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RESUMEN

México es un país vulnerable a los eventos climáticos extremos; sin embargo, el impacto no es uniforme 
en todo el territorio, por lo que se analizan y modelan las temperaturas extremas de 12 ciudades de México 
con la suposición de que existe un clima no estacionario en todas las regiones del país. A partir de la base 
climatológica disponible de temperaturas máximas y temperaturas mínimas, se estimó una tendencia temporal 
con las pruebas no paramétricas de Mann-Kendall y el método de pendiente de Sen, y se utilizó la distribu-
ción generalizada de valores extremos (GEV) para modelar ambas temperaturas. Para evaluar la fortaleza 
de los modelos propuestos con la incorporación de una covariable, se utilizaron tanto la prueba de razón de 
verosimilitud como los criterios de información de Akaike y de Bayes, y se estimaron los niveles de retorno 
para escenarios temporales futuros. Se detectó una tendencia al calentamiento urbano, tanto con las pruebas 
no paramétricas como con la distribución GEV, aunque con comportamiento heterogéneo. En la serie de 
temperatura máxima, la mitad de las ciudades analizadas se mostró no estacionaria; de éstas, la ciudad de 
Guadalajara, situada en el centro-occidente del país, presentó tendencia negativa. En el caso de las temperaturas 
mínimas la tendencia fue más uniforme: 90% de las ciudades se mostraron no estacionarias con tendencia 
positiva y sólo el 10% (una zona urbana al oriente de la zona metropolitana del Valle de México [Milpa Alta] 
y una ciudad costera del Golfo de México [Veracruz]) mostraron una serie estacionaria. Se concluye que 
los periodos de retorno de extremos térmicos estimados en un clima cambiante varían temporalmente, por 
lo que la modelación estadística debe tomar en cuenta ese comportamiento en razón de su importancia para 
valoraciones de riesgos y propósitos de adaptación.

ABSTRACT

Mexico is vulnerable to extreme climatic events; however, their impact is not uniform in all the country. This 
study presents an analysis of extreme temperatures in 12 Mexican cities, modeled under the assumption of a 
non-stationary climate. Temporal trends were estimated from an available climatological base of maximum 
and minimum temperatures with the non-parametric tests of Mann-Kendall and Sen’s slope method, and a 
generalized extreme value (GEV) distribution was used to model both temperatures. A likelihood ratio test 
and Akaike and Bayesian information criteria were used to evaluate the optimal model choice with incorpo-
ration of a covariate. Using the best model, return levels and confidence intervals for future scenarios were 
estimated. A trend towards urban warming was detected from both the non-parametric tests and the GEV 
distribution, although with heterogeneous behavior. In the series of the maximum temperatures, half of the 
cities analyzed were non-stationary, and of those, the city of Guadalajara, located in the center-west of the 
country had a negative trend. The trend for minimum temperatures was more uniform, as 90% of the cities 
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were non-stationary with a positive trend, and only 10%, in an urban area to the east of the metropolitan area 
of the Valley of Mexico (Milpa Alta) and a coastal city of the Gulf of Mexico (Veracruz), showed stationary 
series. It is therefore concluded that return periods of thermal extremes estimated in a changing climate 
temporarily showed a significant variation, so statistical modeling must consider this behavior due to its 
importance for risk assessments and adaptation purposes.

Keywords: extreme temperatures, non-stationary climate, generalized extreme value distribution, return 
periods, cities of Mexico.

1. Introduction
Extreme climate events (ECE) must be periodically 
monitored and analyzed in detail, due to their role 
as high impact agents on society, environment, and 
ecosystems. An extreme climatic or meteorological 
event refers to the occurrence of a climatic or mete-
orological variable which value is above or below a 
threshold that is close to the upper (or lower) limits 
of the range of observed values of the variable 
(Seneviratne et al., 2012). ECE are important because 
of their impacts, but they are difficult to quantify sta-
tistically, as they are infrequent and occur at multiple 
scales (Palmer and Räisänen, 2002). The definitions 
of “rare” vary, but an ECE would normally be as rare 
as, or rarer than, the 10th or 90th percentile of the 
observed probability density function. 

It is likely that different ECE affect specific re-
gions and increases in their frequency and intensity 
have been detected in several regions of the world 
(Brown et al., 2008; Almazroui et al., 2014; Chen et 
al., 2015; Wypych et al., 2017; Caloiero, 2017). It is 
expected that these ECE will intensify in the future 
in response to global climate changes caused by the 
emission of greenhouse gases (Beniston et al., 2007; 
Gao et al., 2012; Lau and Nath, 2012; Easterling et 
al., 2016; Grotjahn et al., 2016; Schoof and Robeson, 
2016).

