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RESUMEN

La precipitación es el factor más importante del ciclo hidrológico. Representar de manera adecuada la varia-
bilidad espacial y temporal de la precipitación continúa siendo una tarea hidrológica abrumadora cuando se 
utilizan datos (por lo general escasos, cuando no inexistentes) de redes pluviométricas. Por ello, el presente 
estudio se enfoca al análisis de la solidez de algunos productos satelitales de precipitación, en especial las 
bases de datos de: i) Precipitación por Infrarrojos del Grupo de Riesgos Climáticos (CHIRP, por sus siglas en 
inglés), ii) Precipitación por Infrarrojos del Grupo de Riesgos Climáticos con Datos de Estación (CHIRPS), 
y iii) 3B42 y iv) 3B42RT, ambos de la Misión para la Medición de Lluvias Tropicales (TRMM), con el fin de 
representar de forma adecuada el régimen de precipitación de la cuenca del río Madeira. Para valorar la pre-
cisión de los productos de precipitación adquiridos por percepción remota, se realizaron comparaciones entre 
éstos y los datos pluviométricos observacionales disponibles, que por lo general se consideran en la literatura 
como verdaderos a pesar de sus bien conocidas limitaciones. Se utilizó análisis de ondeletas para validar el 
desempeño de los productos satelitales mencionados mediante la extracción de los ciclos, frecuencias y ten-
dencias correspondientes de las series de tiempo disponibles en la cuenca en estudio. Los resultados muestran 
que las bases de datos CHIRPS y CHIRP representan de forma más adecuada el fenómeno pluviométrico en 
la cuenca del río Madeira mediante sus datos de precipitación acumulada mensual, en comparación con los 
productos 3B42 y 3B42RT, tomando en cuenta como línea de base la información de pluviómetros. CHIRPS 
tuvo el mejor desempeño entre los estimadores seleccionados para estudiar la cuenca del río Madeira. Análisis 
subsiguientes mostraron también otro resultado muy interesante relacionado con periodos sin lluvia, lo cual 
generalmente no se reporta, a pesar de que dicha evaluación es bastante importante en hidrología cuando se 
analizan corridas de sequía y sus efectos en el balance hídrico a nivel de cuenca. Se obtuvieron estimaciones 
de gran precisión para identificar periodos sin lluvia con datos adquiridos mediante percepción remota, lo 
cual constituye un recurso adicional de gran valor de los productos satelitales de precipitación. Vale la pena 
destacar que esta perspectiva merece recibir mucha más atención en la literatura con el objeto de analizar a 
fondo la relación agua-energía-alimentos.
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ABSTRACT

Rainfall is recognized as the most important driving force of the hydrologic cycle. To accurately represent 
the spatio-temporal rainfall variability continues to be an enormous hydrological task when using commonly 
sparse, if available, rain gauges networks. Therefore, the present study devoted a special effort to analyze the 
robustness of some satellite rainfall products, notably the datasets hereafter named as (i) CHIRP (Climate 
Hazards Group InfraRed Precipitation), (ii) CHIRPS (Climate Hazards Group InfraRed Precipitation with 
Station data), (iii) 3B42, and (iv) 3B42RT of the Tropical Rainfall Measuring Mission (TRMM), to adequately 
represent the pluviometric regime in the Madeira river basin. To assess the accuracy of acquired remotely 
sensed rainfall products, comparisons to observational available rain gauges usually taken as ground-truth 
in the literature, despite their well-known limitations, were performed. Wavelet analysis was also used to 
validate the performance of the referred satellite products by means of extracting the corresponding cycles, 
frequencies, and tendencies along the available time series across the studied basin. The results showed 
that the data sources CHIRPS and CHIRP better represent the pluviometric phenomenon by means of their 
monthly accumulated rainfall in the Madeira river basin when compared to the 3B42 and 3B42RT products 
taking into account rain gauges as baseline information. The CHIRPS product performed the best among 
the selected rainfall estimators for the Madeira river basin. Further analysis brought up also another very 
interesting result related to non-rainfall periods, which is usually not reported. However, such evaluation is 
quite important in hydrology when examining run sequences of droughts and consequent effects in the water 
balance at the watershed scale. Highly accurate estimates in the sense of identifying non-rainfall periods 
by remotely sensed information was achieved, which represents an additional and valuable asset of satellite 
rainfall products. It is worthwhile to say that this perspective deserves to receive much more attention in the 
literature in order to deeply discuss the water-energy-food nexus.

Keywords: satellite rainfall products, floods and droughts, Amazon basin.

1. Introduction
The Amazon basin is definitely one of the major 
convective activity areas across tropical regions 
worldwide. The corresponding convective rainfall 
keeps a close relationship with the local and regional 
behavior of dynamic and thermodynamic variables, 
which are also influenced by global atmospheric phe-
nomena, such that those factors should be considered 
when evaluating rainy and dry seasons (Wang et al., 
2017; Spracklen et al., 2018; Cavalcante et al., 2019; 
Molina et al., 2019).

Complementarily, the Amazon ecosystem is also 
directly connected to ancient and nowadays precip-
itation cycles. Paleoclimatological analyses reveal 
that different plant species are highly dependent on 
a certain amount of paleo-precipitation meaning that a 
decrease of this variable makes the region more prone 
to savanization (Wang et al., 2017).

Due to the influence of climate change on rainfall 
events and also to the evolution of land use and land 
cover, monitoring rain variability is essential to es-
timate and mitigate the effects of those changes over 
the Amazon ecosystem. Deforestation and climate 
change can both contribute to severe damages on 
the forest ecosystem, notably in the Amazon forest 

biome, resulting in a loss of biodiversity, reduction 
of the corresponding carbon retention capacity, and 
soil weakness, eventually impelling the Amazon to a 
gradual process of savanization (Pielke, 2005; Zemp 
et al., 2017; Le Page, 2017; Schielein and Börner, 
2018).

