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RESUMEN

Se analiza la asociación de corto plazo entre emisiones de PM10 y la mortalidad diaria por causas cardiovas-
culares, respiratorias y cardiorrespiratorias en siete municipios del Área Metropolitana del Valle de México 
(2001-2013) mediante el uso de un modelo de regresión Poisson semiparamétrico e incorporando splines 
cúbicos naturales para la temperatura. Los resultados muestran evidencia de que la evaluación de la esta-
cionalidad, junto con la variabilidad de la temperatura, es importante para comprender la relación entre la 
contaminación del aire y los eventos de mortalidad. Además, nuestros hallazgos apoyan el umbral de PM10 
propuesto por la Organización Mundial de la Salud dentro de los municipios evaluados. Se pudo identificar 
la asociación entre los efectos de la contaminación del aire y la mortalidad. Por último, demostramos que 
existen diferencias geográficas que modelan la relación entre los contaminantes atmosféricos y la mortalidad 
para los modelos con y sin rezagos. Nuestros hallazgos sugieren la necesidad de impulsar políticas de salud 
pública que consideren la dinámica y la variabilidad geográfica de los contaminantes para mitigar sus efectos 
nocivos sobre la salud y realizar un mejor manejo del riesgo de mortalidad. 

ABSTRACT

We utilize a time-series semi-parametric Poisson regression approach, incorporating natural cubic splines for 
temperature, to study the short-term associations between PM10 and daily mortality due to cardiovascular, 
respiratory, and cardiorespiratory events for seven municipalities in Mexico City Metropolitan Area (2001-
2013). Our results demonstrate that assessing seasonality, along with temperature variability, is vital in un-
derstanding the relationship between air pollution and mortality events. Additionally, our findings support the 
World Health Organization’s morbidity and mortality threshold for PM10 within the assessed municipalities. 
We were able to identify associations between different meteorological seasons and air pollutions effects 
on mortality. Lastly, we demonstrate that geographical differences are modulating the relationship between 
air pollutants and mortality for models with and without distributed lagged. Our findings highlight the need 
for policy-driven approaches that take into consideration the dynamics of meteorological influences and 
geographic variability in terms of mitigating future deleterious health impacts of air pollutants in facilitating 
mortality risk.
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1.	 Introduction
There has been growing interest in many geographic 
locations, covering at least five continents, in demon-
strating the associations between particulate matter 
(PM) and premature mortality. For instance, PM has 
been correlated with several adverse health effects, 
including but not limited to increased number of hos-
pital admissions and/or emergency department visits, 
adverse respiratory symptomatology, and increased 
aggravation of chronic diseases in cardiovascular and 
respiratory systems. 

Although research has been vast in terms of 
geographic coverage in assessing the deleterious 
health effects of PM, most studies to date have been 
conducted in developed countries, namely United 
States, Canada, and Europe. All of these studies have 
demonstrated the negative effect of air pollution 
on population-level health. Relatively few studies, 
however, are carried out in the context of developing 
countries such as Mexico, which includes the largest 
and most polluted metropolitan area in the Western 
Hemisphere. Furthermore, the lack of sufficient air 
pollution data to investigate the deleterious impacts 
of air pollution on the health of a particular popula-
tion has been a continuous concern, particularly in 
the context of developing nations (Gutiérrez, 2010; 
Jayachandran, 2009; Arceo et al., 2016). 

This research fills the aforementioned gaps within 
the literature by deploying a time-series semi-para-
metric Poisson regression approach to study the 
short-term associations between PM10 (particles with 
diameters that are generally 10 µg/m3 and smaller) 
and daily mortality due to cardiovascular complica-
tions, or respiratory disease for seven municipalities: 
Iztapalapa, Álvaro Obregón, Venustiano Carranza, 
Tlalnepantla de Baz, Xochimilco, Coacalco de Ber-
riozábal, and Ecatepec de Morelos in Mexico City 
Metropolitan Area (2001-2013). We utilize natural 
cubic splines to control for season, temperature, and 
PM10 variations and consider other pollutants that 
could affect the daily mortality count. This study is 
the first to employ the multiple imputations technique 
to address missing data within air pollution and 
mortality data, and to create an adequate dataset. We 
find that there is a strong association between mor-
tality events and increased levels of PM10 and that 
different municipalities experience different levels 
of increased risk of mortality due to air pollution 

in different seasons of the year. Lastly, our results 
support the World Health Organization’s threshold 
of 150-155 µg/m3 for PM10, in which surpassing this 
level of PM10 results in a higher risk of mortality 
within the assessed municipalities. 

The remainder of the paper is organized as fol-
lows: sections 2 and 3 present a literature review and 
the study area, respectively; section 4 describes the 
municipalities and pollution stations, data, analytic 
methods, and multiple imputation approach; in sec-
tion 5, we discuss the regression results. The paper 
concludes with a discussion of results in section 6.

2.	 Literature review
Recent estimates suggest that air pollution disease 
burden is substantial. Many time-series studies of 
hazardous chemicals associated with PM have been 
performed to observe the short-term effect of air 
pollution on the health of individuals. Much of this 
research has focused on the adverse effects of air 
pollution on respiratory function and its correlated 
cardiovascular function (e.g., Romieu et al., 2012). 
Researchers have also explored long-term effects, 
focusing on evaluating cumulative exposure to air 
pollution and the resultant chronic mortality and 
morbidity (e.g., Beelen et al., 2014). Lim et al. 
(2013) studied the mortality count due to air pollu-
tion worldwide and found that “exposure to PM2.5 
contributed 3.2 million premature deaths worldwide 
in 2010, [mainly] due to cardiovascular disease, and 
223 000 deaths from lung cancer”. Studies have also 
broken down the association between air pollution 
and premature mortality by age of the cohort: infant 
(e.g., Hajat et al., 2007), children (e.g., Gouveia et 
al., 2018), adult (e.g., Osmond and Barker, 2000), 
elderly (e.g., Kampa and Castanas, 2008), and/or 
general public (Wang et al., 2017), all of which have 
found positive association. 

