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RESUMEN

Se utiliza la ecuación de advección-difusión para describir la dispersión de contaminantes en un área limitada. 
Se sugieren métodos para prevenir niveles peligrosos de contaminantes en zonas de importancia ecológica. 
Los métodos se basan en el control de las tasas de emisión de las fuentes y utilizan estimaciones directas y 
adjuntas de la concentración media de la contaminación en las zonas. Mientras que las estimaciones directas 
utilizan las soluciones del problema de transporte de un contaminante y permiten llevar a cabo el estudio de 
la situación ecológica en todo el dominio, las estimaciones adjuntas permiten la obtención de información 
sólo en las zonas seleccionadas del dominio. Las estimaciones adjuntas se obtienen por medio de soluciones 
al problema adjunto y dependen explícitamente de las posiciones de las fuentes y sus tasas de emisión, así 
como de la distribución inicial del contaminante en la región. En cada estimación, la solución al problema 
adjunto sirve como la función de influencia que muestra la contribución cuantitativa de cada fuente a la con-
taminación de la zona correspondiente. Por lo tanto, las estimaciones adjuntas constituyen una herramienta 
muy eficaz en el estudio de la respuesta del modelo a los cambios en las tasas de emisión y las condiciones 
iniciales, así como en el desarrollo de estrategias de control. Se sugieren varias estrategias de control óp-
timas y suficientes (no óptimas). Cada estrategia consiste en reducir las tasas de emisión de las fuentes, y 
define la intensidad máxima admisible (en caso de control óptimo) o una intensidad suficiente (en caso de 
control suficiente) de cada fuente, para evitar violaciones de las normas sanitarias. En el diseño de dichos 
criterios se han tomado en cuenta las condiciones dinámicas de la atmósfera o el océano (mar), es decir, los 
procesos de propagación, dispersión y transformación de contaminantes, así como el número de fuentes que 
se controlan, sus ubicaciones y las normas sanitarias. Los métodos de control desarrollados se ilustran con 
ejemplos sencillos, utilizando los modelos de dispersión bidimensionales. Sin embargo, dichos métodos 
también pueden aplicarse a los modelos tridimensionales. Como ejemplo, en la última parte del artículo, se 
considera un modelo tridimensional de la dispersión. Además, para ampliar el ámbito de aplicación de los 
métodos de control de la intensidad de las fuentes, las estrategias de control óptimo se aplican a una fuente 
que emite una sustancia química para limpiar sistemas acuáticos contaminados con biopelículas (remediación) 
o petróleo (biorremediación).

ABSTRACT

The advection-diffusion equation is used for describing the dispersion of pollutants in a limited area. Methods 
for preventing dangerous levels of pollutants in ecologically important zones are suggested. The methods 
are based on the control of emission rates of sources and use the direct and adjoint estimates of the average 
pollution concentration in the zones. While the direct estimates use solutions of the pollution transport prob-
lem and permit to study the ecological situation in the whole domain, the adjoint estimates allow getting 
information only in the selected zones of the domain. The adjoint estimates are obtained with solutions to 
the adjoint problem and depend explicitly on the positions of the sources and their emission rates, and on 
the initial distribution of pollutants in the region. In each such estimate, the adjoint problem solution serves 
as the influence function that shows the quantitative contribution of every source into the pollution of the 
corresponding zone. This makes the adjoint estimates very efficient tools in the study of the model response 
to changes in emission rates and initial conditions, as well as in the development of control strategies. Both 



380 Y. N. Skiba and D. Parra-Guevara

non-optimal (sufficient) and optimal control strategies are suggested. Each strategy consists in reducing the 
emission rates of sources, and defines maximum allowable intensity (in case of optimal control), or sufficient 
intensity (in case of sufficient control) of each source to avoid violations of hygiene standards. Such criteria 
are designed taking into account dynamic conditions in the atmosphere or ocean (sea), that is, the processes 
of propagation, dispersion and transformation of pollutants, as well as the number of sources to control, 
their locations and the sanitary norms. The control methods developed are illustrated with simple examples 
using two-dimensional dispersion models. However, these methods can also be applied to three-dimensional 
models. As an example, in the last part of the article, a three-dimensional model of dispersion is considered. 
In addition, to expand the scope of application of the methods of control of the intensity of sources, the 
optimal control strategies are applied to a source that emits a chemical substance to clean aquatic systems 
contaminated with biofilms (remediation) or oil (bioremediation).

Keywords: Dispersion model, adjoint model, control of emission rates of sources.

1. Introduction
The main reasons for pollution in any environment 
are a huge global population and a modern lifestyle 
that demands and consumes large amounts of goods 
and services. For example, due to this demand, which 
has presented a steady increase in recent decades, 
large volumes of raw materials and fossil fuels are 
transformed to various pollutants released into the 
atmosphere (Domenech, 1999; López-Coronado and 
Guerrero-Nuño, 2004). The environment has mech-
anisms to dilute and assimilate these pollutants and 
returning them to nature (Seinfeld, 1992); however, 
during the last century, anthropogenic activities emit 
into the atmosphere at short intervals, such large vol-
umes of substances in confined areas (cities, indus-
trial parks, etc.) that the mechanisms of assimilation 
do not have time to recycle the excess of chemicals 
and to clean the atmosphere. The result is the accu-
mulation of different primary pollutants, leading to 
the generation of secondary species (Seinfeld, 1992; 
Wark et al., 1998; Marinescu et al., 2008), which 
form a mixture that produces a variety of damages 
to humans and ecosystems (Caselli, 1996).

A pollutant, depending on its concentration and 
toxicity, causes various health problems (Kawada, 
1984), from respiratory discomfort in healthy people 
to the increase in mortality among vulnerable popu-
lations (cardiac patients, children, elderly persons, 
etc.). Anyway, pollution is a factor that diminishes 
the quality of life of human beings. Unfortunately, the 
impact of mixing of pollutants in ecosystems can 
be not only local, as in the case of photochemical 
smog (Bravo et al., 1991), but also regional, as in 
the acid precipitation (Beilke and Elshout, 1983; 
Rodhe et al., 1981), or global, as the phenomenon 
of destruction of the ozone layer and global climate 

change (Rivera, 1999; Rubinstein, 2001; Karnosky 
et al., 2003).

