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RESUMEN

Los eventos climáticos extremos pueden tener consecuencias graves en la población y el medio ambiente, por 
lo que en este artículo para la ciudad de Mexicali, México, con una serie de tiempo de 1950 a 2010, se analizan 
las tendencias anuales de temperaturas extremas; asimismo, se estiman los periodos de retorno de 5 a 100 años 
mediante la modelación de la temperatura máxima estival y la temperatura mínima invernal. Para determinar las 
tendencias temporales se aplicaron la prueba no paramétrica tau de Kendall y el estimador de pendiente de Sen. 
También se aplicaron la distribución generalizada de valores extremos (GVE) a la aproximación de máximo por 
bloques, y la distribución generalizada de Pareto (DGP) a valores sobre un umbral determinado previamente. 
Debido a las características no estacionarias de la serie de valores de temperatura, se incluyó la tendencia tem-
poral como covariable en el parámetro de ubicación, observándose mejoras sustanciales, sobre todo respecto a 
la temperatura mínima extrema en comparación con lo obtenido con la distribución GVE sin covariable y con 
la DGP. Se encontró una tendencia positiva estadísticamente significativa para ambas temperaturas extremas: 
máxima estival y mínima invernal. Hacia finales del siglo XXI la temperatura máxima extrema podría ser de 
2 a 3 ºC más alta que la actual, y el invierno podría ser menos severo, ya que el modelo probabilístico sugiere 
incrementos de 7 a 9 ºC en la temperatura mínima extrema respecto del periodo de base estudiado. Se analizan 
las posibles consecuencias de lo anterior en la ciudad de Mexicali. 

ABSTRACT

Extreme weather events can have severe consequences for the population and the environment. Therefore, in 
this study a temporal trend of annual temperatures was built with a time series from 1950 to 2010 for Mexicali, 
Mexico, and estimates of 5- to 100-year return periods are provided by modeling of summer maximum and 
winter minimum temperatures. A non-parametric Kendall’s tau test and the Sen’s slope estimator were used 
to compute trends. The generalized extreme value (GEV) distribution was applied to the approximation of 
block maxima and the generalized Pareto distribution (GPD) to values over a predetermined threshold. Due 
to the non-stationary characteristic of the series of temperature values, the temporal trend was included as 
a covariable in the location parameter and substantial improvements were observed, particularly with the 
extreme minimum temperature, compared to that obtained with the GEV with no covariable and with the 
GPD. A positive and significant statistically trend in both summer maximum temperature and winter mini-
mum temperature was found. By the end of 21st century the extreme maximum temperature could be 2 to 
3 ºC higher than current, and the winter could be less severe, as the probabilistic model suggests increases of 
7 to 9 ºC in the extreme minimum temperature with respect to the base period. The foreseeable consequences 
on Mexicali city are discussed.

Keywords: Generalized extreme value distribution; generalized Pareto distribution; maximum temperature; 
minimum temperature; Mexicali, Mexico.
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1. Introduction
Various studies have indicated that changes in the 
frequency and intensity of extreme climate events, 
such as heat waves, droughts, and floods, can be 
expected in several parts of the world due to global 
climate change (IPCC, 2007). Changes in these ex-
treme events are particularly important for society 
and the environment because, by definition, they oc-
cur outside the usual range of adaptability; therefore, 
they can have severe impacts and significant negative 
economic effects (Kharin et al., 2007). Variations in 
temperature extremes are of particular importance 
due to their relationship to biodiversity and human 
thermal comfort, as well as their use in climate vari-
ability and climate change impact assessments in 
sectors such as agriculture and energy demand. In the 
period from 1906 to 2005, the increase in average ter-
restrial temperature was estimated at 0.74 ± 0.18 ºC, 
 and although the value is small, visible effects were 
observed on many physical and biological systems 
(IPCC, 2007). According to some projections, ex-
treme heat and cold events may increase during this 
century, resulting in increased mortality (Curriero et 
al., 2002; Qian and Lin, 2004).

