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RESUMEN

En este estudio se simulan valores de coeficientes (Kp) de tanques evaporimétricos de clase A  mediante el 
árbol de decisión M5, utilizando para ello datos meteorológicos diarios de cuatro estaciones en la provincia 
de Azerbaiyán Oriental, ubicada en una zona de clima árido y frío al noroeste de Irán. En primer lugar, se 
tomaron en cuenta los métodos FAO-24 y FAO-56, que se utilizan comúnmente para calcular valores de Kp. 
Se asumió que los valores de Kp calculados en la segunda fase eran valores observados y se tomaron como 
salidas del modelo M5. Se probaron cuatro diferentes bases de datos de entrenamiento que contenían 66, 70, 
75 y 80% de los datos originales. Los mejores resultados se obtuvieron cuando se utilizó el 70% de los datos 
para entrenamiento y el 30% para pruebas. Los resultados indican que se alcanzó una alta tasa de exactitud 
(R2 = 0.99) en la simulación de valores de Kp con ecuaciones lineales simples. Más aún, los valores de Kp 
se simularon fácilmente usando únicamente dos variables meteorológicas (humedad relativa y velocidad del 
viento), sin necesidad de recurrir a tablas y ecuaciones complejas. El hallazgo más importante de este estudio 
fue la estimación de Kp de manera sencilla con un conjunto de funciones lineales obtenidas del modelo M5. 
Como resultado, los valores simulados de Kp pueden ayudar al cálculo exacto de la evapotranspiración con 
el fin de planear la irrigación de forma eficiente. El método propuesto ofrece varias ventajas y es más simple 
que otros enfoques encontrados en la literatura.

ABSTRACT

In this study, class A pan coefficient (Kp) values were simulated via the M5 tree model, by using daily me-
teorological data of four stations in the East Azerbaijan province, which has arid and cold climate in the 
northwest of Iran. Firstly, the FAO-24 and FAO-56 methods, which are commonly used to calculate Kp values, 
were taken into consideration in the study. The Kp values calculated in the second stage were assumed to be 
observed values and were taken as the outputs of the M5 model. Four different training datasets consisting 
of 66, 70, 75 and 80% of the original data were tested. The best results were obtained when 70% of the data 
was used for training and 30% for testing. Results indicated that a Kp value was easily simulated with simple 
linear equations with high accuracy rate (R2 = 0.99) in all the stations. Furthermore, the Kp value was easily 
simulated using only two meteorological variables (relative humidity and wind speed), without the need for 
complex tables and equations. The most important finding of this study was the easy estimation of the Kp 
with a number of linear functions obtained from the M5 model; as a result, the simulated Kp can help us to 
calculate evapotranspiration accurately for more effective irrigation planning. The proposed method offers 
advantages as it is simpler and easier than the existing approaches in the literature.
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1. Introduction
Determining crop water requirements is important 
in irrigation. Crop water requirements are a function 
of the reference crop evapotranspiration (ET0). Crop 
evapotranspiration is basically estimated using ET0 
and the crop coefficient (Kc). The Penman-Monte-
ith equation (PM) has performed better than other 
methods for estimating ET0, therefore, it has been 
recommended as the international standard for calcu-
lating this value based on meteorological data (Allen 
et al., 1998; Ozturk and Apaydin, 1998). The fact 
that a large volume of data is needed to utilize the 
PM equation complicates its use, as databases can be 
incomplete. Recording data may require large storage 
space (Ditthakit and Chinnarasri, 2012). Evaporation 
pans have been found suitable for estimating ET0; 
hence, for determining crop water requirements. 
They constitute a widely used technique due to 
their simplicity and low cost (Ozturk and Apaydin, 
1998; Raghuwanshi and Wallender, 1998; Irmak et 
al., 2002; Ditthakit and Chinnarasri, 2012). Various 
types of evaporation pans are used; however, class 
A and sunken Colorado pans are the most common. 
ET0 is dependent on the measured pan evaporation 
and pan coefficient (Kp). Values of Kp for class A and 
sunken Colorado pans, under various plant covers 
and environmental and climatic conditions are pre-
sented as tables in FAO-24 (Doorenbos and Pruitt, 
1977) and FAO-56 (Allen et al., 1998). However, 
when observed conditions are out of the range listed 
in the tables, estimates of Kp values may lead to 
errors. Frevert et al. (1983), Cuenca (1989), Snyder 
(1992), Allen et al. (1998), Raghuwanshi and Wal-
lender (1998) and Grismer et al. (2002) developed 
regression models to determine Kp based on data from 
class A pans. Allen et al. (1998) and Abdel-Wahed 
and Snyder (2008) modeled Kp with data from class 
A pans in arid regions having dry surfaces. The mod-
ified Snyder approach has shown the largest errors; 
however, as compared to other approaches, it resulted 
in smaller errors. This study, conducted in the Amol 
region of Iran, reported the accuracy of a number of 
methods for calculating Kc (Zare et al., 2011).