Consequently, it is important to design methods for 
controlling emissions and reducing the concentration 
of hazardous substances to acceptable health standards 
(Programma di Ricerca, 2004; Pérez Sesma, 2012). To 
this end, mathematical models of pollutant dispersion 
as well as their adjoint models are used (Marchuk and 
Skiba, 1976; Marchuk, 1986; Panos and Seinfeld, 
1986; Skiba, 1997; Davydova-Belitskaya et al., 1999, 
2001; Skiba and Parra-Guevara 2000; Parra-Guevara 
and Skiba 2003, 2006, 2011; Liu et al., 2004, 2005, 
2007; Kowalok, 2004; Moreira et al., 2005, 2010; 
Hinze et al., 2009; Mendoza and García, 2009). 

The pollutant dispersion models permit us to car-
ry out the computer-simulation of concentrations of 
various primary and secondary pollutants in a region 
(Skiba, 1993, 1997; Skiba and Parra-Guevara, 2000, 
2007, 2011; Hussain, 2007; Dorado and Moreira, 
2009; Hongfei, 2010; Hongfei and Hongxing, 2011; 
Parra-Guevara et al., 2010; Fu and Rui, 2011, 2012; 
Li et al., 2012a), and thereby identify the domains 
where the emissions have a greater impact. The method 
allows identifying the main sources of excessive pol-
lution in a selected zone (residential area, park, forest, 
etc.). In particular, it can be used for the evaluation of 
pollution levels due to oil spills (Skiba, 1996, 1999; 
Skiba and Parra-Guevara, 1999; Dang et al., 2012), or 
to vehicular emissions along the main roads (Skiba and 
Davydova-Belitskaya, 2003; Chiou and Chen, 2010; Li 
et al., 2012b; Shafiq and Iqbal, 2012); for estimating 
parameters which describe the source location and 
strength (Keats et al., 2007a, b); for the detection of 
industrial plants which violate the emission rates, pre-
scribed by some control strategy (Skiba, 2003); for the 
reconstruction of an unknown number of contaminant 
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sources (Yee, 2008); or for the optimal location of a 
new industrial enterprise, so that its operation will not 
violate health standards in ecologically most important 
zones (Marchuk, 1982, 1986; Skiba et al., 2005). The 
method can also be used to install safety devices in 
high-risk areas to prevent accidents or unauthorized 
discharges of contaminants and design emission con-
trol strategies for already existing industries (Penenko 
and Raputa, 1983; Jhih-Shyang, 1998; Parra-Guevara 
and Skiba, 2000a, b; Zundel and Rentz, 1995; Yan and 
Zhou, 2008, 2009). 

In the present work, an approach based on using 
dispersion models and corresponding adjoint models 
is suggested to estimate pollution levels and gener-
ate some strategies to control emission rates. These 
strategies include a restriction of emissions of pol-
lution sources in order to meet sanitary norms. Due 
to the fact that the sanitary standards represent time 
averages, the proposed control strategies are aimed 
at reducing the average concentration of pollutants 
in a given time interval and region, to an acceptable 
level. Some control strategies are considered in cases 
when the dispersion model predicts a violation of 
sanitary norms.

There are two approaches to monitor and control 
the emission of pollutants and protect the environ-
ment in large industrial regions. The first approach, 
called “technological path” uses “green” technologies 
in order to maintain the lowest level of emissions of 
dangerous pollutants. The second approach consists 
in establishing various criteria for controlling the 
emission rates of pollutant sources, and presents a 
significant mathematical interest.

To illustrate the main mathematical ideas of the 
control methods, we will often use a simple two-di-
mensional (vertically integrated) transport model 
of passive pollutants (i.e. the substances) whose 
chemical reactions are described by means of a linear 
law. Of course, all the suggested methods can also 
be applied to a three-dimensional pollution transport 
model. On the other hand, the experience gained in 
the development of such strategies for the atmosphere 
has allowed expanding the scope of their application 
(Álvarez-Vázquez et al., 2008, 2010, 2011; Cheng 
et al., 2007; García-Chan et al., 2009) for cleaning 
(remediation) aquatic systems polluted by biofilms 
or petroleum (Parra-Guevara and Skiba, 2007; Skiba 
and Parra-Guevara, 2011; Parra-Guevara et al., 2011).

2. Pollution dispersion model in a limited area
To simplify the study, we will often consider a 
two-dimensional (vertically averaged) problem of 
pollutant dispersion. The three-dimensional problem 
is applied in this work only in the numerical exper-
iment related to the remediation of contaminated 
aquatic systems. In addition, we will always consider 
the process of dispersion of contaminants separately 
from the fluid dynamics problem, supposing that the 
transport velocity and other dynamic parameters of 
the problem are known from observations or some 
dynamic model.

2.1 Boundary and initial conditions
Suppose that in a two-dimensional limited domain 
D with boundary S, there are N industrial factories 
located at points ri = (xi, yi), i = 1, 2, ..., N. Let 
ϕ(r, t) be a concentration of a pollutant in point  
r = (x, y) and moment t > 0. To study the propaga-
tion of the contaminant in time interval (0, T), we 
consider in the domain D and time interval (0, T) 
the advection-diffusion-reaction equation

( ) ( ) ( , )div div = f t
t

μ+ + rU  (1)

where U(r, t) = {u(r, t), v(r, t)} is the wind velocity 
vector, σ(r, t) > 0 characterizes the speed of expo-
nential decay of ϕ(r, t) due to various physical and 
chemical processes, µ(r, t) > 0 is the turbulent dif-
fusion coefficient, ∇ is the 2D gradient,

1

( , ) ( ) ( )
N

i i
i

f t Q t
=

r r r , (2)

Qi(t) is the emission rate of the ith industry, and 
δ(r–ri) is the Dirac function. Numerical experiments 
show that parameterization σϕ is quite good in the 
case of such contaminants as CO, SO2, Pb, C, etc. 
(Shir and Shich, 1974).

