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Multivariate delineation of rainfall homogeneous regions for estimating 
quantiles of maximum daily rainfall: A case study of northwestern Mexico
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RESUMEN

La escasez de información en el análisis de frecuencias de lluvias máximas diarias puede generar estima-
dores ineficaces para propósitos de diseño. Una forma de reducir estos errores es la aplicación de técnicas 
regionales, las cuales requieren que las estaciones involucradas pertenezcan a la misma región homogénea. 
En este trabajo se realiza una delimitación de regiones homogéneas de precipitación empleando un método 
multivariado basado en las técnicas de análisis de componentes principales y de agrupamiento jerárquico 
ascendente. La metodología propuesta se aplicó a una región del noroeste de México. Se concluyó que sólo 
se requieren los coeficientes de variación de los momentos-L y de la latitud, longitud y altitud de cada es-
tación climatológica para definir las regiones homogéneas de precipitación, y que la inclusión o exclusión 
de información en las técnicas regionales tiene un impacto directo en la estimación de eventos asociados a 
diferentes periodos de retorno.

ABSTRACT

Lack of data in maximum daily rainfall frequency analysis can generate inefficient estimates for design 
purposes. An approach to diminish these errors is to apply regional estimation techniques, which require 
that all stations be located at the same homogeneous region. In this paper, a delineation of homogeneous 
precipitation regions was made based on the multivariate methods of principal component analysis and hi-
erarchical ascending clustering. A region in northwestern Mexico was selected to apply this methodology. It 
was concluded that only the coefficients of variation of the L-moments, along with latitude, longitude and 
altitude at each climatological station are sufficient to define the homogeneous rainfall regions, and that either 
the inclusion or exclusion of information in the regional techniques has a direct impact on the estimation of 
events associated to different return periods.

Keywords: Homogeneous rainfall regions, principal component analysis, hierarchical ascending clustering, 
regional frequency analysis.

1.	 Introduction
The North American Monsoon System (NAMS) is 
defined as a pronounced increase in rainfall from an 
extremely dry June to a rainy July over large areas 
of the southwestern United States and northwestern 
Mexico (Adams and Comrie, 1997). The occurrence 
of NAMS is associated to atmospheric dynamics 
conditions and topographic characteristics, which 
interact with each other to cause a convective en-
vironment. This phenomenon can generate a high 

potential danger of flooding to residents in the 
country. In order to protect their lives and goods, it 
is very important to have a mathematical tool that 
may reduce the uncertainties in estimating design 
events for different return periods, which are needed 
in many hydraulic studies and projects such as flood 
plain delineation or drainage works in cities. 

In maximum daily rainfall frequency analysis, 
when information exists but not with the length of re-
cord required to provide accurate parameter estimates, 
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the error of the estimated value for some return 
periods can be very large and inefficient for design 
purposes. A way of reducing this error is by applying 
a joint estimation model where information from 
nearby sites in the same region may be combined 
with the record of inadequate length. This approach 
will increase the amount of information and will pro-
vide a regional at-site estimate. An example of these 
regional models is the station-year technique, which 
is used to obtain a regional at-site estimate of the 
maximum daily rainfall for different return periods 
(Cunnane, 1988). These events are necessary to shape 
the intensity-duration-frequency curves (IDF) whose 
intensities i (mm/h) associated to certain duration d 
(h) and return period T (years) are used for designing 
hydraulic works.

The regional analysis correlates hydrological 
variables with the physiographical and climatological 
characteristics. Through these regional relations it is 
also possible to obtain flow estimates in rivers, as it 
can be seen in Wiltshire (1985), Stedinger (1983), 
Gingras and Adamowsky (1993), Burn (1988), 
Robinson (1997), Gutiérrez-López (1996), Escalante 
and Reyes (1998, 2000), Pandey and Nguyen (1999), 
Ouarda et al. (2001), Gómez (2003), Skaugen and 
Vaeringstad (2005), and Ouarda et al. (2008). 

The regional techniques require that the involved 
stations belong to the same homogeneous region. 
Since the inclusion or exclusion of information has a 
direct impact on the estimation of events associated to 
different return periods, adequately establishing that 
such homogeneity is achieved is an essential step to 
reduce the associated uncertainties.