Another important remark is that the Amazon re-
gion presents a pluviometric station network with at 
least two significant problems or limitations, namely 
the irregular density and the great number of gaps 
in the historical data series. The area of the Amazon 
region in the Brazilian territory, which englobes 
about 5 500 000 km², has barely 613 rain gauges with 
a collection area of the equipment that, added up, 
cover an area of measurement (not taking into ac-
count its area of influence) of approximately 24.5 m2, 
whichis only 4.46 × 10–10% of the measurable terri-
tory (ANA, 2018).

In this sense, rainfall estimates from space sensors 
present an opportunity to complement the standard 
observational network and allow the development 
of real-time applications. However, the benefits of 
those estimates can only be used if they are properly 
validated and if their accuracy is adequately described 
(Mantas et al., 2014).
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Under this framework, the use of different tech-
niques for the pluviometric description comes up as 
a possible solution, such as the information basis 
provided by orbital remote sensing, since it allows 
to retrieve observations from almost all the parts of 
the Earth in relatively small time intervals, contrib-
uting to a better understanding of rainfall in regions 
where there are no satisfactory in situ observational 
networks or even in the case there is no rainfall ob-
servation at all (Liu and Peter, 2013).

Different studies have been developed to address 
precipitation behavior in the Amazon region and 
South America based on comparisons between rain-
fall historical series derived from rain gauges and 
satellite datasets, as conducted by Nóbrega (2008),  
Pereira et al. (2010, 2015) and Paiva et al. (2012), 
among others. However, those studies did not explore 
in-depth the representativeness and identification of 
the various frequency cycles and spatio-temporal 
trends that could be found in the rainfall datasets. 
On the other side, rainfall products have also been 
explored as input to hydrological models, as inves-
tigated, for instance, in the study by Correa et al. 
(2017). In this case, it should be pointed out that such 
type of analysis usually fails to rigorously validate the 
quality of the input dataset. In general, the option is 
to calibrate and validate the model-generated stream 
flows against observed recorded stream flows using 
mathematical objective functions, not necessarily 
considering the adequate representation of the spa-
tio-temporal field of rainfall.

It should also be emphasized that adequate rainfall 
monitoring is quite important not only for rainy time 
periods and flooding but also for droughts with a 
variety of applications at the watershed management 
level such as agricultural and irrigation projects and 
hydropower operation and planning,

Trejo et al. (2016) explored the performance of 
satellite rainfall product CHIRPS (Climate Hazards 
Group InfraRed Precipitation with Station data) in 
contrast to ground observed rainfall over Venezuela 
in the 1981-2007 period with respect to their accu-
racy in drought and flood periods. The assessment 
was made by usual performance measures such as 
Pearson correlation coefficient, mean error, rela-
tive mean absolute error, Nash-Sutcliffe efficiency 
coefficient and percent bias, jointly with standard 
categorical metrics such as probability of detection 

and false alarm ratio. Overall evaluation was that the 
satellite product overestimated lower monthly rain-
fall values whereas it underestimated higher values 
(> 100 mm × month–1), with moderately high co-
herence between satellite rainfall estimates and rain 
gauge observations. Moreover, the authors indicate 
that the satellite product misclassified rainfall events 
and they do not recommend using it for drought 
monitoring in Venezuela due to the high uncertainty 
in identifying presence or non-presence of precipi-
tation, especially when the rainy season is taken into 
account. Instead, they suggest the use of drought 
indices such as the standardized precipitation index 
(SPI), which is based on cumulative rainfall.

By examining some of the constrains of the pre-
viously cited studies, the wavelet technique emerges 
as an alternative to explore more thoroughly rainfall 
datasets, some of them previously examined in pub-
lished evaluations under different methodological 
frameworks. It should be emphasized that this work 
provides new insights concerning signal analysis, 
which could be grouped basically into two domains: 
time scale (frequency or period) and location of 
disruptive variations along the time series. There-
fore, wavelet analysis allows to establish standards 
of comparison to determine specific variations that 
might have occurred in a given time scale and lo-
cation in the historical time series (Kang and Lin, 
2007). Besides that, the application of wavelet 
transform englobes the analysis of time series that 
might be non-stationarity at different frequencies 
(Torrence and Compo, 1998), being suitable for 
comparing low-frequency variability along histor-
ical time series.

In order to summarize, this study intends to fulfill 
the existing knowledge gap in terms of providing 
a full analysis of the rainfall performance in the 
Madeira river basin, encompassing rainfall and 
non-rainfall courses based on four remotely per-
ceived products, specifically: (i) Climate Hazards 
Group InfraRed Precipitation (CHIRP), (ii) Climate 
Hazards Group InfraRed Precipitation with Station 
data (CHIRPS), (iii) 3B42, and (iv) 3B42RT from 
Tropical Rainfall Measuring Mission (TRMM), to-
gether with rain-gauge data available in the locality. 
Furthermore, the transformed wavelet analysis was 
applied to the rainfall datasets to consider a com-
plementary verification of the representativeness of 
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the cycles and frequencies associated with precip-
itation in this sub-basin and its coherence with the 
rainfall remote sensing estimates in the region. The 
paper is organized as follows: section 2 describes 
the study area and the characteristics of the rainfall 
datasets, jointly with the procedures for defining 
the methodological approach to address rainfall 
patterns at the Madeira river watershed; results for 
the proposed procedures are presented in section 3, 
and finally section 4 presents a brief summary and 
concluding remarks.

2. Materials and methods
2.1 Study area
The Madeira river basin (Fig. 1) is located southwest 
of the Amazon River (right bank) and it is one of its 
main affluents. This sub-basin presents international 
limits, thus being a transboundary basin that extends 
through Bolivia (51%), Brazil (42%) and Peru (7%), 
with a total drainage area of 1 324 727 km2. Actual-
ly, the referred basin represents the largest Amazon 
sub-basin (23%).

According to the Köppen classification, the basin 
presents three climate zones: Af: tropical humid to 
super humid; Am: tropical rainforest, with monsoon 
rainfall and a dry season of short duration, and Aw: 

tropical warm, with a dry winter season (Peel et al., 
2007). Two typical seasons are identified in the re-
gion: the rainy season from October to April and the 
dry season from May to September.