It is assumed that velocity U(r, t) is known from 
observations or some dynamic model and satisfies 
the continuity equation

div U = 0 (3)

Eq. (1) is solved with the initial condition

ϕ(r, 0) =ϕ0 (r)  at  t = 0 (4)
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Normally the pollution flux through the open 
boundary S of limited area D is unknown, and the 
errors made in determining the flux may propagate 
inside the domain by advection and diffusion, perturb-
ing or destroying the solution. Also, errors in the initial 
condition (4) and emission rates Qi(t) can modify the 
solution. It is therefore important to put such boundary 
conditions, under which the problem will be posed 
correctly in a limited area, both physically and mathe-
matically (Marchuk and Skiba, 1976; Marchuk, 1986).

For this purpose, we introduce the projection 
Un = U · n of velocity U on the unit external normal n 
to the boundary S of domain D, and divide the whole 
boundary into the “inflow” part S– (where Un < 0, and 
the pollution flux is directed inside D) and “outflow” 
part S+ (where Un ≥ 0, and the pollution flux is direct-
ed outside D) (Fig.1). Then we take the following 
boundary conditions: 

0 at 

0 atn

=     S
n

=     SUn

μ

μ

+

 (5)

(Marchuk and Skiba, 1976; Skiba, 1997). Skiba and 
Parra-Guevara (2000, 2011) showed that problem (1)-
(5) is well posed according to Hadamard (1923), that 
is, it has a unique solution that continuously depends 
on the initial distribution ϕ0(r) and on the number N, 
emission rates Qi(t) and positions ri of the industries.

2.2 Equations for the total mass and norm of solution
Let us integrate Eq. (1) over domain D and apply 
conditions (3) and (5). Then we obtain the balance 
equation for the total mass of pollutant:

 (6)

One more integral equation is obtained if we 
multiply Eq. (1) by ϕ(r, t) and integrate the result 
over D:

2

1

2 ( ) ( , )
N

ii
iD

d Q t t
t

r r
=

=

2 222 ( ) n
SD

d U dSrμ+
 (7)

Eqs. (6) and (7) mean that both the total concen-
tration ∫D ϕ dr and the solution norm ||ϕ|| = (∫D ϕ2 dr)1/2 
increase under the influence of non-zero emission 
rates Qi(t), and at the same time decrease due to dis-
sipation (σ > 0, µ > 0) and adjective pollution flux 
through the boundary S of domain D. If f(r, t) ≡ 0 
(emission rates are absent), and in addition, there is 
no dissipation (σ = 0, µ = 0) and Un = 0 everywhere 
at boundary S, then both integrals are invariable:

( , )
D

t d const=r r ,   ( , )t const=r

Of course, these conservation laws are valid 
only under artificial conditions. Nevertheless these 
two laws and the balance Eqs. (6) and (7) are useful 
in testing numerical algorithms and computational 
programs (Skiba, 1997).

2.3 Description of sources in the models
The forcing f (r, t) of Eq. (1) depends on the nature 
of pollution source. In case of N industrial plants 
located in D (Fig. 2a), f (r, t) is defined by (2). And 
if the sources are distributed continuously along the 
main city roads Ri then

( , ) , if     
( , ) ( 1,2,..., )

0 , otherwise
i iQ t R

f t i N= =
r r

r

where Qi(r, t) is the rate of emission of a pollutant 
along the road Ri, i = 1, 2,..., N (Skiba and Davy-
dova-Belitskaya, 2003). Evidently, a superficially 
distributed source (e.g. in case of fire) can be de-
scribed in like manner. However, as it is mentioned 
in Skiba and Davydova-Belitskaya (2003) and Par-
ra-Guevara and Skiba (2003), the emission rates Qi 
(r, t) continuously distributed along some line Ri (or 
superficially distributed over some area) can also be 
described in the discrete form (2) by dividing the 
line (or area) into small parts and discretizing the 
function Qi (r, t) (Fig. 2b). This method was used by 

Region D A

U

U

n

n

B

S+

S–

Un < 0

Un ≥ 0

Fig. 1. Limited area D with open boundary S = S+ ∩

S– of 
problem (1)-(5).
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Skiba and Davydova-Belitskaya (2003) to introduce 
in the model the vehicular sources located along 
the main roads in Guadalajara City. Figure 3 shows 
the distribution of carbon monoxide concentrations 
calculated with model (1)-(5) by using the climatic 
winds of dry season (a) and rainy season (b). One 
can see the importance of wind direction in the 
distribution of a pollutant.

3. Dual estimates 
Figure 3 shows that by solving the problem (1)-(5) we 
can study the behavior of pollutant concentration in 
any point of domain D × (0, T). However, this is not 
an efficient way to answer the important question: To 
what extent this or that source is responsible for the 
contamination of a particular zone? It is much easier 
to answer the question with the adjoint approach, 
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Fig. 2. (a) Principal roads in Guadalajara City, and positions of major industries that burn fossil fuels and emit sulfur 
dioxide. (b) Discretization of vehicular sources of CO.

Fig. 3. Isolines of CO concentration calculated at t = 180 min with model (1)-(5) using climatic winds of dry season 
(a) and rainy season (b).
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widely used in the model sensitivity study and con-
trol theory (Marchuk and Orlov, 1961). The main 
advantage of this approach is the use of solutions of 
adjoint problems as valuable information functions 
(Lewins, 1965). 

3.1 Adjoint dispersion model
The adjoint dispersion model in domain D (Fig. 1) and 
time interval (0, T) is constructed with the help of an 
operator that is adjoint to the operator of model (1)-(5). 
The adjoint operator is defined by means of Lagrange 
identity (Marchuk and Skiba, 1976; Marchuk, 1986), 
and the adjoint model accepts the form

( ) ( ) ( , )   g div g g div g p t
t

μ+ = rU

(0, )D Tin
 (8)

g(r, T) = 0  in  D (9)

0 at  

0 at  

n
g U g S
n

g S
n

μ

μ

++ =

=
 (10)

In Eq. (8) the wind velocity U(r, t) and coeffi-
cients µ(r, t) and σ(r, t) are the same as in Eq. (1). 
Let us compare the dispersion problem (1)-(5) with 
adjoint dispersion problem (8)-(10) in the case when 
f(r, t) ≡ 0 and p(r, t) ≡ 0. One can see that after using 
the substitution t´= T – t in Eq. (10), it differs from Eq. 
(1) only in the sign of velocity U. As a result, the inflow 
part S– and outflow part S+ of problems (1)-(5) and (8)-
(10) are swapped. This fact explains why the boundary 
conditions (5) are replaced by the conditions (10). It 
also shows that the adjoint problem is well posed only 
if it is solved in the opposite time direction: from t = T 
to t = 0 (Skiba and Parra-Guevara, 2000). That is why 
we take “initial” condition (9) at the moment t = T.

