Hwang et al., 2008). A good agreement (r2 
= 0.86, p ≤ 0.01) was observed between observed and synthetic ETM+ NDVI (Fig. 6a) compared 
to MODIS and synthetic ETM+ NDVI (r2 = 0.63, p ≤ 0.01). The rms errors from predicted and 
observed Landsat data derived NDVI were found to be 0.042 to 0.046 over a period of eight years 
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(2002-2009). The later result showed that a significant amount of information is lost in case of 
MODIS medium spatial resolution compared to the ETM+ NDVI.

The results of the intercomparisons of the NDVI time series from synthetic ETM+ and MODIS 
are presented in Figure 7(c) and 7(d), respectively. The synthetic ETM+ NDVI time series was 
generated at 30 m spatial resolution by taking the mean of synthetic ETM+ NDVI (Fig. 6(c)) over 
study area for 46 weeks (8-days composites) for eight years period (2002-2009). Similarly for 
MODIS NDVI (Fig. 7(d)) time series also but for 250 m spatial resolution. The first maximum 
corresponds to winter crops (wheat) while the second one corresponds to summer crops (sugarcane) 
in each year. All the curves of NDVI for the years from 2002 to 2009 show distinctive seasonal 
dynamics. It may be observed that vegetation green-up and leaf-down at the beginning and at the 
end of the vegetation period were well captured by the synthetic ETM+ NDVI (Fig. 7 (c)) and 
MODIS NDVI (Fig. 7 (d)). The NDVI time series by and large represent crops, since only a small 
area of scattered trees and bushes are present over the study site. The NDVI values are maximum 
around week 8 (winter crops) followed by a second peak around week 38 (summer crops). The 
mean synthetic ETM+ NDVI value of first maximum (0.52) is found to be smaller than the second 
maximum (0.62). These peaks represent winter crops of low productivity and summer crops of 
high productivity. Therefore, synthetic ETM+ NDVI suggests that data may potentially be used to 
quantify seasonal changes in reflectance induced by physiological changes in vegetation, the rate 
of increase and decrease of the NDVI, the dates of the beginning, end and peak(s) of the growing 
season, the length of the growing season, the timing of the annual maximum NDVI and the NDVI 
value at a fixed date (Drake, 1976; Tucker, 1979; Sellers, 1985) at fine spatial scales (Gao et al., 
2006). Similar patterns are observed in case of MODIS NDVI (Fig. 7(d)). However, there were 
two major differences observed between these two data sets. First, the interannual variations 
were found to be more distinct in case of synthetic ETM+ NDVI compared to MODIS. Second, 
MODIS NDVI was overestimated, characterized by a moderate intercept with respect to synthetic 
ETM+ NDVI. Earlier study (Hwang, 2008) also reported over estimation of MODIS NDVI in 
comparison to ETM+ NDVI.

The vegetation dynamics and local climate are intrinsically linked and hence vegetation dynamics 
could provide information about climatic events, such as drought conditions. The NDVI has been 
used to improve our predictions and impact assessments of disturbances such as drought (Singh et 
al., 2003), fire (Maselli et al., 2003), flood (Wang et al., 2003) and frost (Tait and Zheng, 2003). 
Because of interannual and intra-annual variations in rainfall on the study area, the vegetation is 
often exposed to water shortage during the growing season, periodically leading to severe droughts 
(Susmitha, et al., 2009), food shortage and production deficiencies. NVDI in the monitoring of 
drought or in the evaluation of dynamic fire risk rely on the sensitivity of the index to vegetation 
dryness, a major predisposing factor for drought occurrence. An attempt has been made in this 
study to investigate the capability of synthetic ETM+ NDVI for the analysis of two drought years 
2002 and 2004 (Susmitha et al., 2009). The mean NDVI (mean of eight years) over the study site 
is shown as a black line (Fig. 7(c) and 7(d)), which clearly separates the years of healthy and poor 
vegetation conditions during the summer season. The maximum value of synthetic ETM+ NDVI 
values (Fig. 7(c) observed during the year 2002 and 2004 were significantly lower (0.60 and 0.61 
respectively) compared to mean NDVI value (0.66) and also with other years. Similar results were 
also observed for MODIS NDVI (Fig. 7(d)), but with overestimation. The lower value of NDVI 
for the year 2002 attributed to no rainfall during month of July (Susmitha et al., 2009). However, 
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the year 2004 also suffered four short or long monsoon breaks, but these were intermittent and of 
less duration compared to July 2002 (Susmitha et al., 2009). Generally, the sowing time of summer 
crops over this area starts from middle of June and therefore, July rainfall is very critical for the 
growth of vegetation. Therefore, it may be stated that synthetic ETM+ NDVI could be useful for 
the monitoring of climatic events such as drought. However, further work is required to quantify the 
impact of synthetic ETM+ NDVI data on a larger scale.