Studies related to the analysis and modeling of 
extreme climate events use general circulation mod-
els (GCMs) and the extreme value theory (EVT) as 
essential tools. In particular, EVT models the behav-
ior of extreme observations, i.e., maxima or minima. 
Its application to climate studies is recent (Naveau 
et al., 2005), but studies are increasingly using EVT 
for events related to weather and climate and their 
impacts on human society and ecosystems (Dixon 
et al., 2005; Katz et al., 2005; Unkašević and Tošić, 
2009; Furió and Meneu, 2011; Constantino, 2011; 
García-Cueto and Santillán, 2012).

Mexico is vulnerable to the climate change phe-
nomenon, but the impacts may not be uniformly 
distributed. The IPCC (2007) has shown that water 
shortages will be exacerbated due to temperature 
increases and reduced precipitation in the northern 
Mexico and southern United States regions. Ac-
cording to national climate scenarios, the greatest 
increases in the average annual temperature in 
Mexico will occur in the northern part of the coun-
try, with greater increases in the northwest than in 
the northeast (Magaña et al., 2012). Increases 
for the period 2070-2099 will be approximately 
3.5 ºC in the northwest and approximately 3 ºC in the 

northeast, under the A2 scenario. Tejeda-Martínez et 
al. (2008) estimated future scenarios for the extreme 
maximum temperature during the month of July in 
Mexico. They found that changes in the extreme 
maximum temperature, compared with the 1961-1990 
baseline period, varied from +0.5 ºC in the 2020s to 
+9 ºC in the 2050s; the extreme minimum temperature 
varied between +0.5 º C in the 2020s and +7 º C in 
the 2050s. The increases depended on socioeconomic 
development and the region of the country.

Extreme temperature studies in Mexico have 
shown that in the last decades of the 20th century 
(post-1970), there was a significantly higher rate of 
increase in maximum temperatures than for minimum 
temperatures, with contrasting trends between north-
western and central Mexico compared with the rest 
of the country (Englehart and Douglas, 2005; Pavía 
et al., 2008; Gutiérrez-Ruacho et al., 2010). Regional 
analyses, such as those conducted by Herrera (2011) 
for the state of Nuevo León, Vázquez-Aguirre et al. 
(2008) for the state of Veracruz, and Peralta-Hernán-
dez et al. (2009) for southern Mexico, found a sig-
nificant upward trend in maximum temperature and 
the frequency of hot days. In the city of Mexicali, 
Baja California, García-Cueto et al. (2010) found that 
there are currently 2.3 times as many heat waves com-
pared with the early 1970s, and both their duration 
and intensity have increased. Regarding minimum 
temperatures, Weiss and Overpeck (2005) reported 
an increase in the duration of the frost-free period in 
the northern Sonoran Desert, although the frost-free 
period also shortened in the extreme southeast of this 
desert. For the Laguna District, significant negative 
trends were also reported for the monthly minimum 
temperature (Inzunza-López et al., 2011). Only the 
study by Ríos-Alejandro (2011) applied EVT to 
model minimum winter temperatures in the city of 
Monterrey, Nuevo León, using the Gumbel distribu-
tion, and estimated some return periods.

The above discussion confirms that studies con-
ducted at the regional level in Mexico have focused 
predominantly on studying trends in temperature 
extremes. The evidence of changes depends on the 
region considered, the method of analysis, and the 
available data period. It is clear that with an increasing-
ly urban population, people, infrastructure, and urban 
ecosystems will become more vulnerable to extreme 
temperature events due to the limited number of pro-
spective extreme climate events studies. Therefore, the 
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purpose of the present study is to apply EVT to the 
maximum and minimum temperatures of Mexicali, 
Mexico and to estimate the return values in periods 
of 5 to 100 years under the premise that the expected 
climate in the twenty-first century is non-stationary 
as a result of anthropogenic forcing, either by an in-
creased greenhouse effect or a change in albedo due 
to land use changes. This study is important given the 
vulnerability to extreme temperature events shown 
on multiple occasions in Mexicali. The construction 
of these scenarios will be of great importance as an 
input for researchers who study impacts and for local 
governments to propose adaptation measures that 
improve urban resilience.