3.2 Duality principle
We now show how to define the forcing p(r, t) 
of the adjoint problem and explain the importance of 
the adjoint solution g(r, t). Suppose it is required to 
determine the mean concentration of pollutant ϕ(r, t) 
in some ecologically sensible zone Ω ∩ D and time 
interval (T – τ, T). Let ω(r, t) be a positive function 
in domain Ω × (T – τ, T) such that

( , ) 1
T

T

t d dt =r r ,

and hence, the integral

( ) ( , ) ( , )
T

T

J t t d dt= r r r  (11)

represents an average concentration of pollutant ϕ (r, t) 
in space-time domain Ω × (T – τ, T).

We now subtract the Eq. (8) pre-multiplied by 
ϕ(r, t) from the Eq. (1) pre-multiplied by g(r, t), and 
integrate the result over domain D × (0, T). The initial 
and boundary conditions (4)-(5) and (9)-(10) lead then 
to the duality principle (Marchuk and Skiba, 1976; 
Skiba and Parra-Guevara, 2011):

0( ,0) ( )
D

g d+ r r r
1 00

( , ) ( , ) ( , ) ( )
TT N

i i
iD

p t t drdt g t Q t dt
=

=r r r

If forcing p(r, t) in (8) is defined as

( , )p t =r  (12)

then the last equation leads to one more (equiv-
alent) estimate of average concentration of con-
taminant ϕ (r, t) in zone Ω and interval (T – τ, T):

 (13)

In the particular case that ω(r, t) = 1/(τ |Ω|) in 
the domain Ω × (T – τ, T), where |Ω| is the area 
of Ω, estimate (11) leads to the mean concentra-
tion of pollutant ϕ(r, t) in the space-time domain 
Ω × (T – τ, T):

1( ) ( , )
T

T

J t d dtr r  (14)
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(the so-called direct estimate). At the same time, Eq. 
(13) provides the equivalent (dual) adjoint estimate:

0

1 0

( ) ( , ) ( ) ( ,0) ( )
TN

i i
i D

J g t Q t dt g d
=

= +r r r r (15)

(Marchuk and Skiba, 1976). It means that forcing 
p(r, t) of adjoint problem (8)-(10) characterizes the 
average concentration J(ϕ) of pollutant ϕ(r, t) in  
Ω × (T – τ, T). According to adjoint estimate (15), 
the concentration J(ϕ) in zone Ω explicitly depends 
on the emission rates Qi (t) and initial distribution 
ϕ0(r) in D, and adjoint solution g(r, t) serves as the 
weight function that determines the contribution of 
each source Qi (t) and initial pollution level ϕ0(r) into 
the average concentration J(ϕ) in Ω. 

Note that the role of initial distribution of con-
taminant ϕ0(r) decreases when the interval (0, T – τ) 
increases (Skiba, 1993). Really, by (12), p(r, t) ≡ 0 
in (0, T – τ), and, due to the dissipation process 
(µ > 0, σ > 0), the weight function g(r, 0) in (19) 
decreases as T – τ increases. If g(r, 0) is relatively 
small then (15) is reduced to

1 0

( ) ( , ) ( )
TN

i i
i

J g t Q t dtr
=

=  (16)

3.3 Particular qualities of dual estimates
The direct estimate (14) and adjoint estimate (15) 
are equivalent and complement each other rather 
well in monitoring the current ecological state. 
Depending on the situation, one of these formulas 
may be preferable. The direct estimate (14) uses 
the solution ϕ(r, t), and hence, the problem (1)-(5) 
must be solved again whenever the number N of 
sources, their positions ri or emission rates Qi (t) 
vary. Of course, the direct evaluation should be used 
if the pollution concentration is estimated in each 
point, or in many zones of domain D. However, 
such comprehensive information is rather costly 
and often unnecessary. In many cases it is sufficient 
to know value (14) only in a few ecologically most 
important zones of region D. Then it is better to find 
the solutions gi (r, t) of the adjoint model (8)-(10) 
for every zone and use the adjoint estimates (15). 
In some cases the estimates (15) give an immediate 
solution to non-trivial problems (Skiba et al., 2005; 
Dang et al., 2012). Also, the adjoint estimates are 

important to control the emission rates of pollution 
sources. In contrast to problem (1)-(5), the adjoint 
problem (8)-(10) is independent of the number of 
sources N, their positions ri and emission rates Qi (t), 
and therefore its solution can be found for each 
zone W independently of specific values for all 
these parameters. 

The adjoint method is especially useful when the 
dispertion problem is considered with time-indepen-
dent (for example, climatic) parameters U(r), µ(r) and 
σ(r) (Skiba and Davydova-Belitskaya, 2002). Then 
any solution to adjoint problem g(r, t), once calculat-
ed for a specific zone W, can be reused for different 
parameters N, ri and Qi (t) (Figs. 4-6). Moreover, the 
estimate (16) uses only the values g(ri, t) in the posi-
tions ri of sources, and therefore, there is no need to 
keep in a computer the values of adjoint solutions in 
all grid points. 

3.4 Sensitivity of estimates
Suppose that the number K of zones Ωk ∩ D (k = 
1,...,K) is much less than number N of pollution 
sources. Then the adjoint estimates (15) are very 
helpful and effective in studying the sensitivity of 
concentrations Jk (ϕ) to variations in emission rates 
Qi (t), positions ri and number N of sources, as well 

Fig. 4. Isolines of solution g(r, t) calculated for the Histor-
ical Center of Guadalajara City with climatic rainy season 
wind at t = T – 60 min (dotted lines) and t = T – 90 min 
(continuous lines); T = 360 min.
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as to variations in the initial distribution of contam-
inant ϕ0 (r).