2.2 Rainfall database
The period of analysis, which comprises the years 
2001 to 2015, was chosen due to: (i) it encompasses 
more stations with data available without gaps within 
the area of the Madeira river basin, and (ii) there are 
also simultaneous remotely sensed rainfall products 
available, namely 3B42 and 3B42RT from TRMM 
(1999 to 2015), and CHIRP and CHIRPS, both from 
1981 to the present.

2.3 Surface data
The information was collected in the Brazilian and 
Bolivian territories. In Brazil, the information of 
volumes precipitated is collected at the daily scale 
and obtained by means of rain gauges installed and 
operated by the Brazilian National Water Agency 
(ANA) in partnership with the Brazilian Geologi-
cal Survey (SGB), more specifically, the Brazilian 
Company of Mineral Resources Research (CPRM), 
in the form of historical time series available in the 
Brazilian HidroWeb system (ANA, 2018). The in-
formation from the Bolivian territory was collected 
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Fig. 1. Location of the study area: Madeira river basin and corresponding 
available rain gauges (pluviometric stations) used in the analysis (2001-2015).
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in monthly accumulations through a request to the 
National Service of Meteorology and Hydrology of 
Bolivia (SENAMHI).

However, because of the low density of the rain-
gauge network within the Amazon region and the 
numerous periods with data failures, the analysis was 
performed based on a quantitative set of 40 historical 
time series of Brazilian rain gauges, labeled according 
to the registration number defined by ANA (Fig. 1) 
and five stations in Bolivia, which are named B1, B2, 
B3, B4 and B5 (Fig. 1).

The selected time series had less than 30% of 
monthly missing data. The missing monthly accu-
mulated data were filled by the ordinary kriging 
interpolation method, which is based on the principle 
of the best linear unbiased estimation (Journel and 
Huijbregts, 1978). The spherical model, which is one 
of the positive-definite functions commonly used in 
geostatistics, is adopted in this study.

The kriging procedure uses a continuous function 
that explains the behavior of a variable in the different 
directions of a defined geographical area, and allows to 
associate the variability of the estimation based on the 
distance that exists between a pair of points, by the use 
of a semivariogram, assuming second-order station-
arity. It should be noted that the semivariogram is the 
mathematical description of the relationship between 
the behavior of the variance for groupings of pairs of 
rainfall observations ranked accordingly to the distance 
separating such pairs of observations (h). The expres-
sion of the empirical omnidirectional expression for 
the semivariogram, which is the basis for modeling a 
continuous function for posterior implementation of 
the interpolation kriging procedure, is given by

γ (h) = ∑i=1  [z(xi) – z(xi + h)]2 ^ 1
2N(h)

N(h)  (1)

where: γ ̂ (h) is the estimated semivariogram, N(h) 
the number of pairs of measured values at a certain 
distance h, and z (.) the observation value located at 
a certain point x.

2.4 Remote sensing data
This work evaluates four satellite rainfall products: 
(i) Climate Hazards Group InfraRed Precipitation 
(CHIRP), (ii) Climate Hazards Group InfraRed Precip-
itation with Station data (CHIRPS), and the products 
(iii) 3B42 and (iv) 3B42RT from the Tropical Rainfall 

Measuring Mission (TRMM). The remote sensing 
data CHIRP and CHIRPS are provided by the Climate 
Hazards Group (CHG, http://chg.geog.ucsb.edu/data/
chirps/). These products have more than 30 years of 
data (beginning in 1981) in spatial resolutions ranging 
from 0.25 to 0.05º for the quasi-global coverage of 
50º S to 50º N. Both CHIRP and CHIRPS are based 
on a global 0.05º monthly precipitation climatology 
(CHPclim). The formulation of CHPclim consists of 
the incorporation of physiographic features (elevation, 
latitude and, longitude) and monthly average data ac-
quired from satellite. CHPclim satellite data include 
microwave precipitation estimates from TRMM 2B31, 
microwave-plus-infrared precipitation from Climate 
Prediction Center MORPHing (CMORPH), monthly 
infrared brightness temperatures from geostationary 
source, and land surface temperature (Funk et al., 
2015).

In addition to CHPclim data, CHIRP uses cold 
cloud duration (CCD) data, which is the time inter-
val in which a temperature pixel is below a certain 
threshold, based on satellite Thermal InfraRed (TIR) 
images. It is assumed that rainfall and CCD are lin-
early correlated. The calibration of CCD data uses 
5-day rainfall from the Tropical Rainfall Measuring 
Mission Multi-satellite Precipitation Analysis (TMPA 
3B42), which has a spatial resolution of 0.25º (Funk 
et al., 2015). Each pentadal precipitation estimate is 
then converted to the fraction of the long-term mean 
precipitation estimate. Lastly, fractions are multi-
plied by the CHPclim value, generating the CHIRP 
product. Daily precipitation estimates are generated 
by redistributing the pentadal totals in proportion to 
the daily 0.05º grid of the Coupled Forecast System. 
CHIRPS differs from CHIRP because it incorporates 
rain-gauge stations data through the use of a modified 
inverse distance weighting algorithm. More informa-
tion concerning CHIRP and CHIRPS can be found 
in Funk et al. (2015).

Two products from the TRMM satellite, the 3-h 
near-real-time (TMPA 3B42RT) and the research-grade 
(TMPA 3B42) were analyzed in this study. Both prod-
ucts are provided by NASA (https://mirador.gsfc.nasa.
gov) at the same 0.25º × 0.25º resolution. The 3B42RT 
considers only satellite data for precipitation estimates 
and is available since March 1, 2000 while 3B42 data 
is based on 3B42RT with ground data and is available 
since January 1, 1998 (Liu, 2015).
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The TMPA dataset considers two main data 
sources for rainfall estimates. The first is precipita-
tion-related microwave data extracted from numerous 
orbital sensors onboard the Low Earth Orbit (LEO) 
satellites (Huffman and Bolvin, 2018). The second 
is infrared (IR) data from the international constel-
lation of geosynchronous (geo) satellites (Huffman 
and Bolvin, 2018).