2. Area of study
The city of Mexicali is located in northeastern Baja 
California, Mexico, at 32.55º N, 115.47º W and 4 
meters above sea level. It borders California, USA 
to the north (Fig. 1). Mexicali has a dry, arid climate 
with winter rainfall and wide annual oscillation of 
mean temperatures (BW(h’)hs(x’) according to the 
García [1988] climate classification). To this climate 
description can be added that Mexicali has one of 
the most extreme climates in Mexico, with average 

July high temperatures of 42.2 ºC, and average Jan-
uary highs of 21.1 ºC. Mexicali receives 90% of the 
potential daylight hours each year, and on average 
75 mm of rain annually. On July 28, 1995, Mexicali 
reached its all-time high temperature of 52 ºC, and 
on January 13, 1963 its all-time low temperature of 
–7.0 ºC (García-Cueto and Santillán-Soto, 2012).

3. Data
We used daily maximum and minimum temperature 
data from the Mexicali meteorological station. Data 
were obtained from the records of the Comisión 
Nacional del Agua (CNA, National Water Commis-
sion). Most of the historical information is digitized 
in the ERIC (Extractor Rápido de Información 
Climatológica [Rapid Extractor of Climate Data]) 
V2.0 compact disc. These data, however, had not un-
dergone strict quality control. When large time gaps 
(which in some cases consisted of several years) were 
found, the primary sources for these data, including 
handwritten daily records, were consulted from the 
original archives. Following this approach, a com-
plete climatological baseline from 1950 to 2010 was 
developed. Two periods were selected for analysis: 
summer months from June 1 to September 30, and 
winter months from November 1 to February 28. This 
study considered the following: (a) annual maximum 
and minimum temperature extremes, (b) daily max-
imum and minimum values of temperature for the 
selected period. The first consideration leads to the 
application of the block maxima statistical approach 
and the second to a threshold value approach. Respect 
to quality control (QC) data, software RClimdex 
(1.0) was used (Zhang and Yang, 2004). The main 
purpose of this QC procedure was to identify errors in 
data processing, such as: (i) errors in manual keying, 
(ii) verifying that maximum temperature always 
exceeded minimum temperature for every calendar 
day, (iii) identifying data values as outliers in daily 
maximum and minimum temperature (these values 
were over four standard deviations (σ) and flagged 
as potential errors). Daily temperature values were 
manually checked and edited case by case. Only 
those values that were confirmed to be erroneous 
were set to missing and deleted from further analy-
sis. This process of removing inhomogeneous data 
from the analysis reduced the amount of records 
originally available. To summarize, of the 16 653 
records checked only 10 suspected as erroneous were 

California, USA

32º

31º

30º

117º

29º
116º 115º 114º 113º

N

Mexicali
Tijuana

Ensenada MEXICO

Baja
California

Fig. 1. Geographic location of Mexicali, Baja California, 
Mexico



512 O. R. García Cueto et al.

identified, meaning 0.06% of the whole. These values 
were checked one-by-one from the original archives 
and five of them were validated and retained in 
the dataset as true values; the remaining five were 
converted to missing values.

A homogeneity test with the RHtest V3 software 
(Wang and Feng, 2010) was applied to identify 
possible change points or structural changes in the 
annual extreme data series of maximum and mini-
mum temperatures. The homogeneity test is based 
on a two-phase regression model with a linear trend 
for the entire series. This test identified one change 
point in the maximum temperature in 1989, and two 
change points in the minimum temperature, the first 
in 1977, and the second in 1991. Unfortunately, we 
did not have the station history metadata, so it is not 
possible to document the origin of these changes. 
The last change is likely to be due to relocation of 
the station according to the weather station chief of 
Mexicali. The new location is 50 m away from the 
previous one, without any change in altitude. In the 
current study, no attempt was made to adjust the 
maximum and minimum temperature series, because 
regardless of an artificial change in the recorded 
values in this weather station, positive temporal 
trends of temperature have appeared at regional level 
(García-Cueto et al., 2009).

4. Methodology
4.1 Temperature temporal trends
Prior to the implementation of EVT, a temporal anal-
ysis was performed on the series of annual values 
of extreme maximum temperatures during summer, 
and extreme minimum temperatures during win-
ter. As both extreme temperatures do not follow a 
Gaussian distribution, an estimation of monotonous 
increasing or decreasing trend by simple linear least 
squares do not seem appropriate. Therefore, we used 
a non-parametric Kendall’s tau test (Kτ-T) and the 
Sen’s slope estimator to compute trends (Sen, 1968). 
The Kτ-T is suitable for cases with monotonous trends 
and no-seasonal or other cycles in the data. One 
advantage of this test is that the data need no adjust 
to any particular distribution. Another advantage of 
the test is its low sensitivity to abrupt breaks due 
to inhomogeneous time series (Tabari et al., 2011; 
Drápela and Drápelová, 2011). Sen’s method uses a 
linear model to estimate the slope of the trend (Salmi 
et al., 2002).