Machine learning algorithms have been success-
fully used for ET0 simulation. Torres et al. (2011) 
estimated ET0 in the first stage of an irrigation project 
in central Utah. In the second stage, they used histor-
ical meteorological parameters to simulate ET0 with 

the help of the estimated parameters. They used the 
multivariate relevance vector machine (MVRVM) 
in both stages. The proposed method was tested 
in terms of robustness and stability with bootstrap 
analysis. Shrestha and Shukla (2015) successfully 
applied support vector machine for the modeling of 
ET using hydroclimatic variables in a subtropical 
environment based on six years lysimeter data. The 
results showed that the proposed model can be used 
in the development of region-specific Kc to improve 
ETc estimates. Feng et al. (2017) applied extreme 
learning machine (ELM) and generalized regression 
neural networks (GRNN) to daily ET0 simulation 
only with temperature data in the Sichuan basin 
(southwest China). The results showed that tempera-
ture-based GRNN and ELM models are appropriate 
alternatives for the accurate simulation of ET0. Dou 
and Yang (2018) simulated daily ET0 values in four 
different ecosystems using flux tower observed data 
with ELM and the adaptive neuro-fuzzy inference 
system (ANFIS). They compared the results of these 
two methods with the results of the artificial neural 
network and support vector machine methods. The 
proposed models generally achieved best performance 
in forest ecosystems, and worst in cropland ecosys-
tems. Granata (2019) applied the M5P regression tree, 
bagging, random forest, and support vector regression 
to simulate ET0 in central Florida, characterized by 
a humid subtropical climate, and emphasized that 
machine learning algorithms may be a powerful tool 
for the prediction of actual evapotranspiration when a 
time series is available. Granata et al. (2020) simulated 
daily ET0 based on climatic variables such as net solar 
radiation, depth to water, wind speed (WS), mean 
relative humidity (RH), and maximum, minimum, 
and mean temperatures, using random forest, additive 
regression of decision stump, multilayer perceptron, 
and k-nearest neighbors algorithms. They found that 
random forest and k-nearest neighbors provide slightly 
better performance than additive regression of decision 
stump and multilayer perceptron. 

Data mining techniques, like the M5 model tree, 
have been applied to many problems in hydrologic 
engineering, water science and environment. M5 
model trees were used to model monthly reference 
ET0 (Sattari et al., 2013a); to predict daily reference 
evapotranspiration in Bonab (Sattari et al., 2013b) 
and monthly precipitation in northwest Iran (Sattari 
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et al., 2014); to determine possible drought periods in 
Ankara (Sattari et al., 2012), and for pan evaporation 
modeling (Kisi, 2015). Ditthakit and Chinnarasri 
(2011, 2012) applied neural networks and the M5 
tree model to determine class A and sunken Colorado 
pan coefficients and found more accurate estimates of 
Kp than with other methods. Class A pans are widely 
used in Iran (Zare et al., 2010). 

Agriculture and food availability are of vital 
importance to the Iranian economy and its citizens. 
Large areas in East Azerbaijan are devoted to the 
growth of onions, tomatoes, potatoes and wheat, 
but this region has an annual average precipitation 
of 297 mm and a semi-arid climate; therefore, it is 
necessary to effectively utilize the limited water 
resources available. 

