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RESUMEN

En esta investigación, se aplicó un modelo de red neuronal artificial (ANN), para estimar las condiciones 
térmicas de las regiones montañosas de Gerania (MG) y de Nafpaktia (MN) en Grecia. La temperatura del 
aire y la humedad relativa fueron registradas de junio hasta agosto de 2007, en dos sitios seleccionados de 
cada región estudiada. Datos de los parámetros antes mencionados se usaron para calcular el índice termohi-
grométrico (THI), evaluando las condiciones de confort térmico como categorías. El modelo ANN, perceptrón 
multicapa (MLP), fue usado para estimar los valores del THI en los niveles de las alturas 1334 y 1338 m en 
MG y MN, respectivamente. Con base en la temperatura y en la humedad relativa de los niveles examinados 
a baja altitud (650 m en MG y 676 m en MN), teniendo en cuenta el tiempo de medición real (ATM). Los 
resultados del desarrollo y aplicación del modelo ampliado MLP indicaron una estimación más precisa de los 
valores THI en los estudios de las dos regiones durante un periodo de todo el día, comparado con la aplicación 
MLP sin el uso del ATM. También, el modelo ampliado, examinando el día entero, mostró estimaciones más 
precisas de los valores THI en el MG comparados con el MN. De manera similar, este modelo proporcionó 
una mejor estimación por separado del periodo, tanto durante el día (09h00min-20h00min) y durante la noche 
(21h00min-08h00min) en comparación con las estimaciones respectivas del THI, tomando en cuenta sólo la 
temperatura del aire y la humedad relativa como parámetros de entrada. Adicionalmente, la ampliación del 
modelo MLP fue mucho más eficiente para estimar los valores THI durante las horas del día, comparado con 
las horas de la noche en ambos MG y MN. También el modelo ampliado MLP fue capaz de estimar mejor 
los valores de THI en la clase Caliente en MG, como así mismo en la clase Confortable en MN.

ABSTRACT

In this research, an artificial neural network model (ANN) was applied to estimate the thermal comfort con-
ditions in the mountainous regions of Gerania (MG) and of Nafpaktia (MN) in Greece. Air temperature and 
relative humidity were recorded from June to August 2007 at two selected sites for each study region. Data 
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of the aforementioned parameters were used for the calculation of the thermohygrometric index (THI), from 
which thermal comfort conditions were evaluated as classes. The ANN model, the multilayer perceptron 
(MLP) was used for the estimation of THI values at the examined high altitude level (1334 and 1338 m in 
MG and MN, respectively) based on the temperature and the relative humidity of the examined low altitude 
level (650 m in MG and 676 m in MN), taking into account the actual time of measurement (ATM). The 
results of the development and application of this extended MLP model indicated more accurate estimations 
of THI values at the two study regions during the whole day period compared to the MLP application without 
the use of ATM. Also, the extended model, examining the whole day, showed more accurate estimations of 
THI values in MG compared to MN. Similarly, this model provided better estimations separately for both 
daytime (09h00min-20h00min) and nighttime (21h00min-08h00min) in comparison with the respective THI 
estimations taking into account only the air temperature and relative humidity as input parameters. Addition-
ally, the extended MLP model was more efficient estimating THI values during daytime hours compared to 
nighttime hours in both MG and MN. Also, the extended MLP model was more capable in estimating better 
the THI values in the “hot” class in MG as well as in the “comfortable” class in MN.

Keywords: Artificial neural networks, air temperature, relative humidity, thermohygrometric index, moun-
tainous Nafpaktia, Gerania mountains, Greece.

1.	Introduction
Mountains cover about a quarter of the global land surface (Kapos et al., 2000; Guan et al., 2009). 
Mountainous regions hold a rich variety of ecological systems which are sensitive to environmental 
conditions (Jansky et al., 2002) and appear to be very attractive to residents and tourists, particularly 
during the summer vacation period. 

The effect of topography, the more complex relief and the composition of vegetation cause 
a spatial pattern of topoclimates in mountainous regions (Barry and Chorley, 2001). Therefore, 
in these regions the meteorological parameters such as air temperature, humidity, radiation and 
precipitation present large spatial variations (Barry and Chorley, 2001; Tang and Fang, 2006), 
and spatial modelling of the climate parameters is very important in evaluating environmental 
conditions (Chapman and Thornes, 2003; Guler et al., 2007).