Let us derive a few sensitivity formulas. Due to 
the linearity of problem (1)-(5), it is easy to obtain

0

1 0

( ) ( ) ( ) ( ,0) ( )
TN

i i
i D

J = g ,t Q t dt g d
=

+r r r r (17)

where δJ(ϕ) is a variation in the mean concentration 
(15) in zone Ω due to variations in ϕ0 (r), Qi (t) and/
or N. 

If ri and ri′ are two different positions of sources 
in domain D then the ri-dependence of average con-
centration J(ϕ) is given by

 (18)

All variations in (17) and (18) are arbitrary. We 
now obtain a general formula for analyzing the 
sensitivity of J(ϕ) with respect to small variations of 
model parameters. In addition to solution ϕ to prob-
lem (1)-(5), we also consider the solution   
to perturbed problem

at

where

(a)

(b)

Fig. 6. Temporal behavior of the functions g(ri, t) calcu-
lated for the Historical Center of Guadalajara City, with 
climatic rainy season wind (a) and dry season wind (b) at 
points ri of main roads (τ = 60 min, T = 180 min).

Fig. 5. Isolines of solution g(r, t) calculated for the Histor-
ical Center of Guadalajara City with climatic dry season 
wind at t = T – 60 min (dotted lines) and t = T – 90 min 
(continuous lines); T = 360 min.
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To simplify the study, we assume here that U´ 
and µ´ are reduced to zero at the boundary S and all 
the perturbations U´, ϕ´, µ´, σ´, δϕ0 and δri are rather 
small. Then we can apply the adjoint method to the 
linearized equation

for perturbations ϕ´ and get

 (19)

The last two terms of the right-hand side of (19) 
demonstrate the contribution of small perturbations 
U´, µ´, σ´, δri to variation δJ(ϕ) of mean concentration 
J(ϕ) in zone Ω. It should be noted that in contrast to 
estimates (17) and (18), the last term in (19) already 
contains the solution ϕ(r, t) of non-perturbed prob-
lem (1)-(5). Thus, solution ϕ(r, t) is not used only if 
U´ = σ´ = µ´ = 0 everywhere in D. Then only the adjoint 
problem (8)-(10) must be solved.

4. Three simple strategies for pollution control
Let us formulate the problem of control of emission 
rates. Suppose that we have a model M that predicts 
the dispersion of a pollutant ϕ in a limited area D ∩ Rm 
(m = 2, 3) and time interval (0, T):

where Qi (t) ≥ 0 is the rate of emission of contam-
inant ϕ of the ith source located at ri  D (i = 1, 
2,..., N). In particular, (1)-(5) can be taken as such a 
model. Let the functional (14) be used as the mean 
concentration J(ϕ) of pollutant ϕ in a zone Ω ∩ D 
and time interval [T – τ, T], and let J0 be a sanitary 
norm admissible for the pollutant ϕ. If the model M 
gives an unfavorable forecast of air quality, that is, 
the mean concentration exceeds the sanitary norm: 
J(ϕ) > J0, then the emission rates  were excessive, 
and must be reduced in interval (0, T). The idea is to 

determine such reduced values *( ) ( )Q t Q t  in order 
to prevent high levels of pollutant ϕ in time-space 
domain Ω × [T – τ, T]. It means that the re-forecast 
with the reduced emission rates *  will give the 
satisfactory result: J(ϕ) ≤ J0.

This inverse problem may have many solutions 
or none, depending on the initial distribution of 
pollutant ϕ0(r) in domain D (Parra-Guevara and 
Skiba, 2003, 2006). So it is an ill-posed problem. 
In order to get a well-posed problem, one should 
apply a regularization method that in a sense rep-
resents a control strategy. Let us consider three 
simple examples.

4.1 Strategy 1: Control of total mass of emitted 
pollutant
This control strategy can be defined as the following 
optimization problem:

F
N

Q Q J J
i

 (20)

where dtTQiQi . Thus, QF  represents the 
total mass of pollutant ϕ emitted within interval [0, T] 
by N sources located at points ri with emission rates 
Qi(t). The solution of problem (20) is

, (21)

(Parra-Guevara and Skiba, 2000a; Parra-Guevara, 
2001) where γ1 + γ2 + ··· + γN = 1,  
is the quota of the total mass of pollutant, emitted 
by the ith source when it works at full capacity (i = 
1,..., N), and

. (22)

4.2 Strategy 2: Control of temporal behavior of 
emission rates
It should be noted that the control strategy (21) has the 
disadvantage that it may require stopping the sources 
for some time for the reason that the emission rates 
are proportional to the adjoint function g(ri, t), which 
can be equal to zero. Let us consider a new strategy 
of control that limits the behavior of emission rates 
in (0, T), but does not require stopping the activity 
of sources when the adjoint solution g(ri, t) reduces 
to zero.
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Again, we should find such Qi
*  L2(0, T) that  

J(ϕ) ≤ J0. The idea is that intensity Qi
*(t) of the ith 

source may be high while g(ri, t) is small, and Qi
*(t) 

must be low while g(ri, t) is large. The advantage of 
this approach is that, in some periods of time (for 
example, when g(ri, t) = 0), the corresponding source 
will be allowed to operate at full capacity (Parra-Gue-
vara and Skiba, 2000a, 2003; Parra-Guevara, 2001). 
Let us define auxiliary functions

where  and iI  denotes its 
longitude, δi is the maximum emission rate cor-
responding to the i th source, and [0, T]\ Ii is the 
complement of set Ii to set [0, T]. Then the solution is

 (23)

4.3 Strategy 3: Optimal time-independent emission 
rates
Suppose that Qi is the maximum possible emission 
rate of ith source located at ri and

Assume that all sources operate at full capacity 
power that results in the violation of the sanitary 
norm: J(ϕ) > J0 (and (15) and (22), this means that 

 ). To prevent the excessive pollution of the 

zone, some emission rates must be reduced. We now find 
the maximum possible time-invariant emission rates 
Qi

* ≤ Qi which minimize the values Qi – Qi
*, do not 

lead to violation of the sanitary norm, giving the 
optimal result: J(ϕ) = J0, that is,

Let us reformulate this strategy as the optimization 
problem

F Q Q Q

Q

N

i

N
a

i
i i

ii

With Lagrange multipliers we obtain

 (24)

(Parra-Guevara and Skiba, 2000a; Parra-Guevara, 
2001). Obviously, Qi

* ≤ Qi for all i, since λ < 0, be-
sides Qi

* ≈ Qi for small γi. Thus, this control results 
in limiting the emissions from the sources for which 
the corresponding values ai are large.