The amount of evaporation, which is very im-
portant in the hydrological cycle, negatively affects 
agricultural water management in arid regions. It is  
critical to determine the plant water consumption eas-
ily and accurately (which depends on evaporation and 
the Kp value) in order to plan and operate irrigation 
systems. There are many equations and methods for 
the calculation of reference evapotranspiration; how-
ever, since different hypotheses and meteorological 
data are used for these methods, different results may 
be obtained at regional level (Grismer et al., 2002). 
There are no agricultural stations in the study area 
that adequately measure meteorological parameters. 
The equalities used in evapotranspiration calculations 
do not give consistent results due to the lack of data, 
instruments and equipment in the existing stations 

(Ditthakit and Chinnarasri, 2012). In this research, 
the M5 decision tree and the FAO methods are used 
to determine daily class A pan coefficients in replace-
ment of tables or regression equations, in a dry fallow 
land at four different stations located in the province 
of East Azerbaijan under cold and dry climate.

2. Materials and methods
2.1 Study area
Data from four meteorological stations located in 
Ahar (Vardin and Sattarkhan dam), Sarab (Mirkooh), 
and Mianeh (Shahryar dam), East Azarbaijan, were 
used in this study (Fig. 1). East Azerbaijan is one of 
the 31 provinces of Iran, covering an area of approx-
imately 47 830 km² with a population of around four 
million people. Its economy is based on the heavy and 
food industries, agriculture, and handicraft. Grains, 
fruits, cotton, rice, nuts, and tobacco are the staple 
crops of the region. The climate of East Azerbaijan 
is affected by the Mediterranean continental climate 
and a cold semi-arid climate. Gentle breezes off the 
Caspian Sea have some influence on the climate of the 
low-lying areas. Data required for calculating daily 
pan coefficients, including air RH and WS, as well as 
the expertise for installing the pan, were provided by 
the East Azerbaijan Regional Water Company. The 
stations specifications are listed in Table I.

Class A pans are used at these stations to measure 
evaporation. They have been installed in fallow land 
surrounded by green vegetative cover (the best prac-
tice for installing pans). The daily pan coefficients 

Ahar

Sarab

Mianeh

East Azerbaijan IRAN

Caspian Sea
N

S

EW

Persian
Gulf

Gulf of Oman
Arabian Sea

Fig. 1. Location of the study regions in the province of East Azerbaijan, Iran.
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were obtained using a previously developed table 
(Table II) and available data. These parameters were 
used as inputs for the model.

2.2 Evaporation pans
Evaporation from an open water surface can be easily 
measured with evaporation pans. If there is no pre-
cipitation, water that evaporates over a time period 
(mm day–1) equals the reduction in water depth during 
the same time period. Pans are used to measure the 

combined effects of radiation, wind, and humidity 
within the region on evaporation from open water 
surfaces. Pan evaporation has the following relation 
with the reference crop evapotranspiration:

ET0 = Kp × ETp (1)

where ET0 is the reference crop evapotranspiration 
(mm day–1), Kp is the pan coefficient (dimensionless), 
and ETp is the pan evaporation (mm day–1).

Table I. Description of the four stations. 

Windward
side distance (m)

P
(mm)

Tmean
(ºC)

Number
of data

Geographical information
Station name

Elevation (m)LatitudeLongitude 

12403.19.352863183738º 00′47º 30′Sarab, Mirkouh
15339.711.342508140038º 26′46º 59′Ahar, Vardin
15365.811.06731141538º 27′46º 55′Ahar, Sattarkhan dam
16277.615.452127101537º 30′48º 03′Mianeh, Shahryar dam

Table II. Values of the class A pan coefficients (Kp) at different pan locations, mean relative humidity 
and wind speed 

Case B: Pan placed at
dry fallow area
Rh mean (%)

Case A: Pan placed at
short green cropped area

Rh mean (%)
Windward

side distance
of green crop

(m)

Wind speed
(m s-1)

high
> 70

medium
40-70

low
< 40

high
> 70

medium
40-70

low
< 40

0.850.800.700.750.650.551
Light
< 2

0.800.700.600.850.750.6510
0.750.650.550.850.800.70100
0.700.600.500.850.850.751000

0.800.750.650.650.600.501
Moderate
2-5

0.700.650.550.750.700.6010
0.650.600.500.800.750.65100
0.600.550.450.800.800.701000

0.700.650.600.600.500.451
Strong
5-8

0.650.550.500.650.600.5510
0.600.500.450.700.650.60100
0.550.450.400.750.700.651000