A homogeneous region can be delineated by us-
ing geographical characteristics or statistical tests. 
Some works also have proposed indexes to evaluate 
the uncertainty and applicability of these methods: 
Nouh (1987), Cunnane (1988), Rosbjerg and Madsen 
(1995), GREHYS (1996a, b), Campos (1999), and 
Lin and Chen (2003).

In this work, the delineation of homogeneous 
regions is based on multivariate methods: principal 
component analysis (PCA) and hierarchical ascend-
ing clustering (HAC). 

2.	 Materials and methods
2.1 Principal component analysis
PCA is a multivariate statistical technique highly 
descriptive, which is used to identify patterns on data 

in such a way as to highlight their similarities and 
differences. PCA can reduce the dimensionality of 
the data, transforming the set of r original variables 
or attributes in another set of s uncorrelated vari-
ables called principal components. The r variables 
are measured on each of the m sites. The order of 
the initial matrix of data is mr and it is restricted to 
m > r. After applying the PCA technique, the order of 
the resulting matrix is ms. This reduction of dimen-
sionality is achieved with a little loss of information, 
which is considered non-significant to preserve the 
principal components.

PCA allows using either the correlation matrix or 
the covariance matrix. The first option gives the same 
importance to all and each of the variables. This can 
be convenient when the researcher considers that all 
the variables are equally relevant. The second option 
can be used when all the variables have the same 
units of measure.

The s new variables (principal components) are 
obtained as linear combinations of the r original 
variables. Components are arranged according to 
the percentage of variance that can be explained. 
In this sense, the first component will be the most 
important since it explains the largest percentage 
of the variance of data. Each researcher will decide 
how many components will be elected in the study.

PCA is performed in the space of the r variables 
and, in dual form, in the space of m sites. Variables 
and sites can be graphically represented by consid-
ering the first and second component as coordinate 
axes. A point-variable is represented by the coordi-
nate corresponding to that variable in each of these 
components. The cloud of points-variables is located 
in a circular area of radius 1. The proximity between 
the point-variables indicates the degree of correlation 
between them. When the correlation is equal to one, 
the points coincide.

When the r variables are uncorrelated, r equally 
important components will be obtained. In contrast, 
when all variables have a perfect correlation, a simple 
component is generated. This component is a linear 
combination of the r equally weighted variables and 
explains 100% of the total variation.

The cloud of points-sites is not enclosed in a 
circle of radius 1. A point-site located at the extreme 
of one axis means that such station is closely relat-
ed to the respective component. The opposite case 
indicates that the site has no relation with the two 
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components. Proximity between sites is interpreted 
as similar behavior.

When there are several clouds of points that 
indicate the presence of a sub-population, and since 
the purpose of the study is to detect groups, the PCA 
achieves that aim.

2.2 Hierarchical ascending clustering
Hierarchical clustering is a method for grouping 
clusters, and seeks to build a hierarchy of these. There 
are two types of hierarchical clustering:

a.	 Agglomerative: This is an ascending approach 
where each observation starts in its own cluster, 
and pairs of clusters are merged as one moves up 
the hierarchy.

b.	 Dissociative: This is a descending approach where 
all observations start in one cluster, and splits are 
performed recursively as one moves down the 
hierarchy.

In order to decide which clusters should be com-
bined (for the agglomerative approach), or where a 
cluster should be split (for the dissociative approach), 
a measure of dissimilarity between sets of observa-
tions is required. In most methods of hierarchical 
clustering, this is achieved by using an appropriate 
measure of distance between pairs of observations, 
in addition to a linkage criterion which specifies the 
dissimilarity of sets as a function of the pairwise 
distances of observations in them.

The choice of an appropriate metric will influence 
the shape of the clusters, as some elements may be 
close to one another according to a distance but 
farther away according to another distance. In this 
work the Euclidean distance will be the measure of 
distance between pairs.

If p = (p1, p2,..., ps) and (q1, q2,..., qs) are two points 
in Euclidean m-space with s-attributes (uncorrelated 
variables), the Euclidean distance from p to q is:
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where p1 and q1 could be the average number of days 
with rainfall per year at sites p and q; p2 and q2 could 
be the average annual maximum of daily rainfall at 

sites p and q, and so on. In fact, Eq. (1) represents a 
distance among the different attributes of precipitation 
at two sites and not a physical distance between them. 