5. General strategy of optimal control 
Let

F q Q q Q q

qQ

N

i

i i dt

TL

be a functional defined in the domain

N J J

q q tTLt

i
i i

q

 (25)

Thus Θ is the set of such emission rates q t  that 
guarantee the compliance with the sanitary standard 
in a zone Ω: J(ϕ) ≤ J0. The optimal control consists 
in finding such rates Q t  that minimize the 
functional F q  in Θ:

F Q F q
q

. (26)

(Parra-Guevara and Skiba, 2000a; Parra-Guevara, 
2001; Skiba and Parra-Guevara, 2011). Clearly, the 
control depends on the norm  used, and Q t  
is the optimal solution that represents the least re-
striction on the sources. This variational problem 
is generally solved with an iterative optimization 
method using successive evaluation of the dynamic 
model M (Elbern and Schmidt, 1999; Robertson 
and Langer, 1998). As a general rule, this process 
is not very efficient because it requires many 
calculations due to the complexity of model M. 
Therefore we will now describe another method 
based on using the adjoint operator and adjoint 
model, which allows us to solve the problem of 
optimal control without consistent estimation of 
model M. 



389Control of emission rates

Note that the solution of problem (26) depends crit-
ically on the parameter α defined by (22). Indeed, for 
α < 0 there is no solution to (26) because the standard of 
health does not hold even if all emissions are reduced 
to zero (that is, any production activity is stopped). The 
following three results in this section were proved in 
Parra-Guevara and Skiba (2006, 2007).

Theorem 1
Let α = 0. Then the optimal control problem (26) has 
only one solution:

Q t
Q t t

t

T I

Ii

i i

iI

T g r ti

Theorem 2
If α > 0 then the optimal control problem (26) has 
the unique solution Q  such that Qi

*(t) ≤ Qi(t) 
(0 ≤ t ≤ T, 1 ≤ i ≤ N) and J(ϕ) = J0.

If there is only one source, the statement of The-
orem 2 can be refined:

Theorem 3
Suppose that there is only one source with emission 
rate Q(t) located at the point r0. If α > 0 and J(ϕ) > J0 
then

 (27)

is the only solution for the problem of optimal control 
(26), on condition that it is a nonnegative function 
in [0, T].

In connection with Theorem 2, the set of potential 
solutions (25) is reduced to

 (28)

An approximate (numerical) solution to the prob-
lem of optimal control can be obtained with highly 
effective numerical algorithm of sequential orthog-
onal projections (Parra-Guevara and Skiba, 2006). 

From the computational viewpoint, the new set (28) 
is much smaller than (25), and therefore preferable 
in calculations.

5.1 Strategies of control based on convex linear 
combinations
A new strategy to control emissions can always be 
developed with a convex linear combination of the 
existing strategies. Let K be a number of previously 
defined control strategies, besides, each strategy en-
sures compliance with the health standard in a zone 
Ω: J(ϕ) ≤ J0. Let ξ1, ξ2,..., ξK be positive constants such 
that ξ1 + ξ2 + ... + ξK = 1 , and let Q*

i, k be a sufficient 
(or optimal) emission rate found by means of the kth 
control strategy for the ith source (i = 1,..., N, k = 1,...,K). 
Then the emission rates

represent a new sufficient (non-optimal) strategy that 
also guarantees compliance with the health standard 
in the zone Ω: J(ϕ) ≤ J0.

6. Control of the source that emits lead particles 
To illustrate the developed methods we now consider 
two examples in which the source emits the lead 
particles.

Example 1. Let D = (0, 2 km)×(0, 2 km) be a square 
domain, while the single point source, located at  
r0 = (1.8, 0.2), emits lead particles with emission rate 
Q = 3.8 kg/h. For simplicity, we neglect the initial 
distribution of lead: ϕ0(r) = 0 in D. The coefficients 
of deposition and diffusion are σ = 0.001 h–1 and  
µ = 0.04 km2h–1, respectively. The non-divergent 
wind velocity U = (u, v) is defined by the stream 
function ѱ = xy:

The dispersion model (1)-(5) and adjoint model 
(8)-(10) are considered in the four-hour interval (0, T). 
We will monitor the mean lead concentration J(ϕ) 
in the zone Ω = [0, 0.5]×[0.5, 1.0] during the whole 
interval (0, T), that is (τ = 4 h). The sanitary norm is 
J0 = 1.5 µg m–3 (Seinfeld, 1992).

Isolines of the concentration of lead at intervals 
of one hour are presented in Figure 7, while isolines 
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of the solution g(r, t) of adjoint model (8)-(10) are 
given in Figure 8. Figure 7 shows a clear increase 
in the concentration of lead when the direction of 
the wind is changed from southeast to northwest. 
Figure 8 demonstrates that during the four-hour inter-
val (from t = 4 to t = 0 ), the step function p(r, t) shifts 
in the direction of vector –U (that is, from north-west 
to south-east), as it should. The mean concentration 
of lead J(ϕ) calculated in zone Ω with emission 
rate Q is 2.11 mg m–3. The result is unsatisfactory 
(J(ϕ) > J0), and we will apply and compare five dif-
ferent control strategies: the control strategies (21), 
(23) and (24) with emission rates Qi

* (i = 1, 2, 3) 
and two control strategies defined with the convex 
linear combinations Q4

* = 0.3 · Qi
* + 0.7 · Q3

* and 
Q5

* = 0.5 · Q2
* + 0.5 · Q3

*.
The mean lead concentrations obtained in zone Ω 

when the model (1)-(5) is solved with emission rates 
Q1

*(t), prescribed by the five control strategies (i = 
1,..., 5), are shown in Table I, while Figure 9 shows 
the temporal behavior of Q1

*(t). 
All five control strategies correspond to the level 

of health, and provide an alternative to the original 
source intensity Q. However, the emission rate Q3

* 
(optimal control), as well as the rates Q4

* and Q5
* 

(convex control) are the most preferred as they 
require less drastic changes in the intensity of the 

original source. Although the emission rate Q2
* is 

only 40% of the original rate Q in the first half of 
the time, it coincides with the original rate Q during 
the second half of the time, and this fact can also 
be attractive. 