In mountainous regions there are many problems in obtaining the precise meteorological data 
because the network of the meteorological stations in the middle and high altitudes is sparse due 
mainly to difficulties in installing and maintaining the measuring instruments (Friedland et al., 2003; 
Tang and Fang, 2006). Thus, researchers who are interested in the environmental conditions of the 
aforementioned regions are often forced to estimate the meteorological parameters on the basis of 
data collected from nearby lower-altitudes areas (Tang and Fang, 2006). For this reason, there has 
recently been a large number of studies which use geostatistical and regression techniques. Bolstad 
et al. (1998) developed regression models with more accurate estimations of air temperature in 
specific sites and in local scale than either kriging or lapse models, using data of regional network 
stations in the southern Appalachian mountains of North America. Guler et al. (2007) used air 
temperature and precipitation data in order to develop climate-elevation regression methods by the 
use of geographical information systems at the regions with more complex topography in Samsun, 
Turkey. Also, general models were constructed using geographical and terrain characteristics (e.g. 
altitude, slope aspect), dominant regional climate features and their interactions in mountainous 
regions of Taiwan and China (Ranhao et al., 2008; Guan et al., 2009).

The accuracy of these methods can generate estimations depending on the complexity that underlies 
the spatial structure of the field (Snell et al., 2000). One robust computational technique, the artificial 
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neural network (ANN) model (Shank et al., 2008) is characterized by a high potential of complex, 
non-linear and time-varying input-output mapping (Dibike and Coulibaly, 2006). ANN models are 
based on the biological neuron connections which are found in human brains. They are repeatedly 
exposed to inputs and vary in terms of strength of the connections between neurons based on these 
inputs (Shank et al., 2008). Furthermore, the ANN allow the data to define the functional form while 
the regression techniques allow the data to assume this form (Ustaoglu et al., 2008) and thus, ANN 
models provide satisfactory predictions of meteorological parameters (e.g. air temperature) compared 
to multiple linear regression methods (Chronopoulos et al., 2008; Ustaoglu et al., 2008).

Thermal comfort is defined as the condition of mind which expresses satisfaction with the thermal 
environment, absence of thermal discomfort or conditions in which 80 or 90% of humans do not 
express dissatisfaction (Yilmaz et al., 2007). Meteorological variables such as air temperature, 
humidity, wind speed, radiation as well as behavioral variables such as clothing and activities 
influence thermal comfort conditions which can be evaluated by using a lot of indices for this 
purpose. Some of them are based on the heat balance equation (rational indices) while others 
are based on objective or subjective estimation of human thermal stress (empirical indices) and 
on direct measurements of environmental parameters (direct indices) (Chronopoulou-Sereli 
and Chronopoulos, 2011).

The rational indices display a more comprehensive estimation of thermal comfort conditions than 
others since they integrate a large number of environmental and behavioral variables. On the other 
hand, the disadvantages of rational and empirical indices are focused on their complexity, since too 
many variables are involved, on their difficulty to implement in work places and on the fact that 
some of them require invasive measurements, not feasible for daily use. Another disadvantage of 
rational indices is that some of their parameters must be considered as constant because there is 
not a practical way of recording them, e.g. the case of heat stress index (HSI) which is based on 
constant skin temperature of 35 ºC (Epstein and Moran, 2006).

In contrast the direct indices are more user-friendly and applicable than rational and empirical ones 
(due to their use of common environmental variables), including the widely used biometeorological 
index, the thermohygrometric index (THI) as modified by Nieuwolt (1977), which requires only 
temperature and humidity data (Toy et al., 2007). This index is derived from the discomfort index 
which combines wet-bulb temperature and dry-bulb temperature in a scale that simulates the human 
thermal sensation for the hot period of the year (Thom, 1959). The aforementioned index has been 
used daily for more than four decades and has been suggested as a universal heat stress index by 
Epstein and Moran (2006). The same suggestion can be accordingly made for THI which, as already 
mentioned, is derived from discomfort index.