There are basically two fundamental approaches 
to study ECE: global circulation models (GCMs), 
and statistical models using the extreme value theory 
(EVT). Contemporary GCMs, such as those used 
for the 5th Coupled Model Intercomparison Project 
(Taylor et al., 2012) are a key component of regional 
climate change projections, but their limited spatial 
resolution reduces their utility in estimating local or 
regional extremes without substantial post-process-
ing (Schoof and Robeson, 2016). On the other hand, 
the central issue of EVT is the modeling of extreme 
events, and the main purpose of this theory is to 

provide asymptotic models for the distribution tails 
(Furió and Meneu, 2011). Therefore, EVT aims at 
deriving a probability distribution of events at the far 
end of the upper or lower ranges of the probability 
distributions (Coles, 2001); its main advantage is 
that it allows for estimating and analyzing the prob-
ability of occurrence of events that are outside of the 
observed data range (Raggad, 2018). 

For these reasons, EVT is the approach that has 
been chosen in this research due to its wide appli-
cability in different fields that are related to extreme 
weather and climate events and their impact: ecology 
(Moritz, 1997; Meehl et al., 2000; Dixon et al., 2005; 
Katz et al., 2005; Jentsch et al., 2007; Burgman et al., 
2012); extreme temperatures and heat waves (Meehl 
and Tebaldi, 2004; Della-Marta et al., 2007; Parey et 
al., 2007; García-Cueto et al., 2010; Waylen et al., 
2012; Tanarhte et al., 2015; Liu et al., 2015; Shen et 
al., 2016); extreme rainfall (Katz et al., 2002; Kout-
soyiannis, 2004; Friederichs, 2010; Papalexiou and 
Koutsoyiannis, 2013; Kim et al., 2015; Boucefiane 
and Meddi, 2019); and damages to the communities 
that affect agroecosystems through changes in soil 
moisture and evapotranspiration rates (Miralles et al., 
2014; Whan et al., 2015; Guan et al., 2015; Hatfield 
and Prueger, 2015).

Changes in extremes of temperature and precipi-
tation have been evaluated in different regions of the 
world. However, until the Fourth Assessment Report 
of the Intergovernmental Panel on Climate Change 
(Trenberth et al., 2007), the cities had been treated 
as “noise-generating” entities in globally studied cli-
matic signals. In the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change (IPCC, 
2013), a special chapter was dedicated to the subject 
of cities, and their role in climate change. This is 
not surprising, as although cities are very important 
contributors to social and economic well-being, 
they require an uninterrupted source of energy for 
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all their activities. Cities consume approximately 
75% of global primary energy and emit between 50-
60% of the greenhouse gases (GHG) on the planet 
(Rosenzweig et al., 2011). This figure can be raised 
to 80% when indirect emissions generated by inhab-
itants of the cities are included (UN-Habitat, 2011; 
Kraussmann et al., 2017). Thus, cities promote global 
warming, and contribute to an increase in average 
surface temperature at the planetary level.

In addition to the global effects of GHG, the 
worldwide upward trend of urban growth must be 
considered, both in population and in its areal ex-
tension. This growth has generated environmental 
problems, not only air pollution and solid waste, 
but also those concerning a different environmental 
product, such as the genesis of an urban climate. In 
particular, the main connotation of urban climate is 
the formation of an urban heat island, which in turn 
requires additional water and energy to maintain ther-
mal comfort through air-conditioned spaces (Coutts 
et al., 2012; Wang et al., 2016; de Munck et al., 2018, 
Skelhorn et al., 2018). Thus, cities that are already 
particularly vulnerable to ECE caused by global 
climate change must now also consider the effects 
caused by local climate change. Therefore, it can be 
inferred that because a city is the geographical space 
that brings together a majority of the population and 
provision of services, it will be where the greatest 
vulnerabilities associated with the impacts of climate 
change manifest themselves (UN-Habitat, 2011).

In Mexico approximately three out of four people 
(72.3%) live in cities according to Fundación Cen-
tro de Investigación y Documentación de la Casa 
and Sociedad Hipotecaria Federal (CIDOC-SHF, 
2011). This percentage is expected to increase in 
the medium term, as according to projections of the 
National Population Council the number of people 
in 384 localities of the National Urban System will 
increase by 16.6 million (from 82.6 million in 2010 
to 99.3 million in 2030) as a result of an annual av-
erage growth rate of 0.92% (Hernández et al., 2014). 
The urban proportion of the national population will 
increase to 77.9% (18.1 million new urban inhab-
itants). This trend of the geographic dynamics of 
cities is inequitable with low levels of quality of life 
and urban sustainability, and not all cities have the 
same development potential. Thus, the challenges in 
facing climatic risks such as heat waves and floods 

will be massive if quantitative scientific studies are 
not carried out.