0.650.600.500.500.450.401
Very strong
> 8

0.550.500.450.600.550.4510
0.500.450.400.650.600.50100
0.450.400.350.650.600.551000

Source: Doorenbos and Pruitt, 1977; Allen et al., 1998.
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The selection of Kp is dependent on the type of pan 
along with the plant cover at the station, conditions 
around the pan, wind conditions, and air RH. Besides 
the installation expertise of a pan, the surrounding 
environment impacts the evaporation measurement. 
This impact is particularly important when the pan 
is installed in a fallow land. Two general installation 
practices were considered: (1) the pan was installed 
in a land with short green plant cover but surrounded 
by fallow land, and (2) the pan was installed at fallow 
land surrounded by green plant cover. The values of 
class A pan coefficients from FAO 56 (Allen et al., 
1998) are shown in Table II.

Instead of using Table II, regression Eqs. (2) 
and (3) derived by Allen et al. (1998) were used to 
determine Kp:

KpGREEN = 0.108 − 0.0286 U2 + 0.0422 
ln (F) + 0.1434 ln (RH) − 0.000631 
[ln (F)]2 ln (RH)  (2)

KpDRY = 0.61 + 0.00341 RH − 0.000162 
U2 RH – 0.00000959 U2 F + 0.00327 U2 
ln (F) − 0.00289 U2 ln (86.4 U2) − 0.0106 
ln (86.4 U2) ln (F) + 0.00063 [ln (F)]2 (86.4 U2) (3)

where Kp is the pan coefficient, U2 is the average daily 
WS at 2 m height (m s–1), RH is the average daily RH 
(%), and F is the fetch or distance of the identified 
surface type upwind of the evaporation pan (grass or 
short green agricultural crop for case A, dry crop or 
bare soil for case B). In order to use these equations, 
U2 must be between 1 and 8 m s–1, RH between 30 
and 84%, and fetch distance between 1 and 1000 m. A 
local adjustment is required to determine Kp if either 
the table or the regression equation are used. Allen 
et al. (1998) recommended that the use of tables or 
the corresponding equations may not be sufficient to 
consider all local environmental factors influencing 
Kp. Therefore, local adjustments may be required.

2.3 M5 regression tree and performance evaluation
Machine learning, data mining and decision trees 
are artificial intelligence methods which have been 
very popular during the last few decades. Many 
sub-methods have been developed and applied to 
water resources management. The M5 decision tree 

model was introduced by Quinlan (1992); thereafter 
it has been widely used in data mining, which refers 
to the process of discovering patterns in data. It is 
widely used as a classification and prediction model. 
A decision tree algorithm produces a model in the 
form of a tree. It is essentially a model where linear 
regression equations at the leaves replace terminal 
class values (Pal, 2006; Coria et al., 2016). Decision 
tree models are easy to understand and include root, 
branches, nodes, and leaves. They are usually con-
structed from top to bottom and the last branch ends 
with a leaf. Each node is associated with a specific at-
tribute, whereas branches represent ranges of values. 
A predictive variable performs a splitting function. 
Split ranges are selected to minimize errors at each 
node (Quinlan, 1992). The first step in building a 
decision-tree model is to use a splitting criterion. In 
the M5 algorithm, this criterion is based on entropy, 
which measures the amount of disorder in data. The 
error of the model is usually assessed by measuring 
the accuracy in predicting target values of unseen 
cases (Alberg et al., 2012).

The splitting process is iterated at each node until 
the final node (leaf) is reached, where the total of the 
square deviations about the mean approaches zero. A 
decision-tree might be rather large; thus, to reduce its 
size, branches can be pruned to produce a manageable 
tree. There are two pruning methods: (1) pre-prun-
ing: before the tree reaches its maximum size, and 
(2) post-pruning: after the tree reaches its maximum 
size. In the first method, the pruning process does not 
allow for the production of extra branches; however, 
in the second method, the pruning is performed after 
the tree attains its maximum growth.

After pruning, a smoothing process takes place to 
compensate for sharp discontinuities that inevitably 
happen between adjacent linear models at the leaves 
of the pruned tree. This is especially the case for 
models constructed from a smaller number of samples 
(Alberg et al., 2012). 