In the North American context, Mexico has ex-
perienced high impacts of air pollution, especially in 
its very populous Mexico City Metropolitan Area. 
Using a time-series approach, Loomis et al. (1999) 
evaluated the association between high levels of fine 
particles and infant mortality. The authors identi-
fied a positive relationship between fine particulate 
concentrations and infant mortality in Mexico City. 
Furthermore, Holguín et al. (2003) identified that 
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ambient levels of PM, as well as ozone, are linked 
to reductions in high-frequency aspects of heart 
rate variability in elderly residents of Mexico City. 
Romero-Lankao et al. (2013) found that health risks 
associated with atmospheric conditions and pollut-
ants (e.g., PM) existed without boundaries or social 
conditions in three large cities in Latin American (Bo-
gotá, Mexico City and Santiago). Similarly, Gouveia 
et al. (2018) investigated the impact of PM10 on the 
risk of childhood mortality due to respiratory diseases 
in four large Latin American urban centers (Mexico 
City, Santiago, Sao Paulo and Rio de Janeiro). These 
authors found that a 10 µg m–3 increase in PM10 
can increase the risk of childhood mortality due to 
respiratory diseases by 0.47% to 1.38%. 

A variety of modeling methods have been used to 
assess the adverse effect of air pollution on morbidity 
and mortality. These include the Poisson regression 
of ecological data (e.g., Wong et al., 2002), autore-
gressive Poisson models (e.g., Le Tertre et al., 2002), 
log-linear regression models (e.g., Samet et al., 2000), 
analysis of time series data (e.g., Katsouyanni et al., 
1997), and fixed effects models (e.g., Arceo et al., 
2016) have been utilized. These studies examine 
different pollutants, including particulates (PM10 or 
PM2.5) (e.g., Harrison et al., 1997), ozone (O3) (e.g., 

White et al., 1994), sulfur dioxide (e.g. Katsouyanni 
et al., 1997), nitrogen dioxide (NO2) (e.g., Linaker et 
al., 2000), or a mix of these pollutants (e.g., Barnett 
et al., 2005).

3.	Study area: the Mexico City Metropolitan Area
The Mexico City Metropolitan Area (MCMA) is 
located in the Valley of Mexico (Fig. 1). The MCMA 
area is massive in terms of geographic coverage, 
including an area of approximately 1500 km2 at an 
elevation of 2240 m. The basin of the MCMA is 
surrounded by mountains on three of its four borders, 
with an average height of 1000 m above the floor of 
the valley. The MCMA has a population of more than 
21 million people (UN, 2016) with six million cars in 
circulation (Barcelay, 2007) and expands over three 
states (Mexico City, the states of Mexico and Hidal-
go). It comprises the 16 municipalities of Mexico 
City, 59 municipalities of the state of Mexico, and one 
municipality in the state of Hidalgo. More than 20% 
of Mexico’s entire population lives in the MCMA, 
and more than 30% of the country’s industrial output 
is produced within its environs.

The climate is dry, with moderate year-round 
temperatures and winds primarily from the northwest 

Hidalgo
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Fig. 1. Mexico City Metropolitan Area. 
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and northeast. There are distinct seasons throughout 
the year with it being warm from March to April, cold 
from November to February, and rainy from May to 
October. Warm and cold seasons contain dry months, 
exacerbated by shorter days and morning temperature 
inversions that are common and drastic (Vega et al., 
2003). Prolonged bouts of smog remain over the 
city much of the year, and thermal inversions occur 
during the winter, which keeps polluted air close to 
the ground (Barcelay, 2007). In each season, Mex-
ican standards for O3 and PM10 are often surpassed 
throughout the year.

These demographic and economic factors, along 
with topographic and meteorological characteristics, 
provide a foundation for the MCMA being among the 
most polluted urban areas worldwide. Luck (2008) 
ranked Mexico City in the top five world’s dirtiest 
and most polluted cities. This is the result of industrial 
and automobile emissions that affect air quality, by 
generating higher levels of sulfur dioxide, nitrogen 
oxide, carbon monoxide, fine particulate matter, and 
other organic compounds like benzene. In 2013, 
ozone levels in the MCMA failed to meet WHO 
standards 300 days of the year (Rodríguez-Sánchez, 
2014). Such poor air pollution levels not only can 
exacerbate health illness for the most vulnerable, 
and those suffering from chronic diseases, but can 
also contribute to the development of illness in other 
persons. These can combine to have a significant 
impact on economic productivity along with other 
components of the country’s economy. For example, 
health-related problems caused by PM take away 
more than 2.5 million working days from the MC-
MA’s residents per year (Barcelay, 2007). 

The current research seeks to study the effects 
of climate conditions and air quality on health, with 

specific inclusion of seasonal conditions. A seasonal 
approach to studying these environmental conditions 
allows a more meaningful measurement of the impact 
of emissions on both social conditions and mortality. 
Highlighting the various nuances of seasonal chang-
es in this region of Mexico will add to the received 
literature regarding human influence on the health of 
the environment and climate change.

4.	 Methodology
We focused on seven municipalities within the 
MCMA to assess air pollution, temperature, and sea-
sonality’s impacts on premature mortality. While this 
is not a representative sample of all municipalities 
in the MCMA, we selected them based upon their 
ability to represent large segments of the metropolitan 
area geographically. The identification of these seven 
municipalities was also shaped by data availability. 
Using this micro-level approach to understanding 
air pollution’s deleterious effects on health (e.g., 
mortality), we can produce a policy-relevant under-
standing of important factors for future mitigation 
of air pollution in the MCMA. Lastly, as previously 
identified, the MCMA still grapples with high levels 
of air pollution which pose as a serious threat to popu-
lation-level health dynamics, warranting considerable 
empirical attention.

5.	 Municipalities and pollution stations
The municipalities utilized within our study include 
Iztapalapa (IZT), Álvaro Obregón (AOB), Venus-
tiano Carranza (VCA), Tlalnepantla de Baz (TDB), 
Xochimilco (XOC), Coacalco de Berriozábal (CDB), 
and Ecatepec de Morelos (ECA) (see Fig. 1). Table I 

Table I. Municipalities and sites utilized in this study.