The linkage criterion determines the distance 
between sets of observations as a function of the 
pairwise distances between observations. The linkage 
criteria used will be the Ward´s minimum variance 
method. Ward (1963) suggested a general agglom-
erative hierarchical clustering procedure, where the 
criterion for choosing the pair of clusters to merge 
at each step is based on the optimal value of an ob-
jective function. Ward’s criterion minimizes the total 
within-cluster variance. The pair of clusters with 
minimum cluster distance is merged at each step. To 
implement this method, the pair of clusters that leads 
to minimum increase in total within-cluster variance 
after merging is found at each step. This increase is 
a weighted squared distance between cluster centers. 
At the initial step, all clusters contain a single point. 
To apply a recursive algorithm under this objective 
function, the initial distance between individual ob-
jects must be proportional to the squared Euclidean 
distance. 

2.3 Delineation of homogeneous regions
2.3.1 First scenario: Chaos simulation
All available variables are used without any prior 
consideration to build the site-variable matrix, and 
clusters are obtained based on HAC. In this first ap-
proach to grouping it is very common to observe that 
clusters present intersections among them.

2.3.2 Representative simulation
A robust data matrix containing a set of variables with 
a high physical meaning by using HAC is formed. 
PCA is applied to obtain groups of variables associ-
ated with the four quadrants (principal components).

2.3.3 Quadrants simulations (QS)
In this stage, site-variable matrices are formed for 
each quadrant and HAC is applied to each of them.

2.3.4 Fit and testing of sites clusters (F&T)
PCA has to be applied to those variables whose 
quadrants presented the best spatial significance; 
then, groups containing the variables that explain 70 
and 80% of the variance are gathered together. With 
these variables a new set of site-variable matrices is 
formed, which are analyzed with HAC.
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2.3.5 Final groups
This step consists on the identification of optimal 
simulation based on scenarios and ratings from the 
previous phase. The procedure is applied by using:

1.	 Some conventional moments of data (mean and 
standard deviation, among others).

2.	 The L- coefficients of variation.
3.	 The L-coefficients of variation plus the latitude, 

longitude and altitude at each climatological sta-
tion.

2.3.6 Linear moments
L-moments are analogous to conventional moments 
but differ in that they are calculated using linear 
combinations of the ordered data (Hosking, 1990). 

L-moments offer some advantages in comparison 
with conventional moments. As an example consider 
a dataset with a few data points and one outlying data 
value. If the ordinary standard deviation of this data 
set is taken it will be highly influenced by this point; 
however, if the L-scale is taken it will be far less sen-
sitive to this data value. Consequently, L-moments 
are far more meaningful when dealing with outliers in 
data than conventional moments. Another advantage 
of L-moments over conventional moments is that their 
existence only requires the random variable to have 
a finite mean. Therefore, L-moments exist even if the 
higher conventional moments do not exist. L-moments 
are statistical quantiles derived from probability 
weighted moments. The first four L-moments are:

λ1 = β0	 (2)

λ2 = 2β1 – β0	 (3)

λ3 = 6β2 – 6β1 + β0	 (4)

λ4 = 20β3 – 30β2 + 12β1 – β0	 (5)

For a sorted sample x1, x2,..., xn in decreasing order, 
the values of the probability weighted moments β0, 
β1, β2 and β1 can be estimated by:
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Additionally, a set of L-moments ratios or scaled 
L-moments can be defined by:

L – Coefficient of variation	 τ2 = λ2/λ1	 (10)

L – Skewness	 τ3 = λ3/λ2	 (11)

L – Kurtosis	 τ4 = λ4/λ2	 (12)

2.3.7 Reliability of estimated quantiles
Once homogeneity is achieved and regions are de-
fined, it is necessary to show whether or not the re-
gional at-site estimate of the maximum daily rainfall 
for different return periods is more reliable than those 
computed using only a short sample (at-site estimate). 
This reliability can be quantified by several measures 
such as bias, root mean squared error and variance.