Although in recent years many applications have been reported for the estimation of 
meteorological variables (Tolika et al., 2007; Shank et al., 2008; Ustaoglu et al., 2008; Liu et 
al., 2009; Smith et al., 2009), the only information for the estimation of human thermal comfort 
conditions in mountainous regions, to our knowledge, has been reported by Kamoutsis et al. 
(2010). The regional features, the physical environment and the thermal comfort affect the 
decisions of tourists (Lin and Matzarakis, 2008) for their destinations. This study focuses on the 
estimation of thermal comfort conditions in two mountainous regions with a sparse network of 
meteorological stations, the Gerania mountains and the mountainous Nafpaktia in Greece using 
ANN models. 
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2.	Materials and methods 
2.1 Study regions and measurement sites
This study was conducted in two mountainous regions of Greece in the southeastern part of 
Europe. The first one, Gerania mountains (altitudes up to 1341 m) which is included in the 
Natura 2000 network (Manoli, 2008), is located in east continental Greece, in the Prefectures of 
West Attica and Korinthia (Fig. 1a, c) about 60 km from Athens, the  capital of Greece. Dense 
forests of Pinus halepensis dominate at altitudes up to 850 m in these mountains, while sites with 
higher altitudes are forested by Abies cephalonica, at a good conservation status, thus creating a 
natural environment of great aesthetic value and of utmost ecological importance. The region of 
Gerania mountains (MG) is unexploited and abandoned with no industrial activities. It appears 
to have a great importance for recreation and tourist activities because of its relatively small 
distance from Athens combined with the possibility to accomodate a singnificant percentage of 
Athens population. 

 

 

 

 

(b)

  

 Longitude (E) 

La
tit

ud
e 

(N
) 

Athens

(c) 

(a) 
41º

38º

35º

20º 24º 28º

s4

s3

s2

s1

Fig. 1. Location map of the examined regions, in Greece (a) and maps of the study sites (n s1, s2, s3, s4) 
in Mountainous Nafpaktia (b) and in Gerania mountains (c) the scale in Figs. 1b,c is 1:200 000. 
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The second region comprised a wide part of mountainous Nafpaktia (MN) districts, with 
altitudes ranging from 676 to 1338 m (Fig. 1a, b) in the Municipality of Apodotia, Prefecture of 
Aitoloakarnania, in west continental Greece, about 350 km from Athens. This region is unexploited 
and is characterized by rich biodiversity (flora and fauna) with great development potential. It is 
known for its beautiful beech forest (Fagus silvatica L.), the southernmost beech forest in Europe. In 
MN, few commercial, industrial or other human activities exist and it could be a reliable alternative 
tourist destination for rest and recreation (Matsoukis et al., 2009).

Two sites of the same orientation (southwest) in each study region were selected. The selection 
was mainly based on different altitude. There were two levels, each with similar altitudes, for both 
study regions. The first level comprised the altitudes 650 and 676 m and the second level, 1334 
and 1338 m (Table I). The orientation, altitude, latitude and longitude of each site were evaluated 
using a mobile global positioning system (Garmin eTrex Vista) and checked against 1:50 000 
topographic maps.

2.2 Measurements and quantification of thermal conditions
Air temperature and relative humidity were monitored simultaneously every 15 min by sensors 

with data loggers (Hobo type Pro, H08-032-08, accuracy ±0.2 ºC at 25 ºC and ±3% relative humidity 
over 0 ºC to 50 ºC), one for each site, for the summer period between 23 June and 28 August 2007. 
The instruments were tested in the laboratory against appropriate sensors for a period of five days 
while being exposed to the same range of temperature and humidity. These initial tests revealed no 
drift errors for any of the sensors. The data loggers were enclosed in appropriate shelters screened 
from rainfall and direct solar radiation and mounded under trees 1.5 m above the ground surface. 
The shape of the shelters allowed acceptable air ventilation. 

Regarding air temperature and relative humidity data, hourly basis averages were calculated for 
each study site and for the whole experimental period. These averages were used for the calculation 
of the average hourly values of the thermohygrometric index (THI) (Toy et al., 2007) according 
to the equation:

THI (ºC) = t – [(0.55 – 0.0055f)(t – 14.5)]	 (1)

Table I. Study sites in Gerania and Nafpaktia.