For analyzing statistically the extreme values 
of temperature, two approaches were used: annual 
block maxima with the utilization of the generalized 
extreme value distribution and daily values above a 
threshold with the generalized Pareto distribution.

4.2 The generalized extreme value distribution 
(GEV)
Let X1,…,Xn be a sequence of independent random 
variables with a common distribution function F, and 
let Mn = max{X1,…,Xn}. The Xi usually represent 
maximum (or minimum) values measured on a regu-
lar time scale, or blocks of time, so that Mn represents 
the extreme values of the process in n observed time 
units. For these data, and after linear renormalizing, 
Mn distributions are given by the generalized extreme 
value family in the following format:

G (z; µ, σ, ξ ) = exp σ
–1/ξ 

– 1 + ξ[ { } ](z – µ) /  (1)

where (–∞ < µ < ∞), σ > 0, and (–∞ < ξ < ∞) are the 
parameters of location, scale, and shape, respectively, 
and x+ = max(x, 0). The type of extreme distribution 
is determined by the sign of ξ; ξ < 0 corresponds to 
the Weibull distribution, ξ = 0 to the Gumbel dis-
tribution, and ξ > 0 to the Fréchet distribution. The 
value of ξ determines the behavior of the tail of the 
distribution. If ξ < 0, a distribution with a defined 
upper limit is obtained, while ξ > 0 corresponds to 
an increasingly upper tail.

To apply GEV distribution to annual minimum 
temperatures, the usual method for maximum values 
was applied, but the data were transformed by taking 
the negative value of those minimum values, i.e., 
min(x1,…,xn) = –max(–x1,…,xn).

4.3 The generalized Pareto distribution (GPD)
Because the approximation given by Eq. (1) only 
takes into account the maximum or minimum values 
of a time series, many data are omitted. In contrast, 
the approximation of peaks over threshold (POT) 
analyzes the values that exceed the threshold value, 
and the data above this value can be asymptotically 
approximated by the GPD:

G (x; σ, ξ , u ) = 1 – [1 + ξ (x – u) / σ] –1/ξ  (2)

where x – u > 0, 1 + ξ (x – u) / σ > 0 and σ = σ + ξ 
(u −μ). Eq. (2) provides the cumulative probability 
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that X exceeds the value of x, given that it already 
exceeds the threshold value of u (i.e., Pr [X > x | X > 
u]). The duality between the GEV and GPD means 
that the shape parameter ξ is the dominant parameter 
and commonly determines the qualitative behavior of 
both distributions. Moreover, the value of σ is found 
to be dependent on the threshold value, except where 
the model has the limit value of ξ = 0. The selection 
of the threshold value is critical to the analysis of the 
POT approximation. A large threshold value would 
exclude too much data, leading to a high variance 
of the estimator; a very small threshold value would 
likely violate the asymptotic basis of the model, 
leading to bias (Coles, 2003). In the present study, 
mean excess function methods were used as a start-
ing point, and the stability assessment of parameter 
estimators was used for selecting the threshold value, 
based on adjusting the GPD by postulating a range 
of different u thresholds.

4.4. Parameter estimation
The maximum likelihood method was chosen to 

estimate the parameters, primarily because of the 
following reasons: (a) the data sample is sufficiently 
large (> 50), so it is comparable to other methods 
in terms of performance, (b) it allows for the easy 
incorporation of information from covariates (e.g., 
non-stationary distributions), and (c) it obtains error 
limits relatively simply compared with most of the 
alternative methods. Eq. 1 assumes that the data 
are annual block maxima or minima. The estima-
tion of μ, σ and ξ is performed using the maximum 
likelihood function for independent block maxima 
z1,...,zn as

L (µ, σ, ξ ) = dG (zi; µ, σ, ξ )
dzi

i = 1

kΠ  (3)