Let η be a quantile to be estimated; ωi, i = 1,..., ns 
the estimates obtained from each sample and ns the 
number of samples used in the experiment. Then, 
the bias and root mean squared error (RMSE) of the 
estimator ω may be computed as:

BIAS = m(ω) – η	 (13)

( ) ( )[ ]22 += mSRMSE 	 (14)

where m(ω) and S2(ω) are the mean and variance 
obtained from generated samples:
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When estimating the parameters and quantiles of 
a distribution, it is convenient to have unbiased and 
minimum RMSE estimators. The RMSE involves 
both the variance of the estimator and the squared 
bias.
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3.	 Case study
A region located in northwestern Mexico, with a total 
of 311 climatological stations was selected to apply 

the proposed methodology (Fig. 1). Records of annual 
maxima for daily rainfall were gathered for the period 
1965 to 2006 from the Rapid Extractor of Climatolog-
ical Information version 3 (ERIC-III, by its initials in 
Spanish) database (IMTA, 2012). This period of time 
was selected because we had 88% of the available 
information. The inverse distance weighting (IDW) 
interpolation analysis was chosen for estimating miss-
ing data. The number of stations used and its average 
annual maximum of daily rainfall (AAMDR) by each 
Mexican state are presented in Table I (MXAAMDR 
and MNAAMDR stand for the maximum and mini-
mum value of AAMDR, respectively).

A first step to apply the PCA and HAC multivariate 
methods is the selection of variables to be analyzed. 
In order to achieve this, two sets of data were con-
sidered: The first one containing 11 annual variables 
and the second one consisting of 72 monthly vari-
ables, all of them from precipitation data (Table II). 
With this information a total of 83 variables were de-
fined for each one of the 311 climatological stations. 

Table I. Some characteristics of stations used in the case study.

State Number
of stations

AAMDR
(mm)

MXAAMDR
(mm)

MNAAMDR
(mm)

Chihuahua 52 56.8 109.6 32.7
Durango 17 86.1 136.4 35.0
Sinaloa 82 86.5 152.9 32.7
Sonora 160 64.8 103.8 29.6

115º

25
º

30
º

La
t. 

N

110º
Long. W

115º

Fig. 1. Location of the climatological stations used in the 
case study.

Table II. List of variables used in the delineation process.

Code Description Type 

ANDRY Average number of days with rainfall per year Annual
SDNDRY Standard deviation of the number of days with rainfall per year Annual
CVNDRY Coefficient of variation of the number of days with rainfall per year Annual
AAR Average annual rainfall Annual
VAR Variance of the annual rainfall Annual
SDAR Standard deviation of the annual rainfall Annual
CVAR Coefficient of variation of the annual rainfall Annual
AAMDR Average annual maximum of daily rainfall Annual
CVAMDR Coefficient of variation of the annual maximum of daily rainfall Annual
MA48MR Mean annual 48-hour maximum rainfall Annual
CVA48MR Coefficient of variation of the annual 48-hour maximum rainfall Annual
AMR# Average monthly rainfall for each month Monthly
SDMR# Standard deviation of the monthly rainfall for each month Monthly
MDR# Maximum daily rainfall for each month Monthly
AMDR# Average monthly of daily rainfall for each month Monthly
CVMDR# Coefficient of variation of maximum daily rainfall for each month Monthly
ANDR# Average number of days with rainfall for each month Monthly

# stands for 1 to 12 months (January,..., December).
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So, the first matrix of this analysis has 311 sites with 
83 variables. 

3.1 Chaos simulation
Using the 311 sites-83 variables matrix, clusters are 
obtained based on HAC. The behavior of the spatial 
distribution of the three groups of stations (A, B, and 
C) showed a high intersection among them (Fig. 2). 
These results led to the next stage of the study.

3.2 Representative simulation
In this stage it is necessary to create a matrix contain-
ing a set of 42 variables with high physical meaning 
at 311 sites. The variables are presented in the column 
tagged as “Representative” (Table III). 

Before the HAC analysis, a correlation analysis 
is applied to identify variables with a high degree of 
interdependence that could be eliminated. However, 
no variable was really inadequate, so this matrix was 
kept. The HAC analysis defined three regions that also 
presented intersections (Fig. 3). It was not possible to 
obtain a good independence among the three regions, 
so a new combination of variables was proposed. 

3.3 Quadrants simulations: Scenarios QS1, QS2, 
and QS3
After PCA was applied to the 311 × 42 matrix, it 
was concluded that the first component explains 
38.61% of the population variance and the second one 
16.32%. According to Figure 4, only a site-variable 
matrix could be constructed for the first, second, 
and third quadrant. It was not possible to construct 
the fourth quadrant because there was only one 
variable available. The variables created for dry 
season months fell into the first quadrant (QS1); 
the variables in the second quadrant (QS2) mostly 
correspond to rainy season months, and finally the 
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Fig. 2. Regional distribution based on the first scenario 
(chaos).