Municipality Municipality 
Abbreviation

Location Site Name Population 
(2010)

Iztapalapa IZT Southeast UAM Iztapalapa 1 815 786
Álvaro Obregón AOB Southwest Pedregal 727 034
Venustiano Carranza VCA Center Merced 430 978
Ecatepec de Morelos ECA Northeast Los Laureles 1 656 107
Tlanepantla de Baz TDB Northwest Tlalnepantla 664 225
Xochimilco XOC Southeast Tláhuac 415 007
Coacalco de Berriozábal CDB Northeast Villa de las Flores 278 064
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describes the air pollution sites included in the cur-
rent study. IZT and XOC are located in the southeast 
portion of the MCMA with populations in 2010 of 1 
815 786 and 415 007, respectively. ECA and CDB are 
also located in the northeast portion of the MCMA, 
with populations in 2010 of 1 656 107 and 278 064, 
respectively. The remaining sites are located in the 
southwest (AOB), center (VCA), and northwest 
(TDB) of the metropolitan area. Populations within 
these municipalities ranged from 727 034 (AOB), to 
664 225 (TDB), and 430 978 (VCA), respectively 
(see Fig. 2).

Each municipality has two monitoring stations 
that measure PM10 and two monitors that measure 
temperature, except TDB, which has one monitor for 
each of PM10 and temperature measurements. These 
monitors operate 24 h, 365 days a year. The mean 
daily values for PM10 and temperature are used in the 
current analysis. Lastly, we picked stations at each 
corner of the MCMA.

6.	 Data
To analyze the relationship between PM10 and mor-
tality in the seven municipalities of the MCMA, we 
collected, validated, and assessed air pollution, mor-
tality, seasonality, and temperature data. Following 
Romero-Lankao et al. (2013), we utilized daily mean 
temperature data from the meteorological stations 
within each municipality. Finding pollution data 
in developing countries can be a challenge. Often, 
they are either absent completely or fraught with 
quality and design challenges. However, for our 
paper, we addressed these challenges by using the 
Red Automática de Monitoreo Atmosférico (Auto-
matic Atmospheric Monitoring Network, RAMA) 
dataset. Measures are available for particulate matter 
under 10 µm (PM2.5 data were notoriously absent 
for most of the municipalities in our study, thus we 
did not impute the missing PM2.5 data), O3 (parts 
per billion), and NO2 (parts per billion). These data 
are gathered from 37 stations located all over the 
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Fig. 2. Air pollution stations in the Mexico City Metropolitan Area.
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MCMA and recorded hourly, every day of the year. 
Pollution and temperature data for each municipality 
are pulled out from the data set due to the fact that 
other stations either do not have data regarding the 
period of interest (2001-2013) or data are notoriously 
absent to the degree that we do not feel comfortable 
imputing the missing data by the means of multiple 
imputation (MI) methods.

Daily mortality data due to respiratory, cardiovas-
cular, and non-accidental causes ranging from Janu-
ary 1, 2001 to December 31, 2013 are collected from 
the Mexico’s Department of Health. The daily mor-
tality count data are complete throughout the study 
period, not requiring MI on this data set. We exclude 
the deaths of the MCMA residents from accidents and 
those that happened outside the metropolitan area. 
In order to capture seasonality, we utilized a spline 
function applied to the data within each municipali-
ty. To derive the spline functions, we utilized seven 
knots per year, which is a common choice for daily 
mortality data (Bhaskaran et al., 2013).

7.	 Analytic methods
Using multiple analytic methods, we explored the 
impact of air pollution, temperature change, and 
seasonality on the risk of mortality within these 
seven municipalities. To achieve this, we applied a 
time-series approach, which facilitated our ability to 
adequately estimate associations between short-term 
changes in both air pollution and the mortality count. 
Hence, the data include daily counts of mortality, 
concentrations of PM10 and other pollutants, and 
daily temperature for each municipality. We utilized 
regression models to assess short-term effects from 
time-series studies, in which our air pollutant variable 
of interest (PM10) is included as a lagged effect in the 
model. 	

There are several statistical issues in the related 
literature concerning short-term estimations generat-
ed from the analysis of time-series data. As described 
by Bell et al. (2004), these include: (1) controlling 
for confounding factors that may impact association 
between pollution and health (e.g., season, tempera-
ture), (2) in the residuals, taking into account serial 
correlations that might underrate uncertainty of the 
estimated risk, (3) selecting the exposure variable 
lag, (4) accounting for measurement error related to 

exposure, and (5) assessing and reporting uncertainty 
related to the statistical model itself.

To address these concerns in our estimation, we 
include potential confounders, such as temperature 
and other pollutants (O3 and NO2). Personal variables, 
which may include smoking history, income, occu-
pational pollution exposure, medical care accessibil-
ity, and age distribution, are not likely to confound 
time-series studies because these maintain relative 
consistency over time within a given geographical 
region (Bell et al., 2004; Cropper et al., 1997). More-
over, short-term fluctuations are also controlled using 
an indicator variable for the days of the week and 
time trend. Additionally, we deployed smoothing and 
semiparametric approaches, complementing distrib-
uted lag models, as detailed in Schwartz et al. (1996) 
and following Bell et al. (2004). We applied multiple 
imputations for missing data to also accommodate 
measurement error (Blackwell et al., 2015; Rubin, 
1978). Time-series analyses of semiparametric model 
specifications for air pollution and health have been 
exhaustively examined within the published literature 
(Bell et al., 2004; Dominici et al., 2004; Peng et al., 
2006). Thus, we deploy a semi-parametric regression 
context to develop the PM10–mortality association 
for the sampled municipalities. The function of daily 
air pollution measurement (PM10) is the logarithm of 
daily expected deaths (i.e., mortality), which takes 
into consideration the presence of temperature, other 
pollutants, and an indicator variable for the day of 
the week. Mortality data follow an over-dispersed 
Poisson distribution. Hence the expected mean and 
variance of mortality can be assumed as