Very little research has been conducted in Mexico 
on extreme climate values in urban environments 
(Magaña et al. 2003, 2012; Cavazos and Rivas, 2004; 
Ríos-Alejandro, 2011; García-Cueto et al., 2013, 
2014, 2018; Martínez-Austria and Bandala, 2017). 
This can be explained by a limited access to mea-
sured climate data, limitations in the geographical 
coverage of the networks of stations, and interrup-
tions in climate series due to missing data. In view 
of this and given the quantitative uncertainty of the 
climate extremes mentioned at the urban level and 
their great importance for the assessment of risks and 
adaptation proposals, this study selects some cities 
in Mexico with important increases in population 
and in areal extension, which have recently been 
affectated by ECE. 

Thus, this study has three main objectives: (a) to 
detect thermal behavior in some growing cities of 
Mexico, (b) to model extreme temperatures through 
the EVT, and (c) to make projections of return lev-
els for extreme temperatures in a future changing 
climate.

This paper is organized as follows: section 2 pres-
ents the climatology of extreme values in Mexico; 
section 3 presents the study area and the climate data, 
and section 4 provides a theoretical outline of the 
methodology. The results and discussion are present-
ed in section 5. In section 6, conclusions are drawn.

2. Climatology of extreme temperature values of 
Mexico
Figures 1 and 2 show the 10th and 90th percentiles of 
minimum and maximum temperatures, respectively 
(Cavazos et al., 2013), for the period 1961-2000; the 
methodology used in these figures is described in 
Colorado-Ruiz et al. (2018). According to extreme 
climate indices derived from reliability ensemble av-
eraging (REA) (Fig. 1), the coldest winters and their 
10th percentile (P10) during the winter months of De-
cember, January, and February (DJF) for Mexico are 
characterized by minimum temperatures below 0 ºC 
in the highlands of the Sierra Madre Occidental and 
the Mexican High Plateau, and between 0 and 5 ºC 
in much of northern Mexico. Figure 2 shows that the 
extreme values of the 90th percentile (P90) of the 
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maximum temperatures during the summer months of 
June, July, and August (JJA) expand the area covered 
by the isotherms of 25 and 40 ºC to a narrower strip in 
the border region. This region of semiarid climate is 
the most extreme in Mexico; therefore, it is the most 
susceptible to negative impacts caused by increases 
in temperature.

The projected climate changes at a national level 
(Cavazos et al., 2013) agree with those obtained 
globally (Alexander et al., 2006; Caesar et al., 2011; 
Song et al., 2014). Regarding those related to the 
increase in the frequency of heat days, heatwaves and 
variability in precipitation will exacerbate problems 
related to natural and human systems (Ummenhofer 
and Meehl, 2017). If we analyze the 10th and 90th 
percentiles of extreme temperatures at the national 
level, there is a notable lack of reliable and timely 

information at the regional and urban levels for risk 
assessment, which justifies the study carried out 
herein.

3. Data and study area
A digital historical collection of daily temperature 
data for several cities in Mexico was possible using 
information from climatological stations operated 
by the Servicio Meteorológico Nacional (SMN, Na-
tional Weather Service). Unfortunately, the selection 
of urban areas of interest faced some limitations, as 
not all climate stations have the same record length, 
and none had a strict data quality control. Based on 
a previous analysis of the growth of some cities in 
Mexico and the occurrence of climatic events that 
have affected them in important ways, 21 cities were 
selected in the first instance. However, an analysis of 
the quality of climate information limited the study to 
only 12 cities. These cities are heterogeneously dis-
tributed in the country because, as mentioned above, 
they were selected for their population growth and 
urban development. Data quality control was carried 
out for the daily information for each city, consisting 
of the following synthetic process.

The SMN database from the Climate Computing 
Project (CLICOM) was extracted in the .csv format, 
using Matlab and RClimdex software. The climatic 
information was explored, and quality control was 
performed for the original database. The daily me-
teorological values of maximum temperature (TXX) 
and minimum temperature (TNN) were selected 
with a computation routine; at the same time, a 
continuity of the time series was sought by adding 
missing dates and values, if possible, and adding 
a –99.99 label for missing data. Subsequently, the 
database was imported into the RClimdex program 
(Zhang and Yang, 2004), ensuring the internal and 
temporal consistency of the daily climatological 
information. This quality control validated the 
following: (1) internal coherence, by verifying 
that the maximum temperature was always greater 
than the minimum temperature; (2) identification of 
atypical values and changes in the seasonal cycle 
or variability of the data through visual inspection 
of the time series of TXX and TNN, and (3) identi-
fication of values located more than four standard 
deviations (σ) from the mean as outliers and possible 

Fig. 1. Thresholds of P10 of minimum temperature for win-
ter, obtained with the ensemble of the Reliability Ensemble 
Averaging (REA) for 1961-2000 (Cavazos et al., 2013).
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Fig. 2. Thresholds of P90 of maximum temperature for 
summer, obtained with the ensemble of the Reliability 
Ensemble Averaging (REA) for 1961-2000 (Cavazos et 
al., 2013).
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errors. Finally, outliers were verified individually to 
determine if they had been caused by an atypical 
event or if the measurement was incorrect and had 
to be discarded.