Sites Altitude (m) Latitude Longitude Dominant vegetation
Gerania mountains

s1 650 38o 00´ 59.2´´ N 23o 10´ 58.5´´ E Pinus halepensis
s2 1334 38o 01´ 16.0´´ N 23o 08´ 02.4´´ E Abies cephalonica

Mountainous Nafpaktia
s3 676 38o 43´ 05.1´´ N 21o 57´ 36.8´´ E Abies cephalonica, Cercis 

siliquastrum, Pistacia terebinthus
s4 1338 38o 44´ 29.5´´ N 21o 58´ 34.2´´ E Abies cephalonica
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where t = air temperature (ºC) and f = relative humidity (%). This index was selected for our study 
because it is friendly and easily applicable and is based on data of environmental parameters which 
exist in the majority of the meteorological stations of our country. Another reason for THI selection 
is its suitability to provide a more detailed approach to summer biometeorological conditions in 
mountainous areas (Kamoutsis et al., 2007; Manoli, 2008), by using the available data set. The 
above THI values were used for the evaluation of classes of human thermal comfort (Table II) as 
modified from Toy et al. (2007).

2.3 Neural network modelling
A commonly used neural network model, the multilayer perceptron (MLP), was used to evaluate the 
estimated THI values at high altitude based on the air temperature and the relative humidity values at 
the lower altitude, in both MG and MN. This model can effectively be used to evaluate microclimate 
conditions in remote mountainous canyons (Chronopoulos et al., 2008). A recent study showed that, 
the MLP model (initial) can be applied satisfactorily for the estimation of the THI values at high 
altitude during daytime hours using as input parameters the air temperature and the relative humidity 
(Kamoutsis et al., 2010). Our study comprises an extension of the initial neural network model using 
as an input parameter an additional factor (extended model): the actual time of the measurement 
(ATM). The extended model was applied and tested for the whole day and separately for both 
daytime (09h00min-20h00min) and nighttime (21h00min-08h00min). This model was compared 
with the reported initial model (Kamoutsis et al., 2010). Additionally, the MLP model was assessed 
by comparing the estimated percentages of the THI values for every thermal comfort class in relation 
with their actual occurence.

For MLP training, firstly the backpropagation (Rumelhart et al., 1986; Fahlman, 1988; Fausett, 
1994) and then the conjugate gradient descent algorithms (Fletcher and Powell, 1963; Fletcher 
and Reeves, 1964) were used in two phases. The activation function, for the hidden units as well 
as the output unit, is the logistic sigmoid function. A trial-and-error approach was also applied to 
select the best network architecture. One hidden layer with various numbers of nodes formed each 
network. The training set consisted of half of the data, the selection set of a quarter of the data and 
the test set of the remaining quarter of the data randomly assigned.

The best MLP neural network structure for our study (network structure: 3:3-8-1:1) was selected 
after trying all different three layer MLP networks (1 up to 3 input variables, 1 output variable 
and 1 up to 9 hidden layer neurons). The training method was carried out in two phases. In the 
first phase, the algorithm backpropagation was used, while in the second the conjugate gradient 
descent algorithm was used.

Table II. Relation of human thermal comfort class with 
thermohygrometric index (THI).

Human thermal comfort class THI value (ºC)

Cold –1.7 to +12.9
Cool +13.0 to +14.9
Comfortable +15.0 to +19.9
Hot +20.0 to +26.4
Very hot +26.5 to +29.9
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The input data were separated in three sets. The first training set comprises 802 values, the 
second selection set comprises 400 values and the last testing set comprises 400 values. After 
applying the sensitivity test for the input variables, we found that all three variables used (actual 
measurement time, t, f) are significant to our model at p < 0.05.

3.	Results and discussion
The results of various tests that have been performed using the extended MLP model indicated 
better estimations of the THI values at high altitude compared with the original MLP model for 
the whole day. Specifically, the coefficients of determination (R2) between observed and estimated 
THI values at high altitude were higher (R2 = 0.80 in MG and R2 = 0.75 in MN) than those (R2 = 
0.73 in MG and R2 = 0.61 in MN) of the initial model. Also, the mean absolute errors (MAE) were 
lower (MAE = 0.817 ºC in MG and MAE = 0.934 ºC in MN) using the extended model compared 
to those (MAE = 0.994 ºC in MG and MAE = 1.130 oC in MN) with the original model. Also, 
the extended model, showed more accurate estimations of the whole-day THI in MG, resulting in 
higher R2 and lower MAE values compared to MN.