The general methodology to retrieve TMPA 
3B42RT data can be divided into three steps (Huff-
man et al., 2010; Huffman and Bolvin, 2018): (1) 
the microwave data are converted to precipitation 
estimates at 3-h time scale using different Goddard 
Profiling Algorithms, depending on the sensor (see 
Huffman and Bolvin, 2018), and combined; (2) the 
IR data are calibrated through histogram matching of 
the microwave precipitation estimates (Duan et al., 
2016), and (3) microwave- and IR-based estimates 
are merged (the IR-based estimates are used just to 
fill out missing data in the microwave estimates).

The TMPA 3B42 data requires the integration 
of the above-mentioned data with the rain-gauge 
data. In this process, all the microwave-IR merged 
precipitation estimates are summed into monthly 
totals creating a multi-satellite (MS) product. The 
MS data is combined with the Global Precipitation 
Climatology Centre (GPCC) monthly rain-gauge 
analysis (Rudolf et al., 1994) products using the 
inverse-error-variance weighting, which generates 
the monthly TRMM product (3B43) (Huffman et 
al., 2010). Lastly, the 3-h precipitation estimates are 
adjusted for each month, making their sums equal 
to the TRMM 3B43 (Huffman et al., 2010). Thus, 
the adjusted precipitation is the final 3B42 product. 
More details concerning the TMPA algorithms can 
be found in Huffman et al. (2010) and Huffman and 
Bolvin (2018).

To compare with observed daily rain-gauge data, 
satellite estimates were accumulated during daily 
periods according to the reading reference of rain 
gauges, i.e., of the amount collected along 24 h ini-
tiating at 7:00 LT on the day of record. Subsequently, 
data were accumulated at a monthly time scale.

2.5 Analysis of rainfall patterns and data grouping
The analysis to characterize pluviometric patterns 
among the available stations in order to identify 
rain-gauge clusters accordingly to common features 

regarding the rainfall regime and their geographic 
relation, other than investigating and identifying any 
sort of existing spatial pattern, had also the purpose 
of systematizing the comparison of observed data 
with satellite estimates, including the examination of 
their behavior along the time in the frequency space 
with respect to localized intermittent periodicities by 
means of the wavelet transform technique.

The hierarchical cluster method, which is the most 
used technique in this type of evaluation (Andrade 
et al., 2016), was used in this process. The method 
consists of grouping the pluviometric stations by a 
process that was sequenced at several levels until 
a dendrogram is established, which is a simplified 
representation of the dissimilarity matrix.

The Ward method was chosen as a technique 
for group formation. In this technique, the distance 
between two clusters is the sum of the squared de-
viations of the points to the centroids. The objective 
of the Ward link is to minimize the sum of squares 
within the pool. The distance is calculated with the 
distance matrix of Eq. (2) based on the expression

dmj =
(Nj + Nk) dkj + (Nj + Nl) dlj – Nj dkl

Nj + Nm
 (2)

where dmj is distance between groups m and j; m is 
the merged cluster consisting of clusters k and l, with 
m = (k, i); dkj is the distance between clusters k and 
j; dlj is the distance between groups l and j; dkl is the 
distance between clusters k and l; Nj is the number of 
variables in grouping j; Nk is the number of variables 
in grouping k; Nl is the number of variables in cluster 
l, and Nm is the number of variables in the cluster m. 

Finally, the square of the Pearson correlation coef-
ficient (r²) (the coefficient of determination) defined 
at the magnitude level of 70%, was the criterion used 
for the formation of groups and dendrogram cutting.

2.6 Comparison between rain gauges and remote 
sensing database
The virtual station (pixel centroid) was used as re-
mote sensing information for evaluations with the 
rain-gauge data. The comparison was made between 
the rain gauges and the nearest virtual station. The 
area represented by a virtual station depends on the 
satellite pixel size, which is 0.25º for 3B42RT and 
3B42, and 0.05º for CHIRPS and CHIRP. As the 
Amazonian rain-gauge network is sparse, none of the 
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pixels had more than one rain gauge for comparison. 
The analysis scale was monthly.

2.7 Deterministic assessment of satellite estimates
A dispersion matrix of the analyzed data series was 
built, where each of the data sources was graphically 
placed with another series to evaluate the relationship 
between them.

Three analysis groups were made in order to 
verify the efficiency of the remote sensing data, 
containing: (i) the total quantitative historical series, 
(ii) months representing the dry period in the region 
(April to September), and (iii) months constituting 
the rainy season (October to March). Inside each 
analysis group, the following metrics were studied: 
standard error (E) (Eq. 3); coefficient of determina-
tion (r²) (Eq. 4), and Willmott’s concordance index 
(Willmott et al., 1985) (Eq. 5), as well as the derived 
performance index, which is the product between the 
Pearson correlation coefficient (r) and the Willmott 
concordance index (d). The classification accordingly 
to the intervals of the performance index is presented 
in Table I. Below are the expressions for E, r² and d, 
given, respectively, by

E =
∑i=1  √(xE – xM)2

N

n
 (3)

r2 =
√

∑i=1 (xM – xM)(xE – xE)

N

n

∑i=1 (xM – xM)2 ∑i=1 (xE – xE)2

n – 1 n – 1
.

n n

2

 (4)

d = 1 –
∑i=1 [(xE – xM) + (xE – xM)]2n

∑i=1 (xM – xE)2 n
 (5)

where xE is the estimated event average, xM are the 
measured events average, and N is the total number 
of validation stations.

Stations B1, B2, 965001 and 1063001 served as 
controls to test the level of accuracy achieved by what 
we call “raw datasets” CHIRP and 3B42RT, in order 
to describe the historical rain-gauge series, since they 
are not contaminated due to insertion of corrections 
and adjustments with in situ observational rainfall 
data taken into account.