Temporal homogeneity of the data was then eval-
uated using the RHtest V3 software (Wang and Feng, 
2010) to identify abrupt jumps or change-points. This 
homogeneity test is based on a two-phase regression 
model with a linear trend for the entire series, applied 
to selected series for each of the cities. 

The final selection included the following 
cities and/or intra-urban regions for the detailed 
analysis of extreme temperatures: Aguascalien-
tes, Mexicali, Tijuana, Tuxtla Gutiérrez, Mexico 
City (with analysis of the climatological sta-
tions of Úrsula Coapa, Gran Canal, and Milpa 
Alta), León, Guadalajara, Monterrey, Puebla, 
Tlaxcala, Veracruz and the metropolitan area of 
the Valley of Mexico, including the urban ar-
eas of Toluca, Aculco and Chapingo (Table I). 
Their locations are presented in Figure 3 and, as 
can be seen, the analysis includes cities distributed 

in central Mexico (18-25º N latitude), a city in 
southeastern Mexico (Tuxtla Gutiérrez), another 
in northeastern Mexico (Monterrey), and two more in 
northwestern Mexico (Tijuana and Mexicali).

Table I. City or urban region, climatological station number, elevation, period of useful data, 
historical values of extreme maximum temperature, and extreme minimum temperature.

ID City or urban region Climatological
station numbera

Elevation
(masl)

Period TXX
(ºC)

TNN
(ºC)

1 Aguascalientes 01030 1889 1950-2015 40.0 –6.0
2 Mexicali 02033 4 1950-2012 52.0 –7.0
3 Tijuana 02038 120 1950-2012 45.0 0.0
4 Tuxtla Gutiérrez 07165 570 1980-2010 42.0 7.1
5 Úrsula Coapa, CDMX 09014 2256 1971-2013 34.5 –3.0
6 Gran Canal, CDMX 09029 2239 1952-2008 38.5 –7.5
7 Milpa Alta, CDMX 09032 2420 1963-2012 34.0 –2.5
8 León 11095 1828 1959-2014 39.5 –2.5
9 Guadalajara 14066 1550 1957-2013 47.0 –1.5
10 Aculco, ZMVM 15002 2490 1970-2011 32.0 –5.0
11 Toluca, ZMVM 15126 2726 1974-2009 33.6 –10.0
12 Chapingo, ZMVM 15170 2250 1954-2010 37.5 –8.5
13 Monterrey 19049 495 1949-2009 48.0 –7.5
14 Puebla 21035 2122 1955-2013 36.5 –6.0
15 Tlaxcala 29030 2230 1969-2013 39.2 –7.4
16 Veracruz 30192 16 1930-2014 42.7 7.9

aClimatological station number refers to the key that the National Weather Service (SMN) of 
Mexico manages in its files.
TXX: extreme maximum temperature; TNN: extreme minimum temperature; CDMX: Mexico 
City; ZMVM: metropolitan area of the Valley of Mexico.

Fig. 3. Locations of intra-urban cities or regions according 
to Table I.
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Our study focused on ECE using a parametric 
non-stationary generalized extreme value (GEV) 
distribution model, which tacitly assumes that 
extreme events are changing over time as climate 
changes. Instead of the climate change indices used in 
García-Cueto et al. (2018), the current study directly 
applies extreme temperature values. In addition, the 
non-stationary GEV model is applied to investigate 
how the return levels of extreme temperatures might 
change in the future.

It is worth mentioning that for the city of Mexicali, 
due to the importance of extreme temperatures for 
human comfort and energy consumption for use in 
air conditioning, other studies have been carried out 
(García-Cueto et al., 2010, 2013). Unlike current re-
search, in García-Cueto et al. (2010) warm days were 
modeled with the GEV and the maximum tempera-
ture was included as a covariate, without performing 
a temporal trend analysis of extreme temperatures. 
Their difference with respect to García-Cueto et al. 
(2013) is that the trends of extreme temperatures 
and their return periods are updated with a method-
ological process that requires a re-parameterization 
of the GEV model, which gives greater reliability in 
its estimation.