Table III. List of variables used in each scenario of simulation.

Simulation scenarios

Chaos Representative QS1 QS2 QS3

ANDRY ANDRY ANDRY AAR CVNDRY
SDNDRY SDNDRY SDNDRY SDAR CVAR
CVNDRY CVNDRY AMR1 AMR7 CVMDR1
AAR AAR AMR2 AMR8 CVMDR2
VAR SDAR AMR3 AMR9 CVMDR3
SDAR CVAR AMR4 AMR10 CVMDR4
CVAR AMR# AMR5 AMR11 CVMDR5
AAMDR SDMR# AMR6 SDMR1 CVMDR6
CVAMDR CVDR# AMR12 SDMR6 CVMDR7
MA48MR SDMR2 SDMR7 CVMDR8
CVA48MR SDMR3 SDMR8 CVMDR9
AMR# SDMR4 SDMR9 CVMDR10
SDMR# SDMR5 SDMR10 CVMDR11
MDR# SDMR12 SDMR11 CVMDR12
AMDR#
CVMDR#
ANDR#

# stands for 1 to 12 months (January,..., December).
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third quadrant (QS3) comprises the coefficients of 
variation (Table III).

Once the site-variable matrices are constructed 
for each quadrant, the HAC procedure is applied 
for each of them. The resulting clusters are shown 
in Figures 5-7.

The groups obtained for the first (QS1) and sec-
ond (QS2) quadrants do not have a defined pattern, 
because stations still continue to present some inter-
sections among clusters (Figs. 5 and 6).  

A better definition of clustering is achieved with 
a simulation process in the third quadrant (QS3). 
Intersections among groups significantly decreased 
(Fig. 7). Group A is located in the strip along the 
coast, with a short penetration inland and bounded 
by an imaginary line 40 km inland, meaning this is 
a coastal region. Group C corresponds to a mountain 
region; meanwhile group B is located in the central 
belt between groups A and C. These variables were 
considered for the last part of the study.

3. 4. Fit and testing of clusters of individuals (F&T)
PCA was applied to variables from the third quad-
rant, which explained 70% of the variance. With this 
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Fig. 3. Regional distribution based on the second scenario 
(representative).
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Fig. 5. Clusters obtained based on the quadrant simulation 
process QS1.
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Fig. 6. Clusters obtained based on the quadrant simulation 
process QS2.
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information a new site-variable matrix was created. 
This matrix is analyzed with HAC. Results (Fig. 8) 
show that groups A (coastal region) and C (mountain 
region) are stabilized; however, region B was divided 
into two parts (regions B and D).

3.5 Final groups
This phase of the study was conducted in order to 
achieve the optimization of homogeneous regions. 
Until this point, it was observed that the most important 
variables to define a homogeneous region were CVN-
DRY, CVAR and CVMDR#. In order to improve the 

simulation process, these coefficients were substituted 
by the L-coefficients of variation (L-cv) obtained by 
using Eq. (10). In this step some intersections among 
regions can be found (Fig. 9), however the formed 
clusters present a better definition than the F&T case. 

Finally, the geographical characteristics of lati-
tude, longitude and altitude of each climatological 
station are added to the L-cv values from the former 
step. With this group of variables a new matrix is 
formed. The HAC analysis generated three well-de-
fined clusters. A very important result was the 
migration of stations from the middle zone to the 
coastal region. So, group A would be located in the 
strip along the coast, bounded by an imaginary line 
120 km inland. Group C corresponds to a mountain 
region; meanwhile, the middle zone was narrowed 
within both regions but extended along them. Figures 
10 and 11 present the dendogram and clusters of the 
final simulation process.

3.6 Comparison of k independent samples
Some statistical tests can be used to show the in-
dependency of the chosen groups. For instance, 
Kruskal-Wallis test is used to find if k samples come 
from the same population or populations with iden-
tical properties as regards a position parameter. If 
Mi (median) is the position parameter for sample i, 
the null H0 and alternative Ha hypotheses for the test 
are as follows:
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Fig. 7. Clusters obtained based on the quadrant simulation 
process QS3.
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H0: M1 = M2 = … = Mk

Ha:  there is at least one pair (i, j) such that Mi ≠ Mj

Calculation of the K statistic from the Krus-
kal-Wallis test involves the rank of observations 
once the k samples or groups have been mixed. K 
is defined by:
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where ni is the size of sample i, N is the sum of ni 
variables, and Ri is the sum of the ranks for sample i. 
The distribution of the K statistic can be approximat-
ed by a chi-square distribution with (k-1) degrees of 

freedom. In this case, into each of the three groups 
only the average of the L-cv involved is considered 
to apply the Kruskal-Wallis test (Table IV). Results 
are presented in tables V and VI.