2.8 Wavelet transform
As previously mentioned, the wavelet transform is 
a technique used to reveal the periodic character-
istics of non-stationary variance at different time 
scales (Torrence and Compo, 1998). It also allows 
the identification of the main periodicities in a time 
series and the progression in time of each frequency 
(Liang et al., 2011). In this context, this technique was 
used to compare the characteristics of the historical 
rain-gauge time series and the corresponding pixels 
in terms of rainfall estimated by remote sensing 
products (3B42, 3B42RT, CHIRP and CHIRPS) in the 
time-frequency domain. The technique was applied 
to the averages of the series of stations within each 
defined group during the grouping analysis. There are 
many families of waving functions. In particular, the 
Morlet function (Eq. 6) is recommended for hydro-
logical studies, mainly pluviometric series, because 
it has a similar pattern to the sign of this variable, 
revealing peaks and ranges in wavy signals similar 
to rainfall data (Brito, 2013). It can be expressed by

ψ0 (sω) = π1/4 H(ω) e– (sω – ω0)2 / 2^  (6)

where s is the scale of the wavelets and H (ω) is the 
Heaviside step function. H (ω) = 1 if ω > 0, H (ω) 
= 0 if ω < 0; the dimensionless frequency (ω0) was 
considered equal to 6 to satisfy the admissibility 
condition, providing a good balance between time 
and frequency location (Grinsted et al., 2004).

The methodology combines the techniques of 
coherence by wavelets (WTC), which indicates 
the covariance between two-time time series as a 
function of time-frequency, and the crossed wavelet 
(XWT), which shows a power spectrum that indicates 
the regions of interference between two-time series 
(Brito, 2014).

Table I. Classification of the performance index.

Performance index Classification
> 0.85 Great

0.76-0.85 very good
0.61-0.75 Good
0.61-0.65 Median
0.51-0.60 Affordable
0.41-0.50 Bad

≤ 0.40 Awful

Source: Willmott et al., 1985.
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3. Results
3.1 Grouping analysis
The grouping analysis of the monthly rain-gauge data 
performed between 2001 and 2015 resulted in the 
dendrogram shown in Figure 2. It can be observed 
that the threshold defined for a correlation considered 

strong between stations (> 70%) determined the 
existence of four homogeneous groups, represented 
graphically by different colors.

The spatial distribution of the 45 stations in the 
four homogeneous groups is shown in Figure 3, 
which also shows the hypsometric basin map on a 
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logarithmic scale to better observe the differences in 
elevation. The arrange of the groups is based on the 
proximity of stations and on the elevation profile.

The monthly average rainfall of each group is pre-
sented as histograms in Figure 4. All groups indicate 
the existence of a dry season starting in April, with 
an increase in precipitation from November until the 
end of March.

Clusters 2, 3 and 4 show that January to March are 
the rainiest months, while in group 1, March stands 
out from the others and the rainier quarter would be 
February-March-April. August presented the lowest 
rainfall in all groups. The study of Andrade et al. 
(2016), when analyzing the same basin using data 
from 41 rainfall stations in a historical time series 
between 1978 and 1998, found a similar cluster con-
figuration, thus confirming a degree of stationarity in 
the pluviometric characteristics of the region.

It is worth noting that cluster 1, which presented 
anomalous features by its contrast through the main 

data from the other clusters, is located at the lowest 
part of the basin near its extort (i.e., next to the con-
fluence of the Madeira river with the Amazon river). 
This region was pointed out by Souza (2019) as a 
region that had a great recurrence of La Niña events 
in the last 30 years, which caused extreme rainfall 
episodes with high return periods (low frequency 
events).

3.2 Efficiency of remote sensing sources
The comparison between precipitation accumulations 
observed in the pluviometric stations and estimated 
by CHIRP, CHIRPS, 3B42, and 3B42RT from 2001 
to 2015 are presented in Figures 5-7. Analyzing the 
values of the regression coefficient for the total set of 
monthly accumulation historical time series (Fig. 5), 
it is verified that the CHIRPS data were mostly above 
0.7 and slightly below for the wet period. In the dry 
period, products performed better with higher mag-
nitudes of r², having the products CHIRP and 3B42 a 
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performance evaluated with a regression coefficient 
of the order of 0.6. The historical time series of the 
product data of the 3B42RT achieved a lower level 
of performance since the regression coefficient was 
around 0.5.

It should also be noted that the regression method 
approach is limited to estimate the efficiency of the 

TRMM data in the Amazon region for time series 
encompassing a limited number of years. In the case 
of a cyclical event, in which both time series show 
increases and reductions independently of the mag-
nitudes, such variation can hide data inaccuracies.

The average standard error analysis also fol-
lowed the trend of the regression coefficient (Fig. 6). 
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It can be observed that the magnitude of these errors is 
inversely proportional to the amount of rainfall, a fact 
that was also confirmed by the agreement index (Fig. 7), 
where the former was higher in the dry regions for 
the CHIRPS and CHIRP data, while the latter indi-
cated that the performance of TRMM products in 
representing rainfall for all rain gauge stations tested 
in the rainy season was highly inadequate.

The study of Paca (2008), for instance, found a 
similar behavior for the data of the product 3B42 
in the Guamá river basin in the state of Pará (PA), 
Brazil, also located in the Amazon basin. In gener-
al, the differences in the performance of the prod-
ucts result mainly from the variation in their spatial 
resolution, once the pixel representation smoothes 
out the frequency of the most intense events 
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(Ensor and Robeson, 2008), making the estimate 
more complex at coarse resolutions. For example, 
estimates 3B42 and 3B42RT, which are averaged 
over a larger area (0.25º × 0.25 º), do not represent 
the spatial variation of rainfall caused by differ-
ences in relief or by convection, which is provided 
by rain-gauge observations.

In the comparison between data estimated by re-
mote sensing and data observed in the stations, there 
are two interesting facts: (1) the low correspondence 
of the remote sensing data with rainfall information 
in the rainy season, and (2) the slightly better cor-
respondence in the dry season. The possibility of 
underestimating precipitation as a consequence of the 
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pixel resolution is more evident in the rainy season. 
This fact explains the lower correspondence with the 
specific data for that period.

The information mentioned above confirms the 
concern of the study of Ali et al. (2003), which em-
phasizes that the intermittency of rainfall in the Am-
azon region induces a great spatial variability, which 
by itself causes uncertainty for point measurement to 
be extrapolated to represent a real average.

In this context, Sodré et al. (2012) highlighted that 
the possible cause of these discrepancies is a seasonal 
variation of large-scale phenomena and local con-
vective processes, such as the displacement of lines 
of instability, which needs more in-depth studies to 
prove this hypothesis.