E(Yt) = μt and Var(Yt) = ϕμt	 (1)

where ϕ is the overdispersion parameter.
Deploying smoothing and semiparametric 

(splines) approaches allowed us to control for the 
effects of daily temperature along with capturing sea-
sonality and long-term trends, respectively, ultimate-
ly facilitating our ability to redress the non-linearity 
of both seasonality and temperature. Consequently, 
the regression equation can be expressed as:

log[E(Yij,t)] = βPM f (PM10ij) + g (TEMij) +

s(Time, 7) + [DOW] + βO3 O3ij + βPMNO2ij + ϵij

∑
j=1

Q

∑
j=1

P

	 (2)
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where Yij is the daily mortality count for i, which 
represents each municipality, being j the day, which 
follows an over-dispersed Poisson distribution. βPM 
PM10i,j is the PM10 measurement for the ith munic-
ipality on the jth day. TEMij covariates represent 
time and temperature for the ith municipality on 
the jth day. Temperature and pollution measure-
ment effects are expressed by unknown smoothing 
functions g(•) and f(•), respectively, constructed 
using natural cubic splines. The variable s(Time, 
7) is a smooth function of time with 7 degrees of 
freedom and DOW, which is an indicator variable 
for the day of the week (DOW does not control 
for holidays). In this time-series analysis, the 
number of knots that minimize Akaike Information 
Criteria (AIC) are used as the degrees of freedom 
for the natural cubic spline functions. PM10 was 
of primary interest, but we also consider NO2 
and O3 as independent predictors. We do so since 
there is a high correlation (> 0.3 [Cropper et al., 
1997]) among those pollutants, which contributes 
to our ability to control for unobserved potential 
influences. The error term is modeled using ϵij, 
which includes residuals from the model. βPM is 
our parameter of interest, which gives an estimate 
of mortality change associated with change in one-
unit change in PM10 levels.

PM10 exposures on previous days may influence 
current health outcomes. Thus, mortality counts may 
be delayed. Distributed lag models allow us to include 
multiple lagged measures for the impact of PM10 for 
the previous seven days:

log[E(Yij,t)] = βPM,l PM10i,j–l) + g (TEMij) +

s(Time, 7) + [DOW] + βO3O3ij + βNO2NO2ij + ϵij

∑
l=1

6

∑
j=1

P

	 (3)

We implemented two series of regression models: 
(1) without a seven-day lag and (2) with a distributed 
lagged model.

8.	 Multiple imputations
To address the issue of missing data, multiple 

methods may be utilized. The listwise deletion ap-
proach (complete case) is the traditional method, 
where the cases with one or several missing values 
are deleted. It has been noted that listwise deletion 
does not supply either valid standard errors and/or 
confidence intervals (Carlin et al., 2003); however, 
there have been cases where there is an exception 
(King et al., 2001). Another problem with this prac-
tice is that valid data points that happen to be in the 
same row as a missing value will be lost, leading to 
the loss of degrees of freedom in model estimation 
(Kropko et al., 2014).

To address missing information within our dataset, 
we used the MI method to create a complete panel 
data set. While there has been some criticism of MI, 
it has mostly centered on single value imputation 
misrepresenting the uncertain estimates (Carlin et 
al., 2003). However, to represent uncertainty, MI 
allows us to fill in missing observations with a set 
of plausible values. Figure 3 provides a graphical 
representation of the increasing popularity of MI.
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Fig. 3. The left axis displays the number of published papers on multiple 
imputation in statistical journals and social science journals. The right 
axis displays the total number of journals. Source: Yang et al. (2015).
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The uniqueness of MI, as opposed to other impu-
tation methods, is that it allows us to fill in missing 
values with a set of values that is better able to attest 
the uncertainty of estimating the missing values. MI 
methods also offer us two vital paths for analysis. 
The first, joint modeling, uses multivariate normal 
(MVN) that takes non-normal variables into account. 
The second path is similar to MI by chained equations 
which utilize conditional univariate models without 
strict justification. In this research, we plotted histo-
grams of each variable that needed to be imputed to 
ascertain suitable distributions for the MVN model. 

Following Yang et al. (2015), we normalized high-
ly skewed variables. MVN imputation implements 
an iterative Markov chain Monte Carlo method (data 
augmentation) for imputing multiple continuous vari-
ables under the MVN. The missingness pattern can be 
arbitrary in MVN, since “there exists no consensus 
on the acceptable amount of missingness. Analyses 
using multiple imputations, with low amounts of 
missingness, can produce similar results to listwise 
deletion. Conversely, if large amounts of missingness 
exist within a dataset, it can drive the derivation of 
point estimates, biasing results” (www.ssc.wisc.
edu/sscc/pubs/stata.mi.decide.htm). The results of 
imputation on each data set were then combined us-
ing Rubin’s rules (Little and Rubin, 2019). Table II 
provides missingness for all exogenous measures. 
All analyses for the current paper were performed 
using Stata v. 14.

9.	 Results
In Table II we report missingness for exogenous 
measures. Missingness on PM10 ranged from 0.95% 
in municipality TDB upward to 23.93% in munici-
pality IZT. Missingness on temperature ranged from 
0.76to 29.34%. Also, missingness on O2 ranged from 

relatively low amounts (0.02%) to substantial 
amounts (81.34%). Missingness on NO2 exhibited 
similar patterns, with some municipalities having 
relatively low amounts of missingness (0.11%) while 
others showed extremely high amounts of missing-
ness (81.00%). We did not use MI when the amount 
of missingness was greater than 30%.

While variations in mean temperatures of these 
municipalities are small, there are additional seasonal 
alterations in the MCMA (see Table III). Air pollution 
levels throughout the seven municipalities are relative-
ly and consistently high (e.g., ~290 and ~250 µg/m3 
PM10 in CDB and ECA, respectively). Noteworthy, 
there are indications that air pollution and changes 
in mean regional temperatures, along with other cli-
matic hazards, will intensify within Latin America, 
including Mexico, due to climate change (Magrin et 
al., 2007). Table III provides summary statistics for 
our study. There was a total of 4748 days within the 
time period (i.e., observations for each municipality). 
To help illustrate our findings, we describe the results 
for IZT. However, Table III provides estimates for 
all municipalities included in the current study. For 
IZT, PM10 levels ranged from 6.81 to 177.17. The 
mean of cardiorespiratory death events in IZT was 
5.48 incidences. The temperature ranged from 7.37 to 
24.51 ºC. Figure 4 shows scatter plots of both the 
exposure (PM10) and outcome (number of cardiore-
spiratory deaths) over time for IZT, as an example 
(scatter plots of daily mortality and PM10 concentra-
tions for the different municipalities can be obtained 
upon request), for the entire study period (2001-
2013). The raw plots show that both PM10 levels 
and death counts seem to be dominated by annual 
seasonal patterns, with PM10 and daily cardiorespi-
ratory mortality highest in winter.