4.5 Estimating levels of return (quantiles) and diag-
nostic plots
The return level zp of an extreme event is defined as 
the level that is expected to be exceeded on average 
once every 1/p years (called the return period), p is 
the probability of the extreme event occurring. For the 
GEV given in (1), zp is obtained from the following:

zp = {µ – [1 – yp ], for ε ≠ 0σ

µ – a log yp, for ε = 0 
ε –ε

 (4)

where p = –log (1–p). If zp is plotted against log yp, 
the plot is linear in the case ξ = 0; if ξ < 0 the plot is 
convex with an asymptotic limit according to p → 0 
at μ – σ/ξ; and if ξ > 0, the plot is concave and does 
not have a finite bound. This graph, named return 
level plot, is particularly useful for the presentation 
and validation of the model. Probability and quantile 
are other diagnostic plots determined based on (1). 
To complete the diagnosis, a comparison is made 
between the probability density function and the GEV 
of the data histogram.

The level of return for the GPD is formed by the 
geometric locations of points (m, xm) for large values 
of m, where xm is the return level estimated from the 
m-observation:

xm = u + σ
ξ [m ζu)ξ –1], if ξ ≠ 0  (5)

where u is the selected threshold value, ζu = Pr (X > 
u) = k/n, k is the number of exceedances, and n is the 
number of observations. The same diagnostic plots 
are used for the GPD as for the GEV.

Modeling was performed using the free software 
R and the extRemes package, which is designed for 
problems of extreme weather events and climate 
(Gilleland and Katz, 2005).

5. Results
5.1 Temperature trends
Results of the trend analysis are summarized in 
Table I, and can be seen in Figure 2. In both tem-
perature extremes, there is an increasing trend that 
is significant at the 95% confidence level in the case 
of extreme maximum temperature (EXTMXT), and 
at the 99% confidence level for extreme minimum 
temperature (EXTMNT). In particular, the extreme 

Table I. Annual trends in extreme maximum temperature 
(EXTMXT) and extreme minimum temperature (EX-
TMNT) at the Mexicali weather station for the period 
1950-2010. Trend analysis with non-parametric Kendall 
tau test (Sen’s slope estimate, standard error [SE] of the 
slope, and significance of the test).

Variable Slope estimate SE slope p value

EXTMXT 0.0250 0.012 0.0388*
EXTMNT 0.1035 0.0197 0.0000**

* Statistical significance: 95%.
** Statistical significance: 99%.
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minimum temperature trends appear to be associ-
ated with urban growth and local land use change 
in the vicinity of the weather measurement site 
(García-Cueto et al., 2009).

5.2 Application of GEV distribution to annual tem-
perature extremes
Maximum and minimum temperature extreme data 
were drawn from annual blocks on the period 1950-
2010, with a total of 61 points each. The likelihood func-
tion of the GEV for extreme maximum temperatures 
(EXTMXT) and extreme minimum tempera- 
tures (EXTMNT) produced the following results:

For the EXTMXT parameter, estimators (μ, σ, ξ) 
= (46.69, 1.39, –0.161), with standard errors of 0.19, 
0.13, and 0.07, respectively. Combining the estimates 
and standard errors, the 95% confidence intervals 
(CIs) for EXTMXT are (46.31, 47.07) for μ, (1.13, 
1.66) for σ, and (–0024, –0298) for ξ.

For EXTMNT, estimators (μ, σ, ξ) = (0.13, 2.53, 
–0.27), with standard errors of 0.36, 0.27, and 0.1, 
respectively. For EXTMNT, the 95% CIs are (0.49, 
0.29) for μ, (2.80, 2.26) for σ, and (–0.37, –0.17) for 
ξ. The shape parameter (ξ) is negative in both cases 
of extreme temperatures; therefore, the Weibull 
distribution fits this data set well. Both extreme 
temperatures have an upper limit, so there are finite 
values that cannot be exceeded. The diagnostic plots 
used to evaluate the precision of the GEV adjusted 
to EXTMNT and EXTMXT are shown in Figure 3.

Probability and quantile plots show the validity 
of the proposed model: each set of points follows 
a quasi-linear behavior. As a result of the negative 
estimator of parameter ξ, return level curves are non-
linear. The corresponding density function appears 
to be consistent with the histogram data, much more 
so with EXTMXT than with EXTMNT, as shown in 
the lower right panel of Figure 3.