In a similar study using rain gauges and TRMM 
data conducted for the transition area of the Amazoni-
an forest between 1988 and 2013, Serrão et al. (2016) 
showed higher r² values in rainy periods than in dry 
months. Therefore, there is no overall truth about the 
efficiency of TRMM data since it varies according to 
the region evaluated.

Concerning this greater effectiveness of TRMM 
data to describe dry periods within the Amazon region, 
Paca (2008) reported the highest degree of correlation 
observed for a region close to the studied basin in 
2005, in which there was a typical rainfall pattern in 
the northern region when an extreme drought event 
occurred.

Sodré et al. (2012) highlighted that the reliability 
of TRMM data should be questioned, since it presents 
a discrepancy of more than 100 mm in monthly val-
ues during rainy periods with respect to the amount 
measured in rain gauges.

Also, the type of clouds formed over the location 
should be taken into account in the analysis seg-
mented by seasons. In the Amazon region, rainfall 
during the rainy season can originate from both 
shallow and deep clouds. Few clouds are observed 
during the dry season, and those that are formed 
are associated with the burning of biomass, which 
releases aerosols leading to large vertical non-pre-
cipitating clouds (Fish et al., 1998; Andrade et al., 
2009). Thus, the greater assertiveness of products 
in periods of low precipitation might be linked to 
the accuracy of sensors and their corresponding 
wavelengths, whose responses are dependent on 
the sensitivity when interacting with water content 

within clouds and detecting temperature at the top 
of the clouds.

Algorithms to estimate satellite rainfall are based 
on the thermal infrared (TIR) band, inferring the 
cloud-top temperature, or on the passive microwave 
(PMW) band, which penetrates the cloud to ex-
plore internal properties through the interaction of 
raindrops with the radiation energy field. There are 
advantages and disadvantages to be considered in 
using either type of sensor.

TIR-based rainfall estimates present higher un-
certainties in identifying the presence of some types 
of mixed-phase clouds or warm clouds. Therefore, 
cirrus clouds are frequently confused with convec-
tive clouds due to similar brightness. On the other 
hand, PMW-based rainfall estimates have a marked 
bias in the presence of warm orographic rainfall and 
over very cold surfaces as mountains-tops covered 
with snow, which is interpreted as precipitation. 
PMW-based algorithms may frequently outperform 
TIR-based techniques for instantaneous rainfall over 
a specific region, while TIR gives better results than 
PMW algorithms for longer periods.

Proceeding with a more in-depth evaluation of 
the results depicted in Figures 5-7, it can be said 
that the most efficient combination of TIR and PMW 
techniques in the conception of CHIRP and CHIRPS 
products explains their better overall performance 
in comparison to TRMM products. Better satellite 
estimates of rainfall when compared to rain-gauge 
observations are achieved for higher relief altitudes. 
Complementarily, rainy seasons are usually exposed 
to more complex cloud systems, leading to enlarged 
difficulties in producing a more accurate rainfall 
measurement. Dry seasons are thus expected to 
produce more reliable rainfall estimates with lower 
degree of uncertainty.

The behavior of the stations that served as control 
points (B1, B2, 965001 e 1063001) was similar to the 
results for the whole set of stations (Table II), with 
outstanding superiority of the CHIRPS data, followed 
by CHIRP information and better representativeness 
for periods of low rainfall.

To comparatively analyze the data sources, scatter 
plots were constructed, as shown in Figure 8, includ-
ing the dry and rainy seasons of the region.

In general, the 3B42 product shows a greater 
dispersion than CHIRP and CHIRPS when compared 
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Table II. Analysis of the control points efficiency.

Index Database Time series
Pluviometric station code

965001 1063001 B3 B4

R
eg

re
ss

io
n 

co
ef

fic
ie

nt
(r

²)

CHIRPS
Total 0.80 0.74 0.82 0.80
Dry 0.64 0.66 0.73 0.55
Wet 0.52 0.44 0.81 0.60

CHIRP
Total 0.64 0.63 0.27 0.64
Dry 0.51 0.39 0.15 0.19
Wet 0.11 0.28 0.09 0.38

3B42
Total 0.65 0.54 0.83 0.88
Dry 0.62 0.57 0.78 0.79
Wet 0.24 0.15 0.82 0.74

3B42RT
Total 0.28 0.34 0.59 0.70
Dry 0.15 0.26 0.33 0.47
Wet 0.02 0.11 0.57 0.44

Av
er

ag
e 

st
an

da
rd

 e
rr

or
 (E

)
(m

m
)

CHIRPS
Total 44.71 49.19 43.22 34.32
Dry 44.35 42.21 73.02 38.45
Wet 77.78 96.01 113.77 85.76

CHIRP
Total 63.51 64.07 87.07 68.70
Dry 53.04 52.69 69.38 64.93
Wet 98.31 100.89 121.22 99.15

3B42
Total 52.11 57.42 39.92 29.71
Dry 43.49 44.73 74.47 40.00
Wet 90.94 96.01 106.02 94.25

3B42RT
Total 103.07 96.23 63.54 56.32
Dry 56.76 55.25 78.34 55.93
Wet 130.83 132.72 109.00 111.11

W
ill

m
ot

t’s
 c

on
co

rd
an

ce
 in

de
x

(c
)

CHIRPS
Total Very good Very good Great Very good
Dry Median Median Bad Bad
Wet Bad Awful Affordable Awful

CHIRP
Total Good Good Awful Good
Dry Bad Bad Awful Awful
Wet Awful Awful Awful Awful

3B42
Total Good Median Great Great
Dry Median Affordable Bad Bad
Wet Awful Awful Affordable Awful

3B42RT
Total Awful Bad Good Good
Dry Awful Awful Awful Awful
Wet Awful Awful Bad Awful

with pluviometric stations. Possibly, the efficiency 
of the high-quality monthly rainfall climatology of 
CHPclim directly influences the suitability of CHIRP 

and CHIRPS products, since the model uses not 
only physiographic indicators (elevation, latitude, 
and longitude) but also medium-term monthly field 
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information of five satellite products: estimates of mi-
crowave precipitation, CMORPH-based microwave 
and infrared precipitation estimates, average monthly 
temperatures of geostationary infrared brightness, 
and estimates of the Earth’s surface temperature 
(Funk et al., 2015).