In this research, the WEKA software (Eibe, 2016), 
developed at the University of Waikato in New Zea-
land was used to predict pan coefficients using the 
M5 model. It is the leading open-source software in 
the field of artificial intelligence. Studies in this field 
are not just about providing input data to the software; 
many alternatives need to be carefully examined to 
find the best model. The data was divided into four 



294 M. Taghi̇ Sattari̇ et al.

different training (consisting of 66, 70, 75 and 80% 
of the original data) and testing sets. The performance 
of the models developed in the study was evaluated 
based on the root mean square error (RMSE), coeffi-
cients of determination (R2), the unpaired two-sample 
t-test and the Nash-Sutcliffe efficiency (NSE) index.

3. Results and discussion
The FAO method was used in this study to deter-
mine daily pan coefficients in fallow land at all four 
stations. Values of Kp calculated via the traditional 
method were used as target variables. RH, WS at 
2 m above ground surface, and windward side dis-
tance (fetch) to the green crop were considered as 
independent variables. Table III shows the specifica-
tions of the statistical data at each station. Note that 
the Sarab, Ahar Vardin and Ahar Sattarkhan stations 
have an average WS of 1.41-1.91 m s–1, while WS at 
Mianeh is only 1.1 m s–1. Average RH values in each 
of the four stations range from 60.7 to 64.5%; howev-
er, the average Kp value was determined as 0.8 in the 
Sarab station, whereas in Ahar Vardin, Ahar Sattarkhan 
and Mianeh these values were very close to each other: 
0.7, 0.71 and 0.71, respectively. The highest calculated 
Kp value was 0.8 and the lowest 0.45, with the Sarab 
station displaying the largest range. 

As an example, Figure 2 exhibits the M5 deci-
sion-tree model for the Shahriar dam station. Seven 
linear relations computed via the M5 decision-tree 
model were introduced in Figure 2, namely Kp, mean 
RH, and WS at 2 m above the ground surface. Since 
daily input data were used to construct the model, 
daily calculations were also made for Kp. As seen in 
Figure 2, Kp values can be calculated easily by using 
seven simple linear equations considering the change 
in only mean RH and WS at 2 m above the ground 
surface. These parameters are available for all regions 
or can be obtained by simple observations. Thus, Kp 
values can be simulated at a low cost without highly 
trained specialists, and can significantly contribute to 
agricultural activities. For example, the tree diagram 
in Figure 2 for the Shahriar dam station in Mianeh 
shows that if the mean daily RH is ≤ 69.75%, and dai-
ly WS at 2 m above the ground surface is 1.51 m s–1, 
the daily pan coefficient will be calculated using the 
linear relation LM num 1 (Kp = 0.0001 × RHmean – 
0.0007 × U2 + 0.6926). 

As seen in Table I, the Mianeh station only has 
data for 733 days, while the Ahar Sattarkhan station 
has data for 2863 days. Four different training datasets 
were tested in this study because of these differences 
in length. These data sets consist of 66, 70, 75 and 
80% of the original data. Four different linear model 

Table III. Values of pan coefficients and independent variables at the four stations.

Station Statistics Wind speed (m s–1) Relative humidity (%) Pan coefficient

Sarab, Mirkouh

Maximum 6.50 100 0.80
Minimum 0.28 10.5 0.49
Mean 1.41 60.7 0.80
Standard deviation 0.58 18.5 0.07

Ahar, Vardin

Maximum 8.24 84 0.80
Minimum 0.90 30 0.45
Mean 1.91 61.7 0.70
Standard deviation 1.01 14.0 0.06

Ahar, Sattarkhan dam

Maximum 7.00 95.5 0.80
Minimum 0.25 23.5 0.54
Mean 1.65 64.5 0.71
Standard deviation 1.01 12.2 0.05

Mianeh, Shahriar dam

Maximum 3.81 82.5 0.80
Minimum 0.45 44.0 0.64
Mean 1.10 61.0 0.71
Standard deviation 0.47 8.7 0.04
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sets, coefficient of determination and RMSE were 
computed for each station. The preferred model is 
marked in bold letters in Table IV. As it may be seen in 
this table, the best decision tree model is based on 80% 
of the data from the Sattarkhan dam station in Ahar 
(with 2863 data records). With this data percentage, 
we simulated the pan coefficient with R2 = 0.9916 and 
RMSE = 0.0049 using 16 linear relations. 