4. Methodology
In this section we present the techniques used for 
trend analysis and a brief review of the GEV dis-
tribution, to provide a basis for the modeling of ex-
treme temperature events. As described in section 1, 
the GEV distribution is used to model extremes in 
atmospheric science and in many other scientific 
fields. Using the trends of annual temperature series, 
we describe the non-stationary models, the criteria 
for deciding which GEV model to use, the estimation 
of the parameters of the GEV distribution, and the 
return levels.

4.1 Trend analysis
The detections of monotonic trends of increase or 
decrease in TXX and TNN in a time series were 
analyzed using the Mann-Kendall non-parametric 
test (Mann, 1945; Kendall, 1975) and Sen’s method 
for slope estimates (Sen, 1968). The Mann-Kendall 
test is based on ranges and has been found to be 
an excellent tool for detecting trends in climatic 

applications (Burn and Hag Elnur, 2002; Mugume 
et al., 2016). One of the advantages of this test is 
that the data does not need to be adjusted to any 
distribution. The second advantage of this test is its 
low sensitivity to sudden breaks owing to non-homo-
geneous time series, extreme values (outliers), and 
non-linear trends (Helsel and Hirsch, 1992; Tabari et 
al., 2011). Given its robustness, the Mann-Kendall 
test has become very popular in evaluating trends in 
environmental data and allows adequate compari-
sons across regions (Fengjin and Lianchun, 2011; 
Qiang et al., 2011; Wang et al., 2013; Dumitrescu et 
al., 2015; Ongoma et al., 2016). Sen’s method uses 
a linear model to estimate the slope of a trend, and 
the variance of the residuals must be constant over 
time (Salmi et al., 2002). Many studies (Taxak et 
al., 2014; Caloiero, 2017; García-Cueto et al., 2018; 
Raggad, 2018, among others) have described these 
methods explicitly.

4.2 Generalized extreme values (GEV) stationary 
distribution
The general framework of this study is a statistical 
EVT. The EVT aims to characterize rare events by 
describing the tails of the underlying distribution. The 
EVT concerns the asymptotic stochastic behavior of 
the extreme order statistics of a random sample, such as 
the maximum and minimum values of identically dis-
tributed independent random variables (Coles, 2001). 

The Fisher-Tippett theorem (1928) states that if 
the distribution of the normalized maximum of a 
sequence of random variables converges, it always 
converges to the GEV distribution, independently of 
the underlying distribution. In this regard, let X1, ..., 
Xn be a sequence of identically distributed indepen-
dent random variables with a common distribution 
function F; the maximum sample, Mn, with n being 
the size of the block, is defined as Mn = max {X1, 
X2, ..., Xn}. Xi usually represents the maximum (or 
minimum) values measured on a regular time scale or 
blocks of time, so Mn represents the extreme values of 
the process in n units of observation time. The blocks 
of data in this study are sequences of observations 
having the length of a year, i.e., the approach uses 
the maximum and minimum values per annual blocks 
of temperature.

For these data, the distributions of Mn according 
to the EVT can be modelled as blocks of identically 
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distributed extreme values with a GEV distribution 
as defined by Eq. (1), with a cumulative distribution 
function with three parameters given by (Coles, 
2001):

G (z; µ, σ, ξ) = exp [ ]–{1 + ξ(z – µ)/σ}–1/ξ  (1)

This distribution is defined on the set {z: 1 + ξ (z - 
μ)/σ > 0}. Here, μ is the location parameter (–∞ < μ < 
∞), σ is the scale parameter (σ > 0), and ξ is the shape 
parameter (–∞ < ξ < ∞) that determines the nature of 
the behavior of the tail of the maximum distribution. 
The justification for the GEV distribution arises from 
an asymptotic argument. 

The GEV distribution combines the three possible 
limiting distributions on extreme values in sample 
data in a single expression. It is a family of continuous 
probability distributions developed to combine the 
three distributions of extreme values: Gumbel (ξ = 0), 
Fréchet (ξ > 0), and Weibull (ξ < 0), or distributions of 
extreme values types I, II, and III, respectively. Each 
of the three types of distributions has distinct forms 
of behavior in the tail. The Weibull is bounded above, 
meaning that there is a finite value which the maxi-
mum cannot exceed. The Gumbel distribution yields 
a light tail, meaning that although the maximum 
can take on infinitely high values, the probability of 
obtaining such levels becomes exponentially small. 
The Fréchet distribution has a heavy tail and decays 
polynomially, so that higher values of the maximum 
are obtained with greater probability, as would be the 
case with a lighter tail (Gilleland and Katz, 2006). 
The flexibility of the GEV in describing all three 
types of tail behavior in a single family greatly sim-
plifies the statistical implementation.