As K > Kc, then H0 is rejected and the three re-
gions can be considered independent from each other.

3.7 Comparison between at-site and regional at-site 
estimates of quantiles
Once homogeneity is achieved and regions are 
defined, it is necessary to show the effects of the 
inclusion or exclusion of information in the regional 
analysis. For this purpose, at-site and regional at-site 
estimates of the maximum daily rainfall for different 
return periods were obtained for the illustrative case 
of station number 25 036 (Fig. 12). For this station, 
the annual maxima of daily rainfall for the period 
from 1965 to 2006 were collected.

The reliability of these estimates was quantified by 
obtaining the RMSE values, following this procedure:
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Fig. 11. Clusters obtained based on the final simulation 
process (geo-L-cv).

Table IV. Average of the L-cv for each final cluster.

Cluster A Cluster B Cluster C

0.407 0.407 0.407
0.377 0.377 0.430

. . .

. . .
0.530 0.397 0.438
0.476 0.402 0.416

. . .
0.512 0.489 0.415
0.573 0.543 0.438

. . .

. . .

Table V. Statistical characteristics of the three clusters.

Cluster ni Minimum Maximum Mean Deviation

A 169 0.38 1.08 0.53 0.07
B 74 0.37 0.62 0.47 0.05
C 68 0.36 0.55 0.44 0.04

Table VI. Kruskal-Wallis test (observed and tabulated).

K 98.60
Kc 5.99
Degrees of freedom 2
p-value < 0.0001
Alpha 0.05
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Case 1. The at-site estimates of the maximum 
daily rainfall for return periods of 2-, 5-, 10-, 20-, 
50- and 100-years are obtained by fitting the data 
to the normal (N), two-parameter lognormal (LN2), 
three-parameter lognormal (LN3), two-parameter 
gamma (GM2), three-parameter gamma (GM3), 
log-Pearson type 3 (LP3), Gumbel (G), and mixed 
Gumbel (MXG) distributions. The parameter estima-
tion methods are moments (M), maximum likelihood 
(ML), L-moments (LM), maximum entropy (ME) 
and probability weighted moments (PWM). The best 
fit is selected according to the criterion of minimum 
standard error of fit (SEF), as defined by Kite (1988):
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+=
=

N
n
R

N-N
K

k

i i

i∑ 	 (18)

where gi, i = 1,..., n are the recorded events; hi, 
i = 1,..., n are the event magnitudes computed from 
the probability distribution at probabilities obtained 
from the sorted ranks of gi, i = 1,..., n; mp is the 
number of parameters estimated for the distribution, 
and n is the length of record.

For this sample, the minimum value of SEF was 
obtained by fitting the MXG (ML) distribution. The 
maximum daily rainfall for each return period is 
presented in Table VII. These values are considered 
as the “true values” for long samples “η” in Eqs. (13) 
and (14).

Case 2. The at-site estimates of the maximum 
daily rainfall for station number 25 036 are obtained 

by considering a set of 33 sub-samples of length n 
= 10 years (short samples). So, the record of annual 
maximum of daily rainfall for the periods 1965-1974, 
1966-1975,..., and 1997-2006 are grouped. For each 
of them, at-site estimates of maximum daily rainfall 
are obtained by fitting the same distributions of the 
former case. These values are considered as the 
“estimated values” for short samples ω. The corre-
sponding RMSE values are presented in Table VIII.

Case 3. In the samples of case 2, differences 
among estimates “ω” can be considered very large. 
In order to improve them, it is possible to form a 
station-year record by adding information of stations 
belonging to the same homogeneous region. Again, 
as an illustrative case, only three neighboring stations 
are added to each of the 33 sub-samples of case 2. 
These stations are numbers 10 064, 10 081 and 25 
047 (region B from Fig. 11). As already mentioned, 
each station has 42 years of available information 
(1965-2006), so the station-year records are formed 
by 136 values of annual maximum daily rainfall. 
These 33 station-year records are fitted to different 
distributions and regional at-site estimates of max-
imum daily rainfall are obtained. These values are 
considered as “regional estimates” for short samples 
with the inclusion of information coming from the 
same homogeneous region ω. The corresponding 
RMSE values are presented in Table IX.