At the Vardin station in Ahar (with a total of 
2508 records), when 80% of the data was allocated 
to training, the M5 decision tree was able to model 
pan coefficients using 13 linear relations with R2 = 
0.9952 and RMSE = 0.0045. At the Shahriar dam 
station in Mianeh (731 records), when 70% of the 
data was allocated to training, the M5 decision tree 
model was able to model pan coefficients using 
seven linear relations with R2 = 0.9937 and RMSE 
= 0.0042. At the Mirkouh station in Sarab (2127 
records), when 70% of the dataset was allocated to 

training, the M5 decision tree was able to model pan 
coefficients using 13 linear relations with R2 = 0.9931 
and RMSE = 0.0058. Quite interestingly, neither the 
coefficient of determination nor the RMSE improved 
when the size of the training data increased at the 
Sarab station. However, at the other three stations, 
R2 increased as the training data size increased and 
RMSE decreased. At the Sarab station, the best result 
was obtained with 70% of the records. The decrease 
in the number of data points and the number of linear 
models at the Mianeh station did not adversely affect 
the M5 tree results.

Dispersion diagrams of the pan coefficients 
determined by the FAO method and the decision 
tree models in each station are shown in Figure 3, 
indicating that the decision tree accurately simulates 
the pan coefficient at each station. The coefficient 
of determination is larger than 0.99 for all stations 
(0.9916-0.9952).

LM num: 1 Kp = 0.0001 × RHmean – 0.0007 × U2 + 0.6926
LM num: 2 Kp = 0.0001 × RHmean – 0.0092 × U2 + 0.706
LM num: 3 Kp = 0.0001 × RHmean – 0.0185 × U2 + 0.6917
LM num: 4 Kp = 0.0003 × RHmean – 0.0035 × U2 + 0.7742
LM num: 5 Kp = 0.0003 × RHmean – 0.0196 × U2 + 0.793
LM num: 6 Kp = 0.0003 × RHmean – 0.0295 × U2 + 0.7935
LM num: 7 Kp = 0.0003 × RHmean – 0.0295 × U2 + 0.7904

LM1 (455/0%)

RH Mean

LM4 (121/0%)

LM2 (90/0%)

LM6 (2/0%) LM7 (5/0%)

LM5 (26/0%)LM3 (32/0%)

≤69.75

≤1.51

≤2.008

≤2.008 >2.008

≤1.765 >1.765>2.008

≤1.175 >1.175>1.51

>69.75

U2 U2

U2

U2 U2

Fig. 2. Decision tree for the Shahriar dam station.
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Fig. 3. Scatter diagrams of the pan coefficients estimated by the FAO method and by the decision tree model.

Table IV. Daily results generated by the M5 decision tree model for all stations under numerous 
scenarios.

Station Number
of data 

Training
data (%)

Number of
linear models

R2 RMSE

Ahar Sattarkhan dam 2863

66 16 0.9912 0.0050
70 16 0.9916 0.0050
75 16 0.9916 0.0050
80 16 0.9916 0.0049

Ahar Vardin 2508

66 13 0.9914 0.0059
70 13 0.9926 0.0056
75 13 0.9944 0.0049
80 13 0.9952 0.0045

Mianeh Shahriar dam 731

66 7 0.9936 0.0044
70 7 0.9936 0.0041
75 7 0.9936 0.0043
80 7 0.9937 0.0042

Sarab Mirkouh 2127

66 13 0.9926 0.0059
70 13 0.9931 0.0058
75 13 0.9930 0.0059
80 13 0.9922 0.0060

Note: values in bold letters show the best results.
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Time series of simulated and observed monthly 
mean pan coefficients for each station are shown in 
Figure 4. At the Vardin station, the M5 tree model 
simulated the higher Kp value in only four out of 16 
months of testing. Kp values remain the same for 12 
months. In the Sattarkhan station, the Kp value re-
mained higher during four of 19 test months, whilst 
it remained lower during five months. In the Mirkouh 
station, the M5 tree model simulated higher Kp values 
during five of the 21 test months and lower in only 
one month. At the Shahriar station, the M5 tree model 
simulated lower values in all seven test months.