4.3 GEV non-stationary distribution
As we will see later, the extreme temperatures in 
several cities being analyzed show temporal trends, 
so the assumption of an independently distributed 
and identically distributed series of data with constant 
properties over time (stationary) needs to be modified 
to consider the effects of long-term climate change. In 
fact, there is increasing evidence that extreme series, 
whether thermal or hydroclimatic, are not stationary, 
due to natural climatic variability or anthropogenic 
climate change (Jain and Lall, 2001; Milly et al., 
2008). Modeling of the non-stationarity within the 

GEV distribution scheme requires improved mod-
els, in which model parameters are expressed as a 
function of time, and possibly with the incorporation 
of other covariates (El Adlouni et al., 2007; Leclerc 
and Ouarda, 2007; Panagoulia et al., 2013; Parey et 
al., 2018).

We incorporate the non-stationarity by allowing 
the location parameter (μ) of the GEV distribution 
to be time dependent (Renardt et al., 2013). Using 
the notation (μ, σ, ξ) to denote a GEV distribution 
with parameters μ, σ, ξ, a suitable model for extreme 
temperatures in year t, Zt, could be as presented in 
Eq. (2) (Furió and Meneu, 2011):

Zt ≈ GEV [µ(t), σ, ξ] (2)

where μ (t) = μ0 + μ1 (t) for parameters μ0 and μ1. In 
this way, temporal variations in the observed process 
are modeled as a linear trend for the location param-
eter of the extreme value model, which in this case is 
the GEV distribution. The parameter μ0 corresponds 
to the value of μ when t is the initial time, whereas 
the parameter μ1 corresponds to the annual rate of 
change in annual extreme temperatures.

4.4 Parameter estimation
Many techniques have been proposed for the esti-
mation of parameters in extreme value models. The 
maximum likelihood method is a general and flexible 
estimation method for the unknown parameters μ, 
σ, and ξ within a family F. This technique estimates 
the parameters to give maximum probability to the 
observed values. In addition, the method allows 
for the inclusion of covariates such as time into the 
model (Katz et al., 2005). This approach is partic-
ularly attractive, due to its adaptability to complex 
constructions of models in techniques based on plau-
sibility (Coles, 2001). It should be mentioned that this 
estimation technique has an inherent difficulty, in that 
the maximum likelihood estimators must be within 
certain limits, so that the conditions of regularity 
required by the asymptotic properties are valid. That 
is, if ξ > –0.5, the obtained parameter estimators are 
regular in the sense of having the usual asymptotic 
properties; when –1 < ξ < –0.5, the estimators can 
generally be obtained, but do not have standard as-
ymptotic properties; and when ξ < –1, the estimators 
are unlikely to be obtained (Smith, 2001).
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The maximum likelihood method was chosen 
in this study to estimate the parameters, mainly 
because: (a) the data sample for each climate station 
is sufficiently large (with the exception of Tuxtla 
Gutiérrez and Toluca, all of the other climate stations 
have series larger than 40 years), and accordingly 
it is comparable in performance to other methods; 
(b) it allows for the easy incorporation of covariate 
information (non-stationary distributions, which, as 
we will see, are frequently presented in this study), 
and (c) it is easier to obtain error limits than in most 
alternative methods. Eq. (1) assumes that the data are 
maximum or minimum annual blocks. The estima-
tion of μ, σ, and ξ is performed using the maximum 
likelihood function for the independent maxima of 
annual blocks z1, ..., zn according to Eq. (3):

dG(zi; μ, σ, ξ)
dzi

L(μ, σ, ξ) = ∏k
i=1  (3)

4.5 Return levels
When considering the extreme values of a random 
variable, the interest lies in determining the level of 
return of an extreme event, which is defined as a certain 
value zp. In that regard, p is the probability that the z 
value is exceeded in a year or, alternatively, the level 
that is expected to be exceeded on average once every 
1/p years (1/p is often referred to as the return period). 
In the terminology of extreme values, zp is the level of 
return associated with the return period 1/p (Cooley et 
al., 2007), and basically refers to the average waiting 
time until the z level is exceeded again.