Note that, like the original rate Q, the optimal 
emission rate Q3 is stationary (it is 71% of Q). This 
makes Q3 a simple alternative to the original indus-
trial source activity. The results show that among the 
five strategies, the first strategy with emission rate Q1 
has the most serious consequences for the industrial 
plant activity, because it requires the work stoppage 
during 25% of the total time.

Example 2. In this example domain D and wind 
velocity U are the same as in Example 1. Moreover, 
the source also emits lead particles and is located 
at the same place. However, we now consider the 
four different original emission rates of the source:

Fig. 7. Isolines of the concentration of lead ϕ(r, t) calculated for t = 1 h, 
t = 2 h, t = 3h and t = 4 h.
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Thus, rate Q1 is constant, rate Q2 is invariable 
during the first hour and then linearly decreases, 
rate Q3 is a periodic function with a two-hour period, 
and rate Q4 is invariable during the first hour and then 
linearly increases. The mean lead concentrations Ji(ϕ) 
calculated in zone Ω with each emission rate Qi (i = 
1,..., 4) are 2.11 µg m–3, 2.02 µg m–3, 1.97 µg m–3 
and 1.81 µg m–3, respectively. In other words, all the 
results are unsatisfactory (Ji(ϕ) > J0 for any i, where 
J0 = 1.5 µg m–3 ). In order to prevent the violation of 
sanitary standards, we apply in all four cases the op-
timal control method (27). Figure 10 shows both the 
original emission rates Q1(t) and the optimal emission 
rates qopti(t) given by the control. As it should be, for 
each i, the mean lead concentration Ji(ϕ) obtained 
with the optimal emission rate qopti(t) coincides with 
norm J0 = 1.5 µg m–3.

In complete agreement with the theory, qopti(t) ≤ 
Qi(t) for all t  (0.4) and 1 ≤ i ≤ 4. Moreover, Figure 
10 shows that for each i, qopti(t) = Qi(t) during the last 
hour (3 ≤ t ≤ 4). It means that the optimal and original 
emission rates coincide to each other during the time 
interval when the value g(r1, t) of the adjoint model 
solution is equal to zero, and due to (15), the source 
emissions do not contribute to the pollution of zone 
Ω. At last, it is interesting to note that in the interval 
0 ≤ t < 3, in which these values do not match, the 
temporal behavior of the optimal emission rate qopti(t) 
is similar to the time behavior of the corresponding 
original rate Qi(t) (i = 1,..., 4). This result is useful 
because it means that the optimal strategy (27) does 
not require radical changes in the operation of an 
industrial enterprise.

7. Cleaning of polluted aquatic zones
The above-mentioned control methods have been 
illustrated with simple examples using two-dimen-
sional dispersion models. However, these methods 
can also be applied to three-dimensional dispersion 
models. We will consider now a three-dimensional 
dispersion model for expanding the application scope 
of pollution control methods to the cleaning of some 
aquatic zones contaminated with biofilm (remedi-
ation) or oil (bioremediation). In these problems, 

Fig. 8. Isolines of the solution of adjoint model g(r, t) for t = 3 h, t = 2 h,  
t = 1 h and t = 0.

Table I. Mean lead concentrations J(ϕ) in Ω.

Emission rate J(ϕ) (µg/m3)

Q 2.11
Q*

1 1.50
Q*

2 1.18
Q*

3 1.50
Q*

4 = 0.3 · Q*
1 + 0.7 · Q*

3 1.50
Q*

5 = 0.5 · Q*
2 + 0.5 · Q*

3 1.34
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Fig. 9. Emission rates obtained with five control strategies (the asterisks in Qi
*(t) are 

omitted).

Fig. 10. Temporal behavior of original emission rates Qi(t) and 
optimal emission rates qopti(t) in four experiments.
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the discharge rate of a source that emits a chemical 
substance to clean water is controlled.

7.1 Dispersion model
The concentration of a chemical substance (hereinafter 
the cleaner) ϕ(r, t) ≡ ϕ(x, y, z, t) in a domain  
(Fig. 11) and time interval (0, T) is estimated with a 
3D dispersion model (Skiba and Parra-Guevara, 2011):

Q t
t
U

 (29)

 (30)

 (31)

 (32)

 (33)

 (34)

 (35)

 (36)

Here U U t  is the current velocity that satisfies 
the continuity equation (36), and µ(r, t) is the turbulent 
diffusion coefficient. In (29), the term σϕ parameterizes 
the decay of a cleaner in the water due to various phys-
ical and chemical processes, term  describes the 
process of sedimentation of the cleaner with constant 
velocity vs > 0, and δ(r– r0) is the Dirac delta centered 

in the point of discharge of cleaner r0. Eq. (31) is the 
boundary condition at free surface ST, where coeffi-
cient ξ(r, t) characterizes the process of evaporation of 
cleaner, and (34) represents the boundary condition at 
bottom SB of domain D. The boundary conditions (32) 
and (33) at the lateral surface are identical to conditions 
(5), and (35) represents the initial distribution of the 
cleaner at t = 0. Note that  is the unit outer normal to 
the boundary ∂D = ST  S+  S–  SB of domain D, and 

 is the unit vector directed upwards in the 
Cartesian coordinate system, besides,

k n S S

U n S S
 (37)

Also note that conditions (31)-(34) take into account 
the topography and free surface of arbitrary form.

It is shown in Skiba and Parra-Guevara (2011) 
that the three-dimensional problem (29)-(36) is well 
posed, that is, its solution exists, is unique and stable 
to perturbations in forcing and initial condition

 (38)

and satisfies the mass balance equation

d Q t d U dS

ndSk k ndS
D D S

t

S

n

 (39)

Since k n S k n S  , the total 
mass of the cleaner increases due to the discharge 
rate Q(t) and decreases due to the chemical trans-
formation, advective flow through S+, evaporation 
and sedimentation. 