5.2.1 Return periods
The return periods for EXTMXT and EXTMNT are 
shown in the lower left panel of Figure 3, along with 
the 95% confidence bands estimated by the delta 
method. The delta method assumes that the parame-
ter estimates are symmetric, which is not always the 
case for the shape parameter or large return periods.

Higher precision for the CIs is generally obtained 
with the maximum likelihood method, so this method 
was applied to estimate the return periods of 5 to 100 
years and the CIs. Table II shows the results using 
the GEV. Return levels gradually increase with larger 
return periods. CIs also become increasingly wider 
as the return periods increase.

5.3 Application of the GPD to the maximum daily 
summer temperatures
The GPD uses more information than the GEV 
model, which is based solely on blocks of annual 
values. Therefore, the GPD was adjusted to the 
maximum daily temperatures of Mexicali (6600 data 
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in Mexicali, Mexico, for the period 1950-2010. The slope was estimated with the Sen method.
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points for the period 1950-2010). The maximum 
likelihood estimators of the modified scale (σ) and 
shape parameter (ξ) plotted versus u for the daily 
maximum temperatures, are shown in Figure 4. 
Parameter perturbations are small until the chosen 
threshold of 46 is reached.

The maximum likelihood estimators for the daily 
maximum temperatures are (σ, ξ) = (1.20, –0.14), 
with standard errors of 0.08 and 0.04, respectively. 
The 95% CIs of these parameters are (1.12, 1.28) for 
σ and (–0.10, –0.18) for ξ. As shown in the probability 
and quantile plots in Figure 5, the plotted data are 
quasi-linear. In accordance with negative values of 
ξ, the tails are finite, and the return level curves are 
nonlinear. The GPD model was not rejected because 
the likelihood ratio statistic was greater than the 

goodness of fit test χ2 (7.106016 > 3.84146). The 
p-value associated with the test is 0.00768.

5.4 Application of GPD to the minimum daily winter 
temperatures 
For winter minimum daily temperatures, the thresh-
old (u) was also selected to fit the GPD. Parameter 
perturbations are small until the chosen threshold 
of –1 is reached. The estimators are (σ, ξ) = (2.18, 
–0.21), with standard errors of 0.14 and 0.04, respec-
tively. The 95% CIs are (2.32, 2.04) for σ and (–0.25, 
–0.17) for ξ. According to the negative values of the 
shape parameter, the tails are finite. The GPD model 
was not rejected because the likelihood ratio statistic 
was greater than the goodness of fit test χ2 (14.96237 
> 3.84146). The p-value associated with the likeli-
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Fig. 3. Diagnostic plots of the GEV adjusted to EXTMXT (left) and EXTMNT (right) in Mexicali, Mexico (1950-2010).

Table II. Return levels and 95% CIs for EXTMXT and EXTMNT using the GEV distribution 
in Mexicali, Mexico.

Return period 
(years)

Return level (ºC) Lower limit (ºC) Upper limit (ºC)

EXTMXT EXTMNT EXTMXT EXTMNT EXTMXT EXTMNT

5 48.5 –3.2 48.1 –2.5 49.1 –4.1
10 49.3 –4.4 48.8 –3.6 50.1 –5.5
15 49.7 –5.0 49.2 –4.1 50.6 –6.3
20 49.9 –5.3 49.4 –4.5 51.0 –7.0
25 50.2 –5.6 49.7 –4.7 51.3 –7.2
50 50.7 –6.2 50.1 –5.3 52.3 –8.3
75 51.0 –6.6 50.3 –5.6 52.8 –8.9

100 51.2 –6.8 50.4 –5.8 53.2 –10.4
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hood ratio test is 0.000109. Table III shows the results 
of the estimated return levels and the 95% CIs for the 
daily maximum and minimum temperatures.

5.5 Incorporation of a covariable with EXTMXT 
and EXTMNT in the GEV
The asymptotic arguments support the use of the GEV 
distribution to model EXTMNT and EXTMXT, but 
the presence of the time trend, according to the pre-
liminary analysis (Fig. 1) raises questions about the 
suitability of the conventional model that assumes a 
constant mean over time. The non-stationary distri-
bution could be explained by allowing the location 
parameter of the GEV to depend on time. A suitable 
parameter for the extreme temperature in a year t, Zt, 
could be Zt ≈ GEV [μ(t), σ, ξ], where μ(t) = μ0 + μ1t. 