Case 4. As it can be seen in Table VIII, a substan-
tial gain is achieved by including some additional 
information to short samples. Additional information 
of stations 10 042 and 10 160 was added to each of 
the 33 station-year samples from case 3. These sta-
tions are located in a different homogeneous region 
(region C from Fig. 11). Each sample has a set of 220 
values and after a frequency analysis the estimates of 
maximum daily rainfall were obtained. These values 
are considered as “regional estimates” for short sam-
ples with the inclusion of information coming from 
the same homogeneous region and from a different 

Table VII. Maximum of daily rainfall h (mm) for different 
return periods at station number 25 036.

T (years)

2 5 10 20 50 100

113 172 220 281 397 501
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Fig. 12. Station used in the stage of reliability of estimated 
quantiles.
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homogeneous region ω. The corresponding RMSE 
values are presented in Table X.

Results indicate that there is a reduction in RMSE 
values when estimating the quantiles of a short sam-
ple (n = 10 years, case 2), taking into account the 
information from additional climatological stations 

coming from the same homogeneous region (case 
3). However, when information belongs to different 
regions, RMSE values increase (case 4).

4.	 Conclusions
The delineation of homogeneous regions is based on 

Table VIII. Maximum daily rainfall ω (mm) and RMSE for each of 33 sub-samples 
at station number 25 036 (case 2).

Period
T (years)

2 5 10 20 50 100

1965 1974 150 203 230 253 278 295
1966 1975 155 204 229 250 274 290
1967 1976 153 200 224 244 267 282
1968 1977 151 197 222 242 265 280
1969 1978 154 201 225 245 268 283
1970 1979 149 201 228 251 276 293
1971 1980 159 203 226 245 266 280
1972 1981 161 203 224 242 262 276
1973 1982 151 186 203 218 235 246
1974 1983 151 185 203 218 235 246
1975 1984 131 174 196 214 235 249
1976 1985 123 258 381 525 752 957
1977 1986 119 247 362 497 709 898
1978 1987 116 242 355 486 694 879
1979 1988 108 224 329 452 646 819
1980 1989 113 232 339 463 658 831
1981 1990 107 219 318 433 613 773
1982 1991 102 209 304 414 586 739
1983 1992 91 191 282 389 558 709
1984 1993 100 230 356 511 766 1004
1985 1994 113 241 334 428 553 648
1986 1995 86 185 259 333 431 507
1987 1996 77 176 251 328 430 510
1988 1997 80 179 254 330 432 510
1989 1998 87 186 260 334 432 507
1990 1999 85 184 258 333 432 508
1991 2000 87 186 260 334 432 507
1992 2001 83 183 258 334 435 513
1993 2002 92 190 262 334 429 501
1994 2003 90 118 132 144 158 166
1995 2004 99 124 138 149 161 170
1996 2005 107 130 142 152 163 171
1997 2006 106 130 144 154 166 175

m(w) 116 195 254 318 409 486
h 113 172 220 281 397 501

S(w) 28 34 67 112 189 260
RMSE 28 41 75 118 190 261
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multivariate methods: principal component analysis 
(PCA) and hierarchical ascending clustering (HAC)

A delineation procedure of rainfall homogeneous 
regions based on the multivariate methods of princi-
pal component analysis and hierarchical ascending 
clustering was presented. A region in northwestern 
Mexico was selected to apply this methodology. 

The indiscriminate use of a large set of variables 
does not secure a robust result in cluster analysis. 
This study showed that the most important variables 

to define a rainfall homogeneous region were the 
coefficients of variation for series of number of days 
with rainfall per year, annual rainfall, and maximum 
daily rainfall for each month, which can be used as 
initial variables.

When coefficients of variation were substituted 
by their corresponding L-moments versions and 
the geographical characteristics were included into 
simulation, the HAC analysis allowed to obtain 
homogeneous regions that effectively preserve me-

Table IX. Maximum daily rainfall ω (mm) and RMSE for each of the 33 station-year 
samples at station number 25 036 (case 3).