Table IV provides estimates of our regression 
modeling. We report these results first by providing 
estimates of the overall effect for models without lags 
and then with lags. Secondly, we report findings for 
each season, respectively. In our first set of models, 
the CDB municipality increase risk of mortality was 
experienced in terms of respiratory outcomes with a 
10 µg m–3 increase of PM10. Additionally, the ECA mu-
nicipality exhibited an increased risk of mortality from 
cardiorespiratory and respiratory diseases with a 10 µg 
m–3 increase of PM10, while the IZT, AOB, and XOC 
municipalities also exhibited increases in the risk of 

Table II. Missingness percentages on key measures.

PM10 TEM O3 NO2

IZT 23.93 29.34 0.25 0.78
AOB 18.64 0.76 0.51 0.53
VCA 4.34 5.73 0.95 0.8
ECA 5.2 7.25 0.02 0.11
TDB 0.95 13.88 1.52 2.25
XOC 1.26 25.19 78.45 81
CDB 0.04 16.07 81.34 10.43
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Table III: Summary statistics.

Variable/municipality Minimum Mean Standard deviation Maximum

Cardiorespiratory Number of daily deaths due to cardiorespiratory events

IZT 0.00 5.48 2.88 21.00
AOB 0.00 2.92 1.92 13.00
VCA 0.00 2.48 1.72 11.00
ECA 0.00 4.35 2.51 22.00
TDB 0.00 2.52 1.73 14.00
XOC 0.00 1.27 1.21 7.00
CDB 0.00 0.64 0.82 5.00

Cardiovascular Number of daily deaths due to cardiovascular events

IZT 0.00 3.96 2.32 14.00
AOB 0.00 2.13 1.60 10.00
VCA 0.00 1.88 1.47 10.00
ECA 0.00 3.06 2.02 16.00
TDB 0.00 1.80 1.42 10.00
XOC 0.00 0.94 1.02 6.00
CDB 0.00 0.47 0.70 4.00

Respiratory Number of daily deaths due to respiratory events

IZT 0.00 1.52 1.38 10.00
AOB 0.00 0.80 0.93 9.00
VCA 0.00 0.61 0.81 7.00
ECA 0.00 1.29 1.23 9.00
TDB 0.00 0.71 0.88 8.00
XOC 0.00 0.33 0.59 4.00
CDB 0.00 0.17 0.42 3.00

PM10 (µg m–3) Particle matters with diameters that are
generally 10 micrometers per cubic meter and smaller

IZT 6.81 50.40 21.20 177.17
AOB 6.88 39.06 15.67 115.32
VCA 6.71 52.81 22.24 161.29
ECA 11.70 67.94 28.09 249.90
TDB 4.75 52.93 20.13 194.21
XOC 1.67 46.86 19.99 190.75
CDB 8.30 63.72 28.77 289.35
O3 (ppb) Ozone
IZT 0.29 27.64 9.86 70.73
AOB 0.98 31.58 12.16 82.33
VCA 0.20 24.79 9.65 73.86
ECA 3.08 25.71 8.92 72.54
TDB 1.58 26.83 9.61 80.17
XOC 1.70 49.78 17.38 92.54
CDB 0.67 25.82 7.75 64.27

IZT: Iztapalapa; AOB: Álvaro Obregón; VCA: Venustiano Carranza; ECA: Ecatepec de Morelos; 
TDB: Tlalnepantla de Baz; XOC: Xochimilco; CDB: Coacalco de Berriozábal.
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Table III: Summary statistics.

Variable/municipality Minimum Mean Standard deviation Maximum

NO2 (ppb) Nitrogen dioxide 
IZT 3.69 31.28 9.62 78.13
AOB 6.38 27.53 9.34 71.71
VCA 8.83 37.47 11.04 82.22
ECA 5.54 29.13 9.01 74.67
TDB 7.27 33.11 10.85 88.60
XOC 2.70 21.93 6.97 45.42
CDB 1.21 18.55 7.89 55.55

TEMP (°C) Temperature

IZT 7.37 16.57 2.11 24.51
AOB 5.80 16.33 2.50 24.91
VCA 7.23 17.39 2.53 25.93
ECA 3.59 16.88 2.71 25.81
TDB 2.40 16.64 2.54 25.80
XOC 7.11 16.16 2.29 23.72
CDB 5.86 16.67 2.58 24.96

IZT: Iztapalapa; AOB: Álvaro Obregón; VCA: Venustiano Carranza; ECA: Ecatepec de Morelos; 
TDB: Tlalnepantla de Baz; XOC: Xochimilco; CDB: Coacalco de Berriozábal.

Fig. 4. Raw plot showing cardiorespiratory death and PM10 exposure over time (2001-2013) 
in the Iztapalapa municipality.
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Table IV. Adjusted relative risk of death due to exposure to PM10 in different seasons and municipalities. 