3.3 Synthetic ETM+ NDVI vs precipitation and evaporation
NDVI was shown to be sensitive to changes in vegetation conditions, since it is directly influenced 
by the chlorophyll absorption of the sun radiation (Tucker et al., 1985). Because the chlorophyll 
status integrates the effects of numerous environmental factors, NDVI has been related to the 
following components of the water balance equation for a wide range of spatial and temporal 
scales: soil moisture (Choudhary and Golus, 1988; Farrar et al., 1994; Nicholson et al., 1996), 
precipitation (Tucker et al., 1985; Choudhary and Tucker, 1987; Nicholson et al., 1990; Devenport 
and Nicholson, 1993; Schultz and Halpert, 1993; Nicholson and Farrar, 1994; Grist et al., 1997) and 

	  
Fig. 7. Comparison of composited NDVI data to 22 Landsat ETM+ scenes. (a) Scatter 
plot of observed Landsat ETM+ NDVI (x axis) versus sensor synthetic Landsat ETM+ 
NDVI (y axis) from the nearest maximum value composite to Landsat acquisition date. 
(b) Scatter plot of synthetic Landsat ETM+ NDVI (x axis) versus MODIS NDVI (y 
axis) from the nearest maximum value composite to Landsat acquisition date. (c) The 
line plot show the eight days mean NDVI values over crop land cover type derived from 
synthetic Landsat ETM+ NDVI. (d) Same as (c) for MODIS NDVI.
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evaporation (Running and Nemani, 1988; Kerr et al., 1989; Chiller et al., 1991; Gao et al., 1992; 
Seevers and Ottmann, 1994; Nicholson et al., 1996). A comparable long-term study of NDVI versus 
concurrent monthly evaporation has been presented by Nicholson et al. (1996) who concluded that 
with the growing aridity of the environment the NDVI versus evaporation relationship becomes 
significantly weaker. However, it was concluded by Szilagyi et al. (1998), when a time-lag of one 
month between evaporation with NDVI is taken into consideration, the relationship remains strong 
even in a water limited environment. 

The relationships between evaporation, precipitation and synthetic ETM+ NDVI as mentioned 
earlier were revisited. The scatter plots between mean monthly synthetic ETM+ NDVI values 
versus monthly total precipitation and monthly evaporation with no time-lag as shown in Figure 
8a and b yielded a weak relationship (r2=0.41 and r2 =0.33 respectively). The relationship improves 
when the synthetic ETM+ NDVI values are plotted against precipitation and evaporation with a 
time-lag of one month (Fig. 8(c) and 8(d)) with coefficients of determination as 0.59 and 0.56 
respectively. Previous study (Di et al., 1994) also confirms these findings. These relationships 
between synthetic ETM+ NDVI and evaporation are also in agreement with previous studies 
(Nicholson et al., 1996 and Szilagyi et al., 1998). Therefore, synthetic ETM+ NDVI could be a 
useful tool for estimating evaporation at regional scales for long-term hydrologic budgeting and 
model validation by supplying reference values for the modeler against whom the model estimated 
evaporation values can be regressed.