Period
T (years)

2 5 10 20 50 100

1965 1974 119 185 248 404 538 615
1966 1975 123 193 265 383 567 698
1967 1976 122 189 254 412 557 640
1968 1977 120 186 249 407 533 606
1969 1978 122 189 255 414 563 650
1970 1979 118 191 267 372 516 620
1971 1980 127 196 264 430 567 646
1972 1981 131 203 273 426 585 680
1973 1982 120 188 257 381 570 700
1974 1983 120 188 257 380 569 699
1975 1984 104 165 225 327 489 602
1976 1985 124 198 276 404 588 718
1977 1986 120 191 267 398 578 701
1978 1987 117 187 263 392 568 689
1979 1988 110 176 248 367 533 649
1980 1989 114 182 256 375 545 665
1981 1990 109 174 245 363 529 645
1982 1991 104 166 235 350 510 621
1983 1992 96 155 218 324 473 578
1984 1993 114 187 274 403 566 682
1985 1994 118 186 273 441 564 643
1986 1995 89 142 204 312 455 556
1987 1996 85 132 184 318 413 470
1988 1997 86 137 195 308 441 530
1989 1998 91 143 203 331 463 547
1990 1999 90 141 202 321 457 545
1991 2000 89 142 198 267 357 422
1992 2001 89 139 195 329 445 517
1993 2002 94 148 209 339 475 562
1994 2003 73 112 152 244 337 391
1995 2004 77 129 175 231 323 411
1996 2005 85 133 180 268 394 477
1997 2006 84 130 176 281 396 464

m(w) 106 167 232 355 499 595
h 113 172 220 281 397 501

S(w) 17 26 36 56 77 93
RMSE 18 27 38 92 128 132



59Multivariate delineation of rainfall regions: A study case of northwestern Mexico

teorological and orographic relationship (physical 
representation). So, three regions were settled, the 
first one from 0 to 500 masl, the second from 500 to 
1500 masl, and the last one over 1500 masl.

 The Kruskal-Wallis test was applied to prove that 
the chosen clusters are independent from each other, 
and they can be considered as different homogeneous 
regions.

Data-based results indicate that the inclusion or 
exclusion of information in the regional techniques 
has a direct impact on the estimation of maximum 

daily rainfall associated to different return periods. 
These differences could increase either the costs 
of hydraulic works or the risk of flooding, both of 
which affect people and their properties. Thus, it 
is very important to make a correct delineation of 
homogeneous regions.
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Table X. Maximum daily rainfall ω (mm) and RMSE for each of the 33 station-year 
samples at station number 25036 (case 4).

Period
T (years)

2 5 10 20 50 100

1965 1974 115 181 253 392 598 742
1966 1975 118 184 260 463 623 722
1967 1976 115 180 255 428 671 836
1968 1977 113 178 252 401 617 767
1969 1978 116 182 257 410 628 780
1970 1979 112 176 249 397 610 758
1971 1980 121 188 263 473 654 765
1972 1981 121 191 269 429 660 820
1973 1982 114 179 253 405 624 775
1974 1983 114 180 254 411 632 785
1975 1984 99 155 220 355 548 680
1976 1985 119 188 262 407 632 788
1977 1986 115 184 271 425 622 761
1978 1987 111 176 253 411 624 772
1979 1988 106 167 244 434 588 686
1980 1989 108 171 247 399 604 747
1981 1990 103 165 236 377 571 706
1982 1991 99 158 227 367 557 689
1983 1992 93 146 212 382 513 595
1984 1993 111 176 255 411 622 770
1985 1994 112 181 266 400 576 700
1986 1995 86 138 205 310 446 542
1987 1996 81 129 187 292 430 528
1988 1997 83 131 190 298 442 543
1989 1998 87 138 199 313 464 571
1990 1999 86 137 197 309 458 563
1991 2000 87 138 199 312 463 570
1992 2001 85 135 195 299 438 537
1993 2002 90 143 204 307 447 547
1994 2003 67 106 153 235 345 423
1995 2004 75 116 162 294 407 477
1996 2005 80 126 178 284 438 545
1997 2006 79 125 176 283 436 542

m(w) 101 159 227 367 545 668
h 113 172 220 281 397 501

S(w) 16 25 35 61 92 115
RMSE 20 28 38 106 174 203
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