Municipality/
disease

Overall aRR1

(CI)
Warm season aRR

(CI)
Cold season aRR

(CI)
Rainy season aRR

(CI)

IZT

Cardiorespiratory 1.023 (1.012, 1.033) 1.028 (1.002, 1.055) 1.009 (1.000, 1.023) 1.018 (1.000, 1.046)
Cardiovascular 1.012 (1.001, 1.025) 1.036 (1.006, 1.067) .999 (.982, 1.017) 1.017 (.984, 1.052)
Respiratory 1.033 (1.013, 1.053) 1.000 (.947, 1.056) 1.026 (1.000, 1.053) 1.019 (.964, 1.078)

IZT (L.7)

Cardiorespiratory 1.029 (1.008, 1.051) 1.091 (1.017, 1.170) 1.016 (.972, 1.061) 1.030 (.988, 1.075)
Cardiovascular 1.021 (.996, 1.048) 1.013 (1.004, 1.022) .999 (.952, 1.049) 1.026 (.976, 1.079)
Respiratory 1.047 (1.005, 1.091) .971 (.840, 1.121) 1.043 (.971, 1.120) 1.038 (.953, 1.131)

AOB

Cardiorespiratory 1.002 (1.000, 1.004) 1.003 (.998, 1.007) 1.003 (1.000, 1.005) .998 (.993, 1.003)
Cardiovascular 1.001 (1.000, 1.004) 1.004 (.998, 1.009) 1.001 (1.000, 1.004) .997 (.992, 1.003)
Respiratory 1.002 (1.000, 1.006) 1.000 (.992, 1.008) 1.005 (1.000, 1.011) 1.001 (1.000, 1.009)

AOB (L.7)

Cardiorespiratory 1.053 (1.010, 1.098) 1.059 (.925, 1.211) 1.053 (.977, 1.134) 1.043 (.963, 1.130)
Cardiovascular 1.071 (.989, 1.160) 1.025 (.873, 1.204) 1.038 (.947, 1.137) 1.063 (.969, 1.166)
Respiratory 1.045 (1.000, 1.098) 1.128 (.877, 1.450) 1.091 (.949, 1.253) .990 (.840, 1.166)

CDB

Cardiorespiratory 1.015 (.993, 1.036) 1.002 (.947, 1.061) 1.023 (.988, 1.059)  1.068 (1.002, 1.139)
Cardiovascular 1.007 (.981, 1.034) .995 (.929, 1.065) 1.028 (.984, 1.073) .993 (.913, 1.079)
Respiratory 1.032 (1.000, 1.074) .750 (.524, 1.075) 1.012 (.943, 1.085)  1.065 (1.030, 1.192)

CDB (L.7)

Cardiorespiratory 1.001 (0.961, 1.043) 1.017 (.884, 1.170) .965 (.889, 1.048) 1.010 (1.001, 1.020)
Cardiovascular 0.977 (0.929, 1.030) 1.009 (.850, 1.197) .961 (.869, 1.064) 1.037 (.936, 1.150)
Respiratory 1.069 (.985, 1.160) 1.074 (.780, 1.478) .936(.784, 1.117) 1.073 ( 1.042, 1.152)

ECA

Cardiorespiratory 1.002 (1.000, 1.011) 1.005 (.984, 1.027) .997 (.984, 1.009) .996 (.968, 1.024)
Cardiovascular .997 (.986, 1.008) 1.006 (.979, 1.034) .996 (.981, 1.012) .990 (.957, 1.023)
Respiratory 1.013 (1.000, 1.029) 1.004 (.962, 1.047) .994 (.971, 1.017) .994 (.971, 1.017)

ECA (L.7)

Cardiorespiratory 1.020 (1.002, 1.039) 1.020 (.970, 1.091) .988 (.958, 1.018) 1.027 (.987, 1.069)
Cardiovascular 1.020 (1.000, 1.042) 1.062 (.985, 1.147) .980 (.943, 1.019) 1.039 (.991, 1.089)
Respiratory 1.020 (1.003, 1.055)  .949 (.845, 1.066) 1.007 (.952, 1.065) .997 (.921, 1.079)

*100 × (aRR – 1) measures the percent increase in mortality per 10 µg m–3 increase of exposure to PM10.
aRR: adjusted relative-risk ratios; CI: confidence interval.
Numbers in bold represent statistically significant increase in relative risk due to 10 µg m–3 increase in PM10 exposure. 
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mortality from cardiorespiratory, cardiovascular, and 
respiratory diseases with the same increase of PM10.

With respect to estimates of findings relative to 
non-lagged models across the various seasons, during 
the warm season the IZT and XOC municipalities 
experienced an increased risk of mortality resulting 
from cardiorespiratory and cardiovascular outcomes 
with a 10 µg m–3 increase of PM10. Additionally, in 
the same season, the XOC municipality exhibited 
an increased risk of mortality in terms of respiratory 
outcomes with a 10 µg m–3 increase of PM10. During 
the cold season, the AOB municipality exhibited an 

increased risk of mortality from cardiovascular out-
comes with a 10 µg m–3 increase of PM10. In the same 
season, the AOB and IZT municipalities exhibited an 
increased risk of mortality due to cardiorespiratory 
and respiratory outcomes with a 10 µg m–3 increase 
of PM10. As for the rainy season, the IZT, CDB, 
and XOC municipalities exhibited increased risk of 
mortality in terms of cardiorespiratory outcomes with 
a 10 µg m–3 increase of PM10. In terms of mortality 
as a result of respiratory problems, the AOB, CDB, 
and XOC municipalities exhibited increased risk of 
mortality with a 10 µg m–3 increase of PM10. 

Table IV. Adjusted relative risk of death due to exposure to PM10 in different seasons and municipalities. 

Municipality/
disease

Overall aRR1

(CI)
Warm season aRR

(CI)
Cold season aRR

(CI)
Rainy season aRR

(CI)

TDB

Cardiorespiratory 1.004 (.988, 1.019) 1.002 (.970, 1.036) 1.004 (.980, 1.029) 1.012 (.973, 1.052)
Cardiovascular 1.002 (.983, 1.021) .993 (.955, 1.033) 1.005 (.976, 1.035) 1.005 (.961, 1.052)
Respiratory 1.004 (.975, 1.034) 1.02 (.957, 1.088) .996 (.954, 1.040) 1.035 (.954, 1.122)

TDB (L.7)

Cardiorespiratory 1.027 (.995, 1.060) .964 (.871, 1.067) 1.079 (1.017, 1.146)  1.003 (.941, 1.070)
Cardiovascular 1.036 (.998, 1.077) .941 (.833, 1.064) 1.011 (1.003, 1.193) 1.004 (.932, 1.081)
Respiratory 1.006 (.948, 1.068) 1.022 (.843, 1.240) 1.022 (.923, 1.131) 1.009 (.884, 1.152)