	  
Fig. 8(a). Mean monthly NDVI(x100) versus monthly total precipitation; 
(b) mean monthly NDVI(x100) versus mean monthly evaporation; (c) mean 
monthly NDVI(x100) versus monthly total precipitation previous to the month 
with NDVI; (d) mean monthly NDVI(x100) versus mean monthly evaporation 
previous to the month with NDVI.
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4. Discussion
As currently only the SLC-off Landsat ETM+ and the aging Landsat-5 TM (Chander et al., 2007; 
Helder and Ruggles, 2004) systems are acquiring data, and only a single successor Landsat Data 
Continuity Mission (LDCM) sensor is scheduled for launch early in the next decade (Irons and 
Masek, 2006), a potential solution to provide more frequent high resolution surface observations is 
to fuse Landsat observations with data from other remote sensing systems. This study investigated 
the capability of STARFM (Gao et al., 2006) over a tropical region (India) to predict seasonal 
changes in winter and summer crops for a higher level of complexity due to small field sizes, 
diversified cropping pattern and field-to-field variability in crop phenology and management 
practices, which is different than its use in previous studies (Gao et al., 2006 and Hilker et al., 
2009). The prediction residuals (Fig. 6i) were found to be considerably lower than the temporal 
residuals (Fig. 6c and 6f), suggesting that the prediction method is on average better than temporal 
pixel substitution. The higher correlations between observed and predicted pixel values for the NIR 
and red band (Table IV) may suggest their use for the derivation of the product such as NDVI, LAI 
at 30 m spatial resolution. The validation of synthetic 8-day ETM+ NIR reflectance with single 
day observed ETM+ NIR showed a very good agreement (Figs. 4 and 5), implying the capability 
of the prediction method. In the present study, MODIS 8-day composite images are used rather 
than daily MODIS reflectance products, because they yielded largely cloud-free images and can 
therefore help to predict changes in reflectance of vegetation over tropical area of the earth where 
cloud cover prevents frequent cloud free observations. The use of MODIS composites rather than 
single observations may, however, impact the average reflectance brightness for a given image 
region, depending on the MODIS scenes used in the MOD09Q1 product and is therefore at the same 
time also a limitation to the applied technique as the composition of data originating from multiple 
viewing angles and the variation of vegetation within the eight-day production period which differs 
from the Landsat acquisition date, also provides a possible source of error (Hilker et al., 2009).

NDVI is often used as a monitoring tool for the vegetation health and dynamics, enabling easy 
temporal and spatial comparisons (Myneni et al., 1997). Benefits of this work include the successful 
data fusion of ETM+ and MODIS data sets, enabling the use of the longer Landsat TM/ETM+ NDVI 
time series for winter and summer seasons over a tropical area. Direct comparisons of synthetic 
ETM+ NDVI with MODIS NDVI revealed several important distinctions and similarities. One 
obvious difference was associated with image/map resolution. Synthetic ETM+ captured much 
of the spatial complexity of land cover at the study site (Fig. 6(g)). In contrast, the relatively 
coarse resolution of MODIS did not allow for that level of spatial detail (Fig. 3(f)). The greatest 
difference was an overestimation by MODIS NDVI (Fig. 7(d)). This is because MODIS data have 
significantly larger grain size (250 m), which can be expected to lower overall spatial variance 
(Woodcock and Strahler, 1987; Cohen et al., 1990). Furthermore, at larger grain sizes, there is less 
likelihood that class-specific relationships are practical.  However, due to difference in spectral 
bands, temporal compositing, spatial resolution and other sensor characteristics, there has never 
been the expectation that NDVI values from these two sensors (synthetic ETM+ and MODIS) 
here will match perfectly. Empirical techniques can be used to force agreement, yet there remains 
a question of how well the resulting time series matches reality. Comparison provides evidence 
that the time series do represent what is actually happening on the ground. 