Similar results with the application of the extended MLP model for daytime hours were obtained 
in both MG (R2=0.95, MAE = 0.36 ºC) and MN (R2 = 0.77, MAE = 0.76 ºC) in comparison with 
the application of the original MLP model (Kamoutsis et al., 2010) in both regions (R2 = 0.88, 
MAE = 0.58 ºC in MG, R2 = 0.69, MAE = 0.87 ºC in MN). At nighttime (21h00min-08h00min), 
the extended MLP model indicated slightly better estimations of the THI (R2 = 0.55, MAE = 
1.25 ºC in MG and R2 = 0.60, MAE = 1.11 ºC in MN) in comparison with the original model 
(R2 = 0.50, MAE = 1.30 ºC in MG and R2 = 0.38, MAE = 1.37 ºC in MN).

Additionally, the extended MLP model was more efficient in estimating the THI in daytime 
hours (09h00min-20h00min) compared to nighttime hours (21h00min-08h00min) in both MG and 
MN, resulting in higher R2 and lower MAE during daytime in relation to nighttime. Also, greater 
variations in estimated-observed data in MN compared to MG, particularly during nighttime, were 
observed throughout the whole period of the experiment (Fig. 2a, b). This fact can be attributed, 
partly, to the different rate of the nocturnal radiative cooling under calm clear sky conditions 
(Oke, 1999) due to the change in the dominating plant species (Geiger et al., 2003) from the low 
to the high altitude, at both study regions (Table I). Less accurate estimations during nighttime in 
MN compared to MG using the MLP original model were reported by Kamoutsis et al. (2010).

Five classes of THI values were found Very Hot, Hot, Comfortable, Cool and Cold. Note that 
the class Very Hot was detected only at low altitude (650 m in MG and 676 m in MN). The use 
of more complex indexes (MCI) to our study, like predicted mean vote (PMV), physiological 
equivalent temperature (PET) and others, may probably offer more sensitivity to our results, because 
of their higher number of classes for human thermal comfort than THI. However, the requirement 
for more meteorological parameters to estimate the MCI such as global radiation, mean radiant 
temperature, wind speed etc. (Chronopoulou-Sereli and Chronopoulos, 2011), along with the 
absence of appropriate instruments for their measurement in the majority of the meteorological 
stations of our country synthesize a restrictive factor of MCI use because the comparison of the 
results with these from other regions in Greece will not be possible.

The percentages of success and of appearance for the estimated THI values for t he classes 
Hot, Comfortable, Cool and Cold using the extended MLP model for the whole day period at high 
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altitude of the examined regions (s2 at MG and s4 at MN) are presented in Figure 3. The model was 
more successful estimating the Hot class at the s2 site (1334 m) because of the larger percentage 
of success (25.1 %) and appearance (30.5 %) of the THI (Fig. 3a) compared to those (Fig. 3b) 
at the s4 (1338 m) site (14.6 % success and 22.4 % appearance). The percentages of success and 
appearance for the predicted THI in the Comfortable class of the s4 site (Fig. 3b) at MN were 
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57.3% and 64.8%, respectively, that is, these percentages were slightly larger than the respective 
ones of s2 (Fig. 3a) at MG (54.9 % success and 59.1 % appearance). The percentages of the values 
of the THI corresponding to the Cool and Cold classes were smaller than the respective ones of 
the rest two classes. Therefore, the extended MLP model provides closer estimations of the THI 
values in the Hot class in MG, while the THI values classified as “Comfortable” can be evaluated 
more accurately in MN compared to MG.

4.	Conclusions
This study estimates the thermal comfort conditions, using an artificial neural network model, 
the multilayer perceptron (MLP), at high altitude (1334 m in MG and 1338 m in MN), based 
on the meteorological parameters recorded at low altitude (650 m in MG and 676 m in MN), 
using as input variables the actual measurement time, the air temperature and the relative humidity 
(extended model). The results of this MLP extended model indicated more accurate estimations 
of THI values at the two study regions during the whole day period. 

Similarly, this extended model provided better estimations separately for both daytime 
(09h00min-20h00min) and nighttime (21h00min-08h00min) in comparison with the THI estimations 
from the original model (only air temperature and relative humidity as input parameters). The 
extended MLP model was more efficient estimating THI values during daytime than nighttime 
in both MG and MN. Additionally, the MLP model was more successful estimating the THI 
values in the Hot class in MG and in the Comfortable class in MN. The extended MLP model 
(air temperature, relative humidity and actual time of measurement as input parameters) could be 
applicable to other mountain regions and, in general, in mountain research for the estimation of 
various meteorological indices.