The parameter µ1 corresponds to the annual rate of 
change in the extreme temperature series. To select 
the most suitable model, the likelihood ratio test was 
used. This test yielded a value of 38.2 for EXTMXT 
and 32.8 for EXTMNT, which are above the critical 
value of χ1,1–0.05 2 , which is 3.84. The inclusion of a 
linear trend as a covariate in the GEV location pa-
rameter (μ) for EXTMNT and EXTMXT produced 
a significant improvement (at the 5% level). Specif-
ically, the model obtained for the EXTMXT is μ(t) 
= 46.7 + 0.02567t, where t is time. By increasing the 
variable t, location parameter values are increasingly 
positive, indicating that the extreme values of maxi-
mum temperature will be more severe. For EXTMNT, 
the model obtained is μ(t) = –4.0 + 0.09t. The loca-
tion parameter values are increasing with increasing 

Fig. 5. Diagnostic plots of GPD for summer daily maximum temperatures 
in Mexicali, Mexico during the period 1950-2010.
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time; therefore, the minimum temperature extremes 
will be less severe. Table IV shows the exceeded 
estimates of EXTMXT, the unsurpassed estimates of 
EXTMNT, and the 95% CIs (ºC) obtained using the 
profile-likelihood method for several time horizons.

6. Discussion
The preliminary analysis showed a significant posi-
tive trend in both the extreme maximum temperature 
and the extreme minimum temperature, which is con-
sistent with Englehart and Douglas (2005), Labajo et 
al., (2012), and Pavía (2008). Unlike these studies, 
however, the Mexicali trend in extreme minimum 
temperature (1.04 ºC/decade) is greater than the trend 
in extreme maximum temperature (0.25 ºC/decade). 
In the case of extreme minimum temperature, the 
marked tendency appears to be related to changes in 
land use in the vicinity of the weather measurement 
location. Materials used in urbanization (asphalt, con-
crete, brick, glass, etc.) have been present throughout 
the environment since the mid-1980s within the city 

and in surrounding areas. Sites that had native or ag-
ricultural soil until a few years ago are now concrete 
slabs. Therefore, urban development has contributed 
in the usual way to a tendency for higher values of 
minimum temperature, which is in agreement with 
the study by García-Cueto et al. (2009), who detected 
the development of an urban heat island in the city 
of Mexicali.

Regarding the comparative return values of 
extreme high temperatures, the values of the GEV 
and GPD are markedly similar. However, because 
the GPD uses more input values for modeling than 
the GEV (6600 data points versus 61 data points), 
confidence intervals are smaller in the GPD. By 
taking the time trend of EXTMXT into account and 
submitting the modeling to a non-stationary process 
with the GEV, the modeling is improved at a signif-
icance level of 5%. According to the probabilities 
estimated with the 95% CIs for different time hori-
zons (return periods in the language of a stationary 
model), values are noticeably lower compared with 
return periods estimated with a stationary GEV and 
GPD; these differences range from 1.7 to 3.0 ºC. 
It must be considered, however, that in any of the 
three model simulations, future extreme values are 
extremely high and therefore indicate increased risk.

The modeling of extreme minimum temperatures 
merits separate commentary. The stationary GEV and 
GPD models estimate increasingly negative return 
values for increasingly larger return periods, which 
clearly result in an erroneous idea of the changing 
process of this parameter. By including the positive 
trend in the location parameter of the non-stationary 
GEV model, as the extrapolated time horizon ad-
vances, the probability of obtaining a negative value 

Table IV. Estimated maximum (EXTMXT) and minimum (EXTMNT) temperature levels, and 
95% confidence interval, using the GEV distribution and a covariable in Mexicali, Mexico. 

Time horizons
Estimate (ºC) Lower limit (ºC) Upper limit (ºC)

EXTMXT EXTMNT EXTMXT EXTMNT EXTMXT EXTMNT

2015 46.7 5.1 46.2 4.3 47.2 5.9
2020 46.9 5.5 46.3 4.7 47.4 6.4
2025 47.0 6.0 46.3 5.1 47.6 6.9
2030 47.1 6.4 46.4 5.4 47.8 7.4
2035 47.2 6.9 46.5 5.7 48.0 8.0
2060 47.9 9.1 46.9 7.8 48.8 10.5
2085 48.5 11.4 47.4 9.8 49.6 13.0
2110 49.2 13.6 48.0 11.9 50.3 15.3

Table III. Return levels and 95% CIs obtained with the 
GPD for maximum and minimum daily temperatures in 
Mexicali, Mexico.