The CHIRP and CHIRPS products presented the 
greater similarity between them, possibly because 
the former is a non-interpolated version of the latter, 
in which a network of ground stations is also con-
sidered. In addition, both products presented results 
close to the TRMM products, proving that the TMPA 
3B42 product from TRMM has an influence in the 
calibration of precipitation estimates through the data 

of cold clouds duration (CCD) for the production of 
CHIRP and CHIRPS (Funk et al., 2015).

It should also be noted that the rainy seasons 
presented in general a more dispersed behavior, 
whereas, in the dry season, there is a clearer tendency 
of alignment of the data, as shown in the diagram, 
indicating better agreement between different source 
data and better adjustment of a tendency line.

3.3 Cycles and frequency comparisons
The results of applying the continuous wavelet trans-
form tool to datasets are shown in Figures 9 and 10. 
In the generated images, colors with stronger tones 
denote higher power in the spectrum, while the black 
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Fig. 9. Continuous wavelet transform analysis of the estimates of various sources of remote sensing data in the pixels 
of representative rain gauges (pluviometric stations) of clusters 1 and 2.
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Fig. 9. Continuous wavelet transform analysis of the estimates of various sources of remote sensing data in the pixels 
of representative rain gauges (pluviometric stations) of clusters 1 and 2.
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Fig. 10. Continuous wavelets transform analysis of the estimates of various sources of remote sensing data in the 
pixels of representative rain gauges (pluviometric stations) of clusters 3 and 4.
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outlines mark the significant regions of time and peri-
odicities for the range at a 95% confidence level. The 
lateral edges mark the cone of influence of edge effects 
for the size of the analyzed series. Both the period and 
the time axes are graduated in months. The time axis 
informs the number of months after the beginning of 
the time series, which is January 2001 in all cases.

As expected, a periodicity around 12 months (an 
annual cycle) is shown as significant for the whole 
length of the time series for all clusters and remote 
sensing products estimates, except for 3B42RT. In 
Figure 9, cluster 1 shows an interruption localized 
between 90 and 130 months after January 2001 (from 
July 2007 to April 2011). This anomaly is specifically 

seen in the 3B42RT time series, showing, once again, 
that the corrections employed in this model caused 
the corresponding time series to be flawed and less 
representative of the Madeira river basin.

The continuous wavelet transform (CWT) anal-
ysis may reveal similar cycles and their anomalies 
in the individual time series but their manual local-
ization is not precise and their similarities may be 
only coincidences. So, to certify the existence of 
the similarity, cross wavelet transform (XWT) and 
wavelet transform coherence (WTC) are applied to 
the pair of series to be compared, where the remote 
sensing products and the data of the rain gauges 
represent the clusters.

4

8

16

32

P
er

io
d

20 40 60 80 100 120 140 160 180

8

16

1/16

4

2

1

1/2

1/4

1/8

Pluviometrics Station

Cluster 3

4

8

16

32

P
er

io
d

20 40 60 80 100 120 140 160 180

8

16

1/16

4

2

1

1/2

1/4

1/8

Pluviometrics Station

Cluster 4

4

8

16

32

P
er

io
d

20 40 60 80 100 120 140 160 180

8

16

1/16

4

2

1

1/2

1/4

1/8

3B42RT 3B42RT

4

8

16

32

P
er

io
d

20 40 60 80 100 120 140 160 180

8

16

1/16

4

2

1

1/2

1/4

1/8

4

8

16

32

P
er

io
d

20 40 60 80 100 120 140 160 180

8

16

1/16

4

2

1

1/2

1/4

1/8

3B42 3B42

4

8

16

32

P
er

io
d

20 40 60 80 100 120 140 160 180

8

16

1/16

4

2

1

1/2

1/4

1/8

4

8

16

32

P
er

io
d

20 40 60 80 100 120 140 160 180

8

16

1/16

4

2

1

1/2

1/4

1/8

CHIRPS CHIRPS

4

8

16

32

P
er

io
d

20 40 60 80 100 120 140 160 180

8

16

1/16

4

2

1

1/2

1/4

1/8

4

8

16

32

P
er

io
d

20 40 60 80 100 120 140 160 180

8

16

1/16

4

2

1

1/2

1/4

1/8

CHIRP CHIRP

4

8

16

32

P
er

io
d

20 40 60 80 100 120 140 160 180

8

16

1/16

4

2

1

1/2

1/4

1/8

Fig. 10. Continuous wavelets transform analysis of the estimates of various sources of remote sensing data in the 
pixels of representative rain gauges (pluviometric stations) of clusters 3 and 4.
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The XWT analysis (Figures 11 and 12) exposes 
regions with high significant common power and 
may reveal the phase relationship between the series, 
where arrows pointing to the right indicate in-phase 
behavior and arrows pointing left show anti-phase 
behavior.

The WTC analysis (Figures 13 and 14) reveals 
how coherent is the cross wavelet transform in time 
frequency space. The hotter the color, the higher the 
coherence between them. Also, arrows pointing to the 
right indicate in-phase behavior and arrows pointing 
left show anti-phase behavior.

In the XWT analysis, it is possible to determine 
the similarity between two datasets by evaluating, 
in the period axis, the existence of a yellowish strip 

at the height level 12 for the entire time interval and 
the presence of arrows pointing to the right, which 
denotes the presence of a similar annual cycle be-
tween both.

When contrasting the rain gauge and the TRMM 
pixel datasets in the coherence analysis (WTC), a full 
correlation of data close to magnitude 1 would be 
ideally expected. Thus, the more similar a time series 
is to another, the larger the zones with colors close to 
the yellow. Besides, the vectors should indicate that 
there is an agreement in phase. Thus, the rightward 
direction of the arrows is expected.