The return level is obtained from the GEV distri-
bution by the cumulative distribution function, which 
is equal to the desired probability/quantile ratio, 1-p. 
Estimates of the return levels for the distribution of 
maximum or minimum annual values can be obtained 
with Eq. (4), by obtaining estimators of their param-
eters by the maximum likelihood method:

μ – 
μ – σ log yp, for ξ = 0

[1 – yp
–ξ], for ξ ≠ 0σ

ξzp = {  (4)

where p = –log (1 – p). In addition, by the delta 
method (Eq. [5]):

Var(zp) ≅ �zp
T V�zp (5)

where V is the variance-covariance matrix of (μ, σ, 
ξ), and with Eq. (6):

[ ]�zp
T = ,∂zp

∂μ
∂zp

∂σ
, ∂zp

∂ξ
 (6)

The above is evaluated in (μ, σ, ξ). Caution should 
be exercised in interpreting inferences of return levels, 
especially for long periods of return; this is because the 
normal approximation to the distribution of the maxi-
mum likelihood estimator may be poor, and generally 
better approximations are obtained with the likelihood 
profile function. This methodology can be applied 
when it is required to make an inference regarding 
some combination of parameters. We can obtain con-
fidence intervals for any zp return level. This requires 
a reparameterization of the GEV model, so that zp is 
one of the parameters of the model; the log-likelihood 
profile is obtained by maximization with respect to the 
remaining parameters in the usual way (Coles, 2001) 
and is obtained by means of Eq. (7):

μ = zp + [1 – {–log (1 – p)}–ξ]σ
ξ  (7)

In this way, the GEV model is expressed in terms 
of the parameters (zp, σ, ξ). For the choice of the GEV 
model and to evaluate the strength of the evidence of 
more complex models (stationary or non-stationary), 
the criteria of the likelihood ratio test were applied, 
along with those of Akaike and Bayes.

4.6 Likelihood ratio test
By including more parameters in the model, the max-
imized likelihood function will necessarily increase 
(Coles, 2001), and this method confirms whether 
the improvement is statistically significant. The test 
compares two nested models, and thus one model, 
a base model, must be contained in another model 
with more parameters.

Formally, the likelihood ratio test (LRT) says that 
if you have two models, one called M0 which is the 
simplest model adjusted to the extreme data set, and 
another called M1 to which a covariate has been added 
to improve the behavior of the same extreme data, 
then a proof of the validity of the model M0 relative 
to the model M1 at the level of significance α is to 
reject M0 in favor of M1 if:
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D = 2{l1 (M1) – l0 (M0)} > cα (8)

where cα is the quantile of the distribution. In Eq. 
(8), l1 (M1) is the maximized likelihood logarithm for 
the M1 model, and l0 (M0) the maximized likelihood 
logarithm for the M0 model.

4.7 Akaike and Bayes information criteria
Alternatives to the LRT for comparing the relative 
quality of a statistical model include the Akaike in-
formation criterion (AIC) and the Bayes information 
criterion (BIC), which were also used in the selection 
of the best model for adjustment. None of these cri-
teria require a nested model as in the LRT. The AIC 
is defined according to Eq. (9):

AIC (p) = 2np – 2l (9)

where np is the number of parameters in a model of 
order p, and l is its maximized value of log-likelihood 
(Thiombiano et al., 2017). The best model is the one 
with the smallest AIC value (Katz, 2013; Mondal and 
Mujumdar, 2015). Similarly, for the adjustment of a 
model of order p to data with a sample size of n, the 
BIC is determined with Eq. (10):

BIC (p) = np (ln nn) – 2l (10)

Both the AIC and BIC attempt to counteract the 
problem of over adjusting a model by adding more 
parameters, through the incorporation of a penalty 
based on the number of parameters (Panagoulia et 
al., 2013). The BIC is more parsimonious than the 
AIC. Among the candidate models, the model with 
the lowest AIC/BIC ratio is preferred.

Given that the database for each city appears to 
be sufficiently large (n > 30 years), the maximum 
likelihood method is confirmed for the estimation 
of the three parameters of the GEV distribution. 
This is basically because the method easily incor-
porates covariable information into the estimates 
of the parameters. Besides, it has a series of at-
tractive properties and it seems to be more suitable 
for situations in which climate change within the 
sample analyzed cannot be ignored (Kharin and 
Zwiers, 2005).

The modeling was supported by the free software 
R and the in2extRemes package that is designed to be 

used in the analysis of extreme weather and climate 
events (Gilleland and Katz, 2005, 2013).

5. Results and discussion 
In this section we present and analyze the results of 
the parametric approach based on the GEV distribu-
tion for modeling the maximum annual value of the 
TXX and TNN for each of the selected urban areas in 
Mexico. The data series are analyzed in each climato-
logical station, the use of stationary and non-station-
ary models is evaluated, and a statistical evaluation 
of the changes in TXX and TNN is presented.