VCA

Cardiorespiratory 1.000 (.984, 1.016) .995 (.957, 1.034) .991 (.968, 1.015) 1.028 (.986, 1.071)
Cardiovascular .996 (.978, 1.015) 1.006 (.962, 1.052) .974 (.945, 1.004) 1.013 (.966, 1.061)
Respiratory 1.012 (.980, 1.045) .965 (.901, 1.032) 1.031 (.983, 1.083) 1.089 (.999, 1.188)

VCA (L.7)

Cardiorespiratory 1.009 (.978, 1.042) 1.044 (.943, 1.57) .999 (.932, 1.071) 1.042 (.977, 1.112)
Cardiovascular 1.012 (.976, 1.050) 1.089 (.966, 1.227) .998 (.923, 1.078) 1.024 (1.007, 1.092)
Respiratory .999 (.936, 1.066) .957 (.819, 1.118) .973 (.854, 1.108) 1.112 (.969, 1.277)

XOC

Cardiorespiratory 1.029 (1.001, 1.049) 1.060 (1.031, 1.123) 1.006 (.976, 1.037) 1.064 (1.017, 1.113)
Cardiovascular 1.023 (1.000, 1.046) 1.055 (1.013, 1.099) 1.000 (.966, 1.036) 1.041 (.987, 1.097)
Respiratory 1.040 (1.004, 1.079) 1.010 (1.004, 1.200) 1.012 (.958, 1.070) 1.033 (1.004, 1.087)

XOC (L.7)

Cardiorespiratory 1.042 (1.004, 1.082) 1.012 (.931, 1.100) 1.059 (.988, 1.137) 1.026 (1.044 1.215)
Cardiovascular 1.049 (1.004, 1.095) 1.004 (.912, 1.106) 1.025 (.952, 1.104) 1.046 (1005, 1.111)
Respiratory 1.023 (.951, 1.100) 1.042 (.879, 1.234) 1.099 (.975, 1.238). 1.056 (.904, 1.234)

*100 × (aRR – 1) measures the percent increase in mortality per 10 µg m–3 increase of exposure to PM10.
aRR: adjusted relative-risk ratios; CI: confidence interval.
Numbers in bold represent statistically significant increase in relative risk due to 10 µg m–3 increase in PM10 exposure. 
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Regarding the seven-days lagged distributed 
models, we first derived the optimal numbers of lags 
for pollutants, as well as temperature variables, by 
minimizing the final prediction error, the Hannan and 
Quinn information criterion, and the Akaike informa-
tion criterion (a Bayesian information criterion). We 
then applied all the lagged variables into our models 
simultaneously. In terms of overall mortality resulting 
from cardiorespiratory complications, the IZT, AOB, 
ECA, and XOC municipalities exhibited an increased 
risk of mortality with a 10 µg m–3 increase of PM10. 
Similarly, the IZT, AOB, and ECA municipalities 
exhibited an increased risk of mortality resulting from 
respiratory incidences with a 110 µg m–3 increase of 
PM10. In terms of mortality resulting from cardiovas-
cular events, the ECA and XOC municipalities exhib-
ited an increased risk of mortality with a 10 µg m–3 
increase of PM10. 

When assessing mortality during the warm season 
with the distributed lagged models, the IZT munici-
pality exhibited an increased risk of mortality in terms 
of cardiorespiratory and cardiovascular events with 
a 10 µg m–3 increase of PM10. During the cold sea-
son, TDB exhibited an increased risk of mortality in 
terms of cardiorespiratory and cardiovascular events 
with a 10 µg m–3 increase of PM10. During the rainy 
season, the CDB and XOC municipalities exhibited 
an increased risk of mortality resulting from cardio-
respiratory events with a 10 µg m–3 increase of PM10, 
while the VCA and XOC municipalities exhibited 
an increased risk of mortality due to cardiovascular 
events with the same increase of PM10. During the 
same season, the CDB municipality exhibited an 
increased risk of mortality resulting from respiratory 
events with a 10 µg m–3 increase of PM10.

We assessed thresholds for the amount of PM10 
that results in mortality. As displayed in Figure 5a-c, 
it appears that in five of the seven municipalities a 
150-155 µg m–3 threshold is established, which is 
the suggested turning point from a safe level to an 
unhealthy situation for sensitive groups identified by 
the WHO (PM10 with a concentration of 155 µg m–3, 
i.e., air quality index of 101, is identified as a “red 
category”, which implies an unhealthy situation for 
sensitive groups; see www.airnow.gov/index.cfm?ac-
tion=airnow.calculator for more information). It is 
essential to note that geographic variability exists in 
terms of results. Overall, municipalities located to 

the south of the MCMA (i.e., IZT, XOC, and AOB) 
experienced statistically significant mortality results 
regarding all three outcome measures in non-lagged 
models. When lagged, the IZT and AOB municipal-
ities did not exhibit a significant result for mortality 
due to cardiovascular events, whereas mortality 
due to respiratory complications was not significant 
in the XOC municipality. The AOB municipality 
exhibited a statistically significant increased risk 
of mortality during the cold season for all health 
outcomes of interest within models that were not 
lagged. Municipalities located to the northeast of the 
MCMA (i.e., CDB and ECA), exhibited statistically 
significant increased mortality risk from respiratory 
events within models that were not lagged, whilst 
CDB exhibited a statistically significant increased 
risk of mortality during the rainy season for cardio-
respiratory and respiratory events both in lagged 
and non-lagged models. On the other hand, ECA 
exhibited an increased risk of mortality within the 
lagged and non-lagged models for cardiorespiratory 
and respiratory events. The TDB municipality, to the 
northwest of the MCMA, exhibited increased risk of 
mortality both for cardiorespiratory and cardiovascu-
lar events in the cold season within lagged models. 
Lastly, the VCA municipality, located in the center of 
the MCMA, exhibited an increased risk of mortality 
during the rainy season due to cardiovascular events 
in lagged models.