Fig. 3. Percentages of successes and of appearance for the estimated THI values in each thermal comfort 
class at the high altitude (alt.) level in Gerania mountains (a) and mountainous Nafpaktia (b), Greece, from 
23 June to 28 August 2007. Low alt. level: alt. 650 and 676 m in MG and MN, respectively. High alt. level: 
alt. 1334 and 1338 m in MG and MN, respectively.

100

(%)

(a) (b)
90

80

70

60

50

40

30

20

10

0
Hot Comfortable Cool Cold

% Success % appearance

100

(%)

90

80

70

60

50

40

30

20

10

0
Hot Comfortable Cool Cold



180 K. Chronopoulos et al.

References
Barry R. J. and R. J. Chorley, 2001. Atmosphere, weather and climate. 8 ed., Routledge, Taylor & 

Francis Group, London, UK, 422 pp.
Bolstad P. V., L. Swift, F. Collins and J. Régnière, 1998. Measured and predicted air temperatures 

at basin to regional scales in the southern Appalachian mountains. Agr. Forest Meteorol. 91, 
161-176.

Chapman L. and J. E. Thornes, 2003. The use of geographical information systems in climatology 
and meteorology. Prog. Phys. Geog. 27, 313-330.

Chronopoulos K. I., I. X. Tsiros, I. F. Dimopoulos and N. Alvertos, 2008. An application of 
artificial neural network models to estimate air temperature data in areas with sparse network 
of meteorological stations. J. Environ. Sci. Heal. A 43, 1752-1757.

Chronopoulou-Sereli A. and I. Chronopoulos, 2011. Biometeorology-bioclimatology applications 
to the configuration of outdoor spaces. Ziti Publications, Thessaloniki, Greece, 238 pp.

Dibike Y. B. and P. Coulibaly, 2006. Temporal neural networks for downscaling climate variability 
and extremes. Neural Networks 19, 135-144.

Epstein Y. and D. S. Moran, 2006. Thermal comfort and the heat stress indices. Ind. Health 44, 
388-398.

Fahlman S. E., 1988. Faster-learning variations on back-propagation: an empirical study. In: 
Proceedings of the 1988 Connectionist Models Summer School (D. Touretzky, G. E. Hinton 
and T. J. Sejnowski, Eds.). Morgan Kaufmann Publishers, San Mateo, CA, 38-51.

Fausett L., 1994. Fundamentals of neural networks. Prentice Hall, New York, USA, 461 pp.
Fletcher R. and M. J. D. Powell, 1963. A rapidly convergent descent method for minimization. 

Comput. J. 6, 163-168.
Fletcher R. and C. M. Reeves, 1964. Function minimization by conjugate gradients. Comput. J. 

7, 149-154. 
Friedland A. J., R. L. Boyce, C. B. Vostral and J. T. Herrick, 2003. Winter and early spring 

microclimate within a mid-elevation conifer forest canopy. Agr. Forest Meteorol. 115, 195-200.
Geiger R., R. H. Aron and P. Todhunter, 2003. The climate near the ground. Rowman & Littlefield 

Publishers Inc., Maryland, USA, 602 pp.
Guan B. T., H. W. Hsu, T.-H. Wey and L.-S. Tsao, 2009. Modelling monthly mean temperatures 

for the mountain regions of Taiwan by generalized additive models. Agr. Forest Meteorol. 149, 
281-290.

Guler M., B. Cemek and H. Gunal, 2007. Assessment of some spatial climatic layers through GIS 
and statistical analysis techniques in Samsun Turkey. Meteorol. Appl. 14, 163-169.

Jansky L., J. D. Ives, K. Furuyashiki and T. Watanabe, 2002. Global mountain research for 
sustainable development. Global Environ. Chang. 12, 231-239.