Return period
(years)

Return
levels (ºC)

Lower
limit (ºC)

Upper
limit (ºC)

5 49.0 –4.3 48.7 –3.9 49.4 –4.8
10 49.5 –5.0 49.2 –4.5 50.0 –5.6
15 49.8 –5.3 49.5 –4.8 50.4 –6.1
20 50.0 –5.6 49.6 –5.0 50.6 –6.4
25 50.2 –5.7 49.8 –5.2 50.8 –6.7
50 50.6 –6.2 50.1 –5.6 51.4 –7.4
75 50.8 –6.5 50.3 –5.8 51.8 –7.8

100 50.9 –6.6 50.4 –5.9 52.0 –8.1
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is zero because all of the estimated values are posi-
tive; for the closest period (2015) and in the longer 
term (2110), it is expected (with 95% probability) 
that the EXTMNT does not exceed 5.1 and 13.6 ºC, 
respectively. Therefore, it is noteworthy that under a 
changing climate, the proposed statistically adjusted 
modeling of extreme values that does not take into 
account observed climate trends and that is used 
for extrapolation will provide future scenarios far 
removed from the possible reality.

The foreseeable consequences of the estimated 
extreme maximum temperatures determined with 
a non-stationary GEV are unfortunately not good. 
Given that deaths from heat stroke due to heat 
waves have been reported in Mexicali in the past 
(García-Cueto et al., 2010), a possible scenario is 
that if future EXTMXT trends are not considered, 
coupled with other risk factors such as age, health, 
outdoor activity, and socioeconomic factors (like 
poverty and social isolation) cases of death will 
continue to occur and may possibly increase, essen-
tially due to the increase in urban population and 
the aging of the current population; this is consistent 
with the findings of Furió and Meneu (2010). It is 
clear that measures that increase resilience might be 
agents of change in this scenario of foreseeable risk. 
Another unwanted negative impact is the increase 
in electricity use during the summer, as a result of 
increase in extreme high temperatures, to maintain 
indoor comfort by using air-conditioning equipment 
for longer periods of time.

As for the EXTMNT, because higher values are 
estimated, which corresponds to less severe winters 
than those currently observed, it is anticipated that 
expenditures for electric heating will decrease notice-
ably; additionally, the urban ecosystem, particularly 
the flora and fauna, will experience fewer effects 
caused by low temperatures. Even vulnerable groups 
such as children and the elderly may have fewer 
respiratory problems.

Based on the results obtained with the theory 
of extreme values, by modeling the non-stationary 
GEV, i.e., incorporating climate change by way of 
the trends of both extreme temperatures, it is statis-
tically reasonable to expect an increasingly warmer 
urban atmosphere, both in future summers and win-
ters. However, other approaches to study changing 
extreme event conditions, such as the applications 
of regional climate models (whether dynamic or 

statistical) that include the release of greenhouse 
gases into the atmosphere, need to be included in 
future research.

7. Conclusions
An increasing, significant annual trend was observed 
in the EXTMNT and EXTMXT; both series are 
non-stationary. A more pronounced warming was 
observed in the EXTMNT that can be associated 
with urbanization. The GEV distribution and GPD 
were adequately fitted to both temperature extremes, 
but extrapolation with the return periods has some 
shortcomings. The inclusion of the time trend as 
a covariable in the location parameter produced 
a significant improvement (at 95%) in the GEV, 
especially for the EXTMNT; therefore, individuals 
assessing impacts in several areas should use the 
values shown in Table IV. It can be observed that by 
the end of twenty-first century the extreme maximum 
temperature could be 2 to 3º C higher than current, 
and the winter could be less severe, as the extreme 
minimum temperature, according to the probabilistic 
model, suggests increases of 7 to 9 ºC with respect 
to the base period (1950-2010). Although the GPD 
uses daily values, it   fails to integrate a temporal trend 
in modeling, which makes its application to climate 
change issues questionable.
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