As shown in Table V, the unpaired two-sample 
t-test was applied, and NSE and skewness were cal-
culated to determine the best model for each station 
during the test period. T is simply the calculated 
difference represented in units of standard error. The 
greater the magnitude of T, the greater the evidence 

Fig. 4. Time series of the monthly pan coefficients estimated by the FAO method and the decision tree model. 
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against the null hypothesis. This means there is a 
greater evidence of having a significant difference. 
As T tends to 0 the absence of a significant difference 
is more likely. The P value is used to accept or reject 
the null hypothesis. The lowest P value was 0.722 in 
Mianeh and the highest was 0.96 in Sattarkhan. It was 
concluded that there was no statistically significant 
difference between the calculated Kp and the Kp 
value simulated with the M5 model for all stations. 
A similar situation arises when NSE values (from 
0.989 to 0.994) are examined.

4. Conclusions
In this paper an easy and feasible method to deter-
mine the amount of ET0 (crop water requirement) 
using data obtained from an evaporation pan, is 
presented. Evaporation pans can be easily installed 

Table V. Results of the unpaired two-sample t-test, the Nash-Sutcliffe efficiency index and skewness 
for the test period.

Station t-test T and P values Nash-Sutcliffe efficiency index Skewness

Sarab, Mirkouh –0.10/0.917 0.993 –0.1826
Ahar, Vardin –0.16/0.873 0.994 0.0422
Ahar, Sattarkhan dam 0.05/0.960 0.991 0.5394
Mianeh, Shahryar dam 0.36/0.722 0.989 1.4100
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by farmers in all climatic conditions. Measurements 
can be made by them, and the required amount of 
irrigation can be calculated without the need for 
expertise (Ditthakit and Chinnarasri, 2012). The 
Kp value plays a key role in the ET0 calculation. If 
the Kp value is determined correctly, ET0 and the 
crop water requirements can be calculated, enabling 
effective irrigation planning and optimum use of 
agricultural water. Predicting ET0 and consequently 
estimating the crop water requirements is of great 
importance in irrigation water management. Evap-
oration pans are useful to determine ET0 in regions 
without full meteorological stations and data. So, the 
pan coefficient is considered a key parameter for es-
timating ET0 in irrigation practices. In this research, 
the FAO-24 and FAO-56 class A pan equation was 
used to calculate Kp. RH and WS values, as well 
as the windward side distance (fetch) of the green 
crop, were considered as inputs to the decision tree 
model for estimating the pan coefficient. 

Four different training datasets, consisting of 66, 
70, 75 and 80% of the original data were tested in this 
study. The average RH for all stations ranged from 
60.7 to 64.5%, whereas the WS varied between 1.1 
and 1.91 m s–1. Moreover, Kp values ranged from 
0.7 to 0.8.

A total of 49 simple linear relations were obtained 
via the M5 decision tree model for each of the four 
stations to compute the Kp value. The best results 
were obtained when 70% of the data were used for 
training in the Mirkouh station, and 80% at the other 
stations. At this stage, R2 values ranged between 
0.9916 and 0.9952, and RMSE values from 0.0042 
to 0.0058. No linear relationship was found between 
R2 and RMSE values at the Sarab station. Moreover, 
the unpaired two-sample t-test and the NSE were 
also calculated in our research. P values ranged from 
0.722 to 0.96 whereas NSE values renged from 0.989 
to 0.994. 

Results show that the decision tree model is able 
to accurately predict Kp at all four stations in the 
relatively cold and arid study area. Therefore, this 
model can be used in arid climates, with the resulting 
linear equations being simple, understandable, and 
easy to apply. 

The most important finding in this study is an easi-
er method to estimate Kp with a number of linear func-
tions obtained via the M5 model from RH and WS, 

without the need of complex tables and equations. 
Ditthakit and Chinnarasri (2011) estimated Kp val-
ues with a non-linear genetic artificial intelligence 
method (R = 0.99). In our study, Kp was estimated 
with the same accuracy but with easier linear equa-
tions from the M5 model. Finally, the estimation of 
Kp can help calculating ET0 more accurately, leading 
to effective irrigation planning. The only limitation 
of this study is that it was conducted in a specific 
region of Iran and the results are not applicable to 
regions with different climates. Our suggestion is 
to perform similar studies in regions with different 
climatic conditions.
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