10.	Discussion
In this paper, we explored the impact of air pol-
lution, temperature, and seasonality on shaping 
mortality risks among the population of seven 
municipalities in the MCMA (2001-2013) through 
a quantitatively driven approach. We deployed 
semiparametric Poisson regression models, taking 
into consideration exogenous impacts (i.e., other 
pollutants) along with temperature variability, 
seasonality, and air pollution in the form of PM10. 
To address the limitations of previously published 
studies, we conducted a time-series approach that 
incorporated natural cubic splines for temperature. 
Thus, we were able to evaluate short-term health 
effects (e.g., mortality) of air pollution.

Our findings demonstrate that capturing differ-
ences across seasons is essential when evaluating the 
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effect of an increased level of PM10 in terms of mor-
tality events resulting from all three health outcomes 
(cardiorespiratory, respiratory, and cardiovascular) 
assessed within the study. While these results varied 
between municipalities, it is safe to conclude that 
there is an association between mortality events and 
increased levels of PM10. This discrepancy can stem 
from differences in the composition of PM10 in dif-
ferent municipalities (and perhaps across seasons) 
(Schlesinger, 2007). Since PM10 includes PM2.5 and 
even low-concentration PM2.5 exposure is linked to 
mortality (Shi et al., 2016), the different results that 
we find across different municipalities may be due to 
variation in the proportion of PM2.5 in PM10.

Furthermore, our findings highlight the impor-
tance of considering distributed lagged models for 
capturing associations between mortality and air 
pollution. For example, in the TDB municipality 
during the cold season, premature mortality due to 
cardiorespiratory and cardiovascular events is only 
significant when we control for the level of PM10 
exposure in the last seven days (lagged model). We 
observed a similar pattern in other municipalities 
during different seasons (e.g., VCA). 

We were able to evaluate a threshold for changes in 
mortality resulting from increased levels of PM10, in 
which we can visually demonstrate a threshold that has 

been previously identified by the WHO. Complement-
ing these analyses, we furthermore were able to demon-
strate a geographic variability in terms of municipality 
locations, mortality risk, and increased levels of PM10. 
It should be noted that we cannot confidently conclude 
the threshold of 150 PM10 is standard across all the 
municipalities; however, we can confidently conclude 
that even smaller amounts of PM10 can be associated 
with mortality. The AOB municipality provides a perfect 
example of this relationship between PM10 and mortali-
ty. As it can be seen from the results, the IZT, AOB, and 
XOC municipalities have similar and consistent results, 
which may be driven by their geographical location in 
the southern portion of the MCMA.

Furthermore, a negative binomial model was devel-
oped in order to check the Poisson model. There was 
a negligible change in the results using the alternative 
model. In order to compare feasible scenarios, we per-
formed a sensitivity analysis to test PM10 coefficients. 
We utilized different types of spline functions and also 
altered the degrees of freedom in each function. The 
magnitude of coefficients of interest did not change 
when utilizing different types of spline functions, such 
as bspline, mkspline, and frencurv for smoothing the 
existent trend. Although magnitudes did not change 
in general, they did change with the varying degrees 
of freedom approaches. In order to test the model’s 

Fig. 5. Semiparametric Poisson regressions results showing a threshold of ~150 µg m–3 in seven municipalities of the 
MCMA. (a) Tlalnepantla de Baz (TDB), Álvaro Obregón (AOB) and Venustiano Carranza (VCA); (b) Coacalco de 
Berriozábal (CDB) and Xochimilco (XOC); (c) Iztapalapa (IZT) and Ecatepec (ECA).
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sensitivity to outliers, we removed the highest 5% of 
PM10 values and repeated the regressions. This did not 
markedly alter either the magnitude of the effect or the 
statistical significance of PM10. Deviance residuals and 
partial autocorrelation plots were checked in order to 
test each model.

While we are confident in our findings, there 
are noteworthy limitations. First, we did not have 
complete data (especially on PM2.5) and relied upon 
reporting systems that could include information bias. 
Second, we could not extrapolate that our findings 
were representative of the entire MCMA. Unfortu-
nately, our data were limited to seven municipalities 
within the metropolitan, thus we cannot assure these 
seven municipalities are the most representative. 
Also, if findings were consistent across municipalities 
and across models with/without distributed lagged ef-
fects, we would be able to more confidently conclude 
that they are representative of the entire MCMA.

Finally, studies have demonstrated reporting errors 
in terms of mortality data, and even though we are 
confident in the mortality data, we cannot preclude 
that such reporting errors were not made before it was 
used within the current study. In developing coun-
tries, limitations resulting from resources contribute 
to the uneven distribution of sites utilized to capture 
air pollution data. Thus, geographic variability could 
additionally introduce bias within our results, although 
it should be noted that we attempted to redress these 
issues in our sophisticated modeling approach. 

In the light of these limitations, we are still confi-
dent that results within the current study can be uti-
lized to inform policy in terms of air pollution in the 
MCMA. A significant contribution of this paper is the 
process of imputing the necessary data to assess the 
association between air pollution and premature mor-
tality in the MCMA. Another substantial contribution 
is our focus in explaining mortality differences relat-
ed to various meteorological seasons, which has been 
a limitation in previous works assessing the effects 
of air pollution on mortality in the MCMA. Focusing 
directly on the MCMA allowed us to assess mortality 
in terms of air pollution within a developing nation. 
Thus, the current study contributes to much-needed 
literature assessing the contribution of air pollutions 
to mortality within developing countries. For further 
information on modeling and sensitivity analysis, 
please see the supplementary material.

As for the area of future research, one could up-
date the results by including the most recent dataset 
and control for long term or chronic morbidity impact 
of PM pollution. Given that demand for environ-
mental quality is expected to be lower in the context 
of a developing country, the chronic health impacts 
might be more substantial and significant for poli-
cy-making purposes, thus they need to be explored 
in future research. Rather than averaging over the 
entire population, one could divide the population 
into groups of individuals (e.g., elderly, pregnant 
women, and infants) and compare data. Further, one 
could extend the dose-response estimates with a 
valuation component based on the value of statistical 
life literature. Lastly, one could utilize the results of 
the current research and conduct a discrete choice 
experiment study (Mamkhezri, 2019; Mamkhezri et 
al., 2020a, b) to assess thr respondents’ willingness 
to pay for clean air in the MCMA.
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