The previous studies (Szilagyi et al., 1998; Szilagyi, 2000) also confirm the relationship of 
synthetic ETM+ NDVI with hydrological parameters as shown in Figure 6. However, different 
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authors drew differing conclusions about the relationship of NDVI to precipitation and evaporation. 
For example, Seevers and Ottmann (1994) and Nicholson et al. (1996) pointed out that the NDVI-
evaporation relationship is strong mainly in humid environments. Szilagyi et al. (1998) emphasized 
that the correlation may not necessarily deteriorate with the growing aridity of the environment, 
provided that a time-lag is considered between the two variables. One might argue that a lag between 
evaporation and NDVI exists because, when precipitation is high in a month, the NDVI will be 
high the following month, and conversely, since it takes some time for the vegetation to use it from 
soil moisture storage and since soil moisture supports vegetation for some time during dry spells 
before plants start to wilt. Szilagyi et al. (1998) showed that NDVI is more strongly related to 
lagged evaporation than lagged precipitation. Also, NDVI had higher correlation with evaporation 
than with precipitation for water-cycle averaged values (Szilagyi, 2000). This is so because plant 
photosynthesis and transpiration are inseparable processes (Wiegand and Richardson, 1990). An 
increase/decrease in photosynthetic activity and thus in evaporation results in an increase/decrease 
of green biomass within a certain time lag. NDVI responds to any change in green biomass, 
because NDVI is a measure of the total amount of photosynthetically active tissue (Wiegand and 
Richardson, 1990) over a given area.

Algorithms like the one used in this study are important components of current research efforts 
seeking to map high spatial resolution changes in vegetation cover and status with high temporal 
density, over larger areas. Data blending approaches, such as STARFM can help in minimizing 
the technical limitations and trade-offs associated with information needs that require data with 
both high spatial and temporal resolutions. Applications such as monitoring seasonal changes in 
vegetation biophysical and structural attributes over tropical areas can benefit from the synergies 
of multiple data sources such as MODIS and Landsat ETM+. Advances in data blending can 
also influence the design of new sensors, where the advantages of different spatial and temporal 
resolutions may be fully realized in the creation of different sensors on different platforms, with 
the complementary nature of these systems in a data blending approach, considered from the outset 
of the design process. Tactical decision-making on land management can benefit from immediate 
access to the synthetic data, especially over the heterogeneous areas of very small crop field. At 
this stage, however, the synthetic ETM+ data should be considered only a general solution. Until 
more detailed models that begin with synthetic ETM+ and add computations of species are ready, 
and even of cultivar-specific developmental sequences, it will lack the accuracy desired for specific 
crops and areas.

5. Conclusions
The STARFM algorithm has been successfully used in this study for complex mixture of agriculture 
land over a tropical area to predict reflectance for NIR and red bands over a period of eight years 
(2002-2009). The accuracy was found to be better for NIR (mean r2

 = 0.87, p ≤ 0.01) compared to 
red band (mean r2 = 0.65; p ≤ 0.01) for winter and summer crop seasons. The prediction method 
maintained a high spatial level of detail in the predicted scenes, as the prediction residuals were 
significantly lower than temporal residuals. It seems, however, less well suited to predict sudden 
changes in land cover, such as induced by harvesting or sowing of crops. The synthetic ETM+ 
NDVI demonstrated the capability of mapping the seasonal and interannual variations in vegetation 
at ETM+ spatial resolution and 8-day time intervals. The two drought years 2002 and 2004 were 
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clearly brought out by synthetic ETM+ NDVI. The study of the relationship of synthetic ETM+ 
NDVI with precipitation and evaporation yielded that monthly total precipitation and monthly 
evaporation of the preceding month have higher correlation coefficients (r2 = 0.56 and r2 = 0.59) 
with mean monthly synthetic ETM + NDVI, which are also corroborated by previous studies.
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