Kamoutsis A., A. Matsoukis, I. Charalampopoulos and A. Chronopoulou-Sereli, 2007. 
Biometeorological conditions in mountainous communities and adjacent urban center in Greece by 
the use of indices: The case study of mountainous Nafpaktia district. In: Developments in Tourism 
Climatology, 3rd International Workshop on Climate, Tourism and Recreation, (A. Matzarakis, C. 
R. de Freitas and D. Scott, Eds.). Commission on Climate, Tourism and Recreation International 
Society of Biometeorology, Freiburg, Germany, 144-149.

Kamoutsis A., A. Matsoukis, K. Chronopoulos and E. Manoli, 2010. A comparative study of human 
thermal comfort conditions in two mountainous regions in Greece during summer. Global Nest 
J. 12, 401-408.



181Neural network for thermal comfort estimation in mountains

Kapos V., J. Rhind, M. Edwards, M. F.  Price and C. Ravilious, 2000. Developing a map of the 
world’s mountain forests. In: Forests in sustainable mountain development: A state-of-knowledge 
report for 2000. (M. F. Price and N. Butt, Eds.) CAB International Publishing, Wallingford, 
USA, 4-9.

Lin T.-P. and A. Matzarakis, 2008. Tourism climate and thermal comfort in sun Moon, Lake, 
Taiwan. Int. J. Biometeorol. 52, 281-290. 

Liu X., X. Mei, Y. Li, Q. Wang, J. R. Jensen, Y. Zhang and J. R. Porter, 2009. Evaluation of 
temperature-based global solar radiation models in China. Agr. Forest Meteorol. 149, 1433-1446.

Manoli E., 2008. Investigation of bioclimatic conditions and perspectives of development in Gerania 
mountains. M. Sc. Thesis. Athens, Greece: Department of Sciences, Agricultural University 
of Athens, 87 pp.

Matsoukis A., A. Kamoutsis and A. Chronopoulou-Sereli, 2009. Air temperature and thermal 
comfort conditions in mountainous and urban regions. Int. J. Sus. Dev. Plann. 4, 357-363.

Nieuwolt S., 1977. Tropical climatology: An Introduction to the climates of the low latitudes. John 
Wiley and Sons, Chichester, New York, USA, 207 pp.

Oke T. R., 1999. Boundary layer climates. Routledge, Taylor Francis Group, New York, USA, 
459 pp.

Ranhao S., Z. Baiping and T. Jing, 2008. A multivariate regression model for predicting precipitation 
in the Daquing Mountains. Mt. Res. Dev. 28, 318-325.

Rumelhart D. E., G. E. Hinton and R. J. Williams, 1986. Learning representations by back-
propagating errors. Nature 323, 533-536. 

Shank D. B., G. Hoogenboom and R. W. McClendon, 2008. Dewpoint temperature prediction 
using artificial neural networks. J. Appl. Meteor. Climatol. 47, 1757-1769. 

Smith B. A., G. Hoogenboom and R. W. McClendon, 2009. Artificial neural networks for automated 
year-round temperature prediction. Comput. Electron. Agr. 68, 52-61.

Snell S. E., S. Gopal and R. K. Kaufmann, 2000. Spatial interpolation of surface air temperatures 
using artificial neural networks: Evaluating their use for downscaling GCMs. J. Climate 13, 
886-895.

Tang Z. and J. Fang, 2006. Temperature variation along the northern and southern slopes of Mt. 
Taibai, China. Agr. Forest Meteorol. 139, 200-207.

Thom E. C., 1959. The discomfort index. Weatherwise 12, 57-60.
Tolika K., P. Maheras, M. Vafiadis, H. A. Flocas and A. Arseni-Papadimitriou, 2007. Simulation 

of seasonal precipitation and rain days over Greece: a stastistical downscaling technique based 
on artificial neural networks (ANNs). Int. J. Climatol. 27, 861-881.

Toy S., S. Yilmaz and H. Yilmaz, 2007. Determination of bioclimatic comfort in three different 
land uses in the city of Erzurum, Turkey. Build. Environ. 42, 1315-1318.

Ustaoglu B., H. K. Cigizoglu and M. Karaca, 2008. Forecast of daily mean, maximum and 
minimum temperature time series by the three artificial neural network methods. Meteorol. 
Appl. 15, 431-455. 

Yilmaz S., S. Toy and H. Yilmaz, 2007. Human thermal comfort over three different land surfaces 
during summer in the city of Erzurum, Turkey. Atmósfera 20, 289-297.