7.2 Optimal control of discharge rates
Assume now that there are N polluted zones Ωi 
(i = 1,..., N) in an aquatic system (domain D), and we 
should purify them with the help of a chemical agent 
(Parra-Guevara and Skiba, 2007). Being released at a 
point  (Fig.12), the chemical substance spreads 
due to advection and diffusion, and while reaching 
the zones Ωi , purifies polluted water. The goal is to 
find an optimal position of the source r0, in sense that 
the emission of the cleaning agent in such a point 
will minimize its consumption (that is, will generate 

x
nS+

S+

S+

S+ : Un = 0

r0

Ω1

Ω2

S– : Un < 0

S+ : Un ≥ 0

S –

y

n

n
U

U

U

Fig. 11. View of the domain D from above.
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in the zones Ωi the minimum concentrations of the 
cleaning agent necessary for water purification). In a 
case where the contaminant is fairly stable (biofilm), 
the critical concentration  of an antimicrobial agent 
(chlorine, iodine, etc.) must be maintained in each 
zone Ωi for a long time interval (T – τ, T).

In other words, we have to determine the dis-
charge point r0 and the emission rate Q , which meet 
the following constraints:

J J i N

where ϕ(r, t) is the concentration of a chemical agent 
determined by the model (29)-(36) with the initial 
condition ϕ0(r) ≡ 0, and Ji(ϕ) is its mean concentration 
(14) in Ωi. Furthermore, not to damage the ecology 
of the environment, one should minimize the total 
mass F(Q) of the chemical agent discharged into the 
water. In this connection, the optimal control problem 
is posed as follows:

The analytical and numerical solutions of this 
problem were obtained in Parra-Guevara and Skiba 
(2011):

 (40)

where  is the Gram matrix of order N whose 
entries

are the inner products of adjoint functions, and matrix 
Ψi is obtained from Ψ by replacing its ith column 
with the corresponding components of the vector 
of critical concentrations J J J . Then the 
optimal discharge point r0 is found while minimizing 
the functional.

Example 3. With the aim to demonstrate the skill of 
the method, we now consider a simple example of 
remediation in a three-dimensional channel 120 m 
long [0, 120], 10 m wide [0, 10], and 4 m deep [0, 4], 
H = 4. The following three zones Ωi contaminated 
by biofilms (N = 3) are considered:

The critical concentrations of the cleaning agent 
ci (gm–3) in the zones vary from one experiment to 
another (Table II) and generate different optimal 
discharge rates Qk

* (Fig. 13). The parameters of the 
three-dimensional adjoint model are taken as follows: 
the velocity vector  is horizontally directed along 
the channel and is equal to , ,  
µ = 6 m2h–1, σ = 1 h–1 and the processes of evaporation 
and sedimentation are neglected. The cleaner (chlo-
rine) is discharged at the point r0 = (3, 2.2, 2) during 

Fig. 12. Transversal section of domain D.

Table II. Critical chlorine concentrations in zones Ωi 

(i = 1, 2, 3).

k c1 c2 c3

1 0.8 0.8 0.8
2 1.0 0.8 0.5
3 0.5 1.0 1.5
4 1.2 0.5 1.2
5 0.6 1.2 0.6
6 0.6 0.6 1.5
7 1.5 0.6 0.6
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the total time interval of 4 h: (0, T) ≡ (0, 4), and the 
mean concentration is controlled within the last one-
hour interval (3, 4), i.e., τ = 1 h. 

The adjoint functions gi(r0, t) for the three zones 
(i = 1, 2, 3) are given in Figure 14. For the 7th ex-

periment, the evolution of mean chlorine concentra-
tion in zones Ωi (i = 1, 2, 3) is shown in Figure 15, 
while isolines of the mean chlorine concentration in 
domain D at the final moment T = 4 h are presented 
in Figure 16. The optimal discharge rate applied is 

Fig. 13. Optimal discharge rates qk(t) = Qk(t) / H,   k = 1, 2,...,7.

Fig. 14. Adjoint functions gi(r0, t), i = 1, 2, 3.
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Q7(t). In all experiments, the optimal discharge rate 
was successfully found with (40).

8. Conclusions
In this work, the fluid dynamics is assumed to be 
known, and the problem of dispersion of contami-
nants, governed by the advection-diffusion equation, 
is considered separately from the fluid dynamics. A 
few methods are suggested for estimating the mean 
concentration of pollutants in ecologically sensitive 
zones and preventing their dangerous levels through 
a control of emission rates of sources. The methods 
use the adjoint approach and equivalent direct and 
adjoint estimates of pollution concentration in spe-
cific zones. We use the fact that the adjoint estimates 

depend explicitly on the number, positions and emis-
sion rates of the sources and the initial distribution of 
pollutants in the region, and the solutions of adjoint 
problems serve in such estimates as weight function 
providing valuable information on the contribution 
of each source and initial data into the pollution of 
the zone. These properties make the adjoint estimates 
efficient for studying the model response to variations 
in the emission rates and initial conditions, and for 
developing control strategies. 

Both non-optimal (sufficient) and optimal control 
strategies have been developed. The objective of each 
control strategy consists in preventing the violation 
of existing sanitary standards by means of reducing 
the emission rates of sources. Each control strategy 

Fig. 15. Evolution of mean concentration of cleaner in zones Ωi, i = 1, 2, 3. The optimal 
discharge rate applied is Q7(t).

Fig. 16. Isolines of mean concentration of nutrient in region D at final moment T = 4h. The optimal 
discharge rate applied is Q7(t).
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is designed by using the pollution dispersion model, 
its adjoint model, and taking into account the number 
of sources to control, their locations, initial distribu-
tion of pollutant in the domain, and corresponding 
sanitary standards. The methods are illustrated by 
simple examples. The methods developed for the 
air-quality control are also applied for cleaning a few 
aquatic zones polluted with biofilm (remediation) or 
oil (bioremediation). 
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