It is noticed that the information of CHIRPS 
is more representative for all clusters and period-
icities (annual and interannual possible cycles) 
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Fig. 11. Cross wavelet transform (XWT) analysis of clusters 1 and 2.
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Fig. 11. Cross wavelet transform (XWT) analysis of clusters 1 and 2.
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Fig. 13. Wavelet transform coherence (WTC) analysis of clusters 1 and 2.



62 V. A. Sikora de Souza et al.

WTC: Pluviometrics Station-3B42RT

Cluster 1
WTC: Pluviometrics Station-3B42RT

WTC: Pluviometrics Station-3B42 WTC: Pluviometrics Station-3B42

WTC: Pluviometrics Station-CHIRPS WTC: Pluviometrics Station-CHIRPS

WTC: Pluviometrics Station-CHIRP WTC: Pluviometrics Station-CHIRP

Cluster 2

4

8

16

32

P
er

io
d

4

8

16

32

P
er

io
d

20 40 60 80 100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
120 140 160 180 20 40 60 80 100 120 140 160 180

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

4

8

16

32

P
er

io
d

4

8

16

32

P
er

io
d

20 40 60 80 100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
120 140 160 180 20 40 60 80 100 120 140 160 180

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

4

8

16

32
P

er
io

d

4

8

16

32

P
er

io
d

20 40 60 80 100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
120 140 160 180 20 40 60 80 100 120 140 160 180

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

4

8

16

32

P
er

io
d

16

32

P
er

io
d

20 40 60 80 100

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
120 140 160 180 20 40 60 80 100 120 140 160 180

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fig. 13. Wavelet transform coherence (WTC) analysis of clusters 1 and 2.
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Fig. 14. Wavelet transform coherence (WTC) analysis of clusters 3 and 4.
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throughout the length of the time series, while the 
TRMM 3B42RT product showed less representa-
tiveness, mainly in interannual periods. There are 
large areas that denote a correlation close to 1, which 
indicates that an historical time series is directly 
proportional to another series.

In general, CHIRPS data can be considered a 
good option for the Amazon region, since this area 
has a low density of pluviometric stations. Therefore, 
CHIRPS can provide a qualified full coverage to 
assess rainfall distribution across the studied region.

Analyzing all the investigated scenarios joint-
ly, it is noticed that the time series of pixels of all 
products obtained from remote sensing are sensitive 
to the occurrence of rainfall and climate events, 
with well-defined interannual variability and a great 

capacity to represent periods of drought in the Ama-
zon region. Nevertheless, in rainy periods, the rainfall 
amount associated with areas of these pixels partially 
fail to accurately represent the rainfall intensity of 
a rainfall station, especially the so-called TRMM 
products (3B42 and 3B42RT).

4. Conclusions
The results indicate that satellite-estimated rainfall 
is a feasible alternative for accurately monitoring 
rainfall in the Madeira river basin, in order to com-
plement or substitute rain gauge stations.

The analysis of rainfall data from the rain-gauge 
network identified four groups/clusters with sim-
ilar behavior across the Madeira river basin. The 

Fig. 14. Wavelet transform coherence (WTC) analysis of clusters 3 and 4.
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rain-gauge stations in each of the clusters are geo-
graphically close and have similar elevation. Satellite 
rainfall estimates and rain-gauge observations were 
then compared using the following metrics: coeffi-
cient of determination, average standard error and 
Willmott’s concordance index.

Results showed that spatio-temporal rainfall dis-
tributions can be reasonably estimated by satellite; 
however, further research is required to improve 
estimates of rainfall amount. More precise satellite 
estimates are related to higher relief altitudes. Uncer-
tainties are assumed to be partially due to the presence 
of different types of clouds in the region and partially 
due to limitations of the algorithms presently used 
in satellite platforms, which are essentially based 
on thermal infrared and passive microwave sensors.

The remotely sensed rainfall datasets CHIRPS 
and CHIRP better represent the monthly accumu-
lated pluviometric data across the Madeira river 
basin, compared to the 3B42 and 3B42RT datasets. 
Nevertheless, the superior performance is not ho-
mogeneous, with larger uncertainty for the rainiest 
months. Moreover, a higher performance of satellite 
rainfall products was achieved for dry periods in 
comparison to wet periods.

Wavelets analysis was able to capture and identify 
more thoroughly the consistency of the rainfall time 
series evaluated in dry and wet periods. In particular, 
the technique revealed the lack of adequate repre-
sentation of interannual cycles in the 3B42RT data 
in predefined time periods during which the analysis 
was conducted.

It should be emphasized that the present study 
provided very good results for dry periods, which is 
quite useful in hydrology when examining runs of 
drought sequences and their consequent effects in 
water balance at the watershed scale. It is worthwhile 
to further investigate this aspect, since the higher 
reliability of satellite products in dry periods could 
be more useful in terms of watershed management, 
including urban and rural planning associated to wa-
ter supply, energy generation, and food production.

Under the perspective of looking ahead to improve 
rainfall estimates, which still present limitations, we 
should mention that new sensors and corresponding 
updated algorithms are currently being developed 
with refined spatial and temporal resolution. This will 
certainly represent an advance regarding accuracies 

and uncertainties associated with the variety of scales 
at which different data sets are collected. The high-
lighted issue is quite relevant to our case study, since 
we are comparing information at the pixel-spatial and 
rain-gauge spatial resolutions, which for comparison 
purposes are assumed to be a point in space.

Improved statistical and stochastic techniques 
such as wavelet analysis, as explored here, jointly 
with fractal and geostatistical approaches to integrate 
spatial and point information constitute viable alter-
natives to achieve better results in rainfall estimation 
based on remotely-sensed information. Statistical 
methods that combine spatial and local information 
could be better explored in future works

As a final word, we should say that satellite-de-
rived rainfall datasets such as the ones examined 
in this study play nowadays an essential role in the 
provision of distributed quantitative data over re-
gions with scarce or unavailable data. In this sense, 
society can rely on these relatively new datasets 
to take administrative and management decisions 
at city, state, and national levels integrated at the 
basin level, involving a diversity of areas such as 
hydrology, meteorology, agrometeorology, engi-
neering construction, water supply, and sanitary 
treatment, among other required urban and rural 
planning actions.
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