We modeled the data series through the GEV 
distribution of three parameters, using stationary and 
non-stationary models for periods that varied from 
83 years (Veracruz) to 31 years (Tuxtla Gutiérrez); 
the other cities had intermediate periods (Table I). 
The inclusion of non-stationarity is plausible for our 
modeling approach, as can be visualized for many 
locations. As an example, time series of TXX (Figs. 
4, 6, 8, and 10) and TNN (Figs. 5, 7, 9, and 11) 
are shown for four of the 12 urban areas (Tijuana, 
Guadalajara, Toluca, and Puebla), with a trend line 
using Sen’s slope estimator. The graphs for several 
cities show a clear trend in the maximum and mini-
mum annual data. The graphical analysis and results 
of the Mann-Kendall trend test justify the use of 
non-stationary GEV models over time as a covariate. 
The trends shown are statistically significant with a 
p-value < 0.05, except for the TXX of Toluca, whose 
trend is significant with a p-value < 0.1, and the TXX 
of Tijuana, whose trend is not significant.

The time series of TXX and TNN were used to 
estimate the parameters in the distribution of GEV 
with and without trends, as well as the periods of 
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Sen's slope = 0.020 (p-value non significant) 
 

Fig. 4. Trend of extreme maximum temperature (TXX) in 
Tijuana from 1950 to 2012.
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return. The models were adjusted to the maximum 
annual temperature and minimum annual temperature 
of each of the 16 climate stations using the maximum 
likelihood (ML) method.

An attempt was made to improve the modeling 
approach by allowing the location parameter (μ) to 
depend on time. As mentioned, three model selection 
criteria (AIC, BIC, and LRT) were used to select the 
best model from a collection of nested models. The 
best adjustment models for TXX and TNN through the 
GEV distributions, as selected by the criteria separately 
listed for each urban area, are summarized in Table II.
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Fig. 5. Trend of extreme minimum temperature (TNN) in 
Tijuana from 1950 to 2012.
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Fig. 6. Trend of extreme maximum temperature (TXX) in 
Guadalajara from 1957 to 2013.
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Fig. 7. Trend of extreme minimum temperature (TNN) in 
Guadalajara from 1957 to 2013.
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Fig. 8. Trend of extreme maximum temperature (TXX) in 
Toluca from 1974 to 2009.
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Fig. 9. Trend of extreme minimum temperature (TNN) in 
Toluca from 1974 to 2009.

25 

28 

31 

34 

37 

40 

1955 1965 1975 1985 1995 2005 2015 

TX
X

 (°
C

) 

Year 
Data Sen's estimate 

Fig. 10. Trend of extreme maximum temperature (TXX) 
in Puebla from 1955 to 2013.
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Fig. 11. Trend of extreme minimum temperature (TNN) 
in Puebla from 1955 to 2013.
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In total, 58 models were generated. Table II shows 
the resulting estimators and the criteria for selecting 
the best model to be used in the estimation of return 
periods. According to this table, for the temporal trend 
of TXX, significant at a 95% confidence level, it can 
be seen that: (a) 44% of locations (seven urban areas) 
show a significant trend, (b) 50% of locations (eight 
urban areas) have no significant trend, and (c) 6% 
of locations (one urban area) show no trend. For the 
temporal trend of TNN, also significant at the 95% con-
fidence level, it was found that: (a) 82% of locations 
(13 urban areas) show a significant trend, (b) 12% of 
locations (two urban areas) show no significant trend, 
and (c) 6% of locations (one urban area) show no trend.

According to the shape parameter (ξ), and by 
performing a detailed analysis, it was found that for 
the case of TXX, 63% of the climatic stations were 
adjusted to the Weibull distribution (ξ < 0), 25% 
were adjusted to the Gumbel distribution, 6% were 
adjusted to the Fréchet distribution, and 6% did not 
fit any of the three distributions. In the case of TNN, 
94% of the analyzed climatic stations were adjusted 
to the Weibull distribution, and only 6% did not adjust 
to any of the distributions.

In the case of TXX, which exhibits a significant 
temporal trend, it was found that 72% was adjusted 
to the Weibull distribution, 14% to the Gumbel dis-
tribution, and 14% to the Fréchet distribution. For 
TNN, it was found that those that show a significant 
temporal trend (82%) and those that are stationary 
(12%) conformed to the Weibull distribution.

Overall, for both extreme temperatures TXX 
and TNN, it was found that the 57% following the 
Weibull distribution are statistically significant to the 
temporal trend at the 95% confidence level. One of 
the properties of this distribution, which may even 
be controversial because of the trend found, is that 
both extreme temperatures have an upper limit that 
cannot be exceeded.

Figures 12 and 13 describe the temporal trend 
pattern of decadal trends for the location parameter 
(μ) of the maximum and minimum temperatures 
according to non-stationary GEV models (Table II). 
About the TXX (Fig. 12), the most significant pos-
itive trend occurred in the center and east regions 
(Toluca, Chapingo, Puebla and Veracruz), whereas 
the lowest trends occurred in the northwest regions 
(Tijuana and Mexicali). 

Respect to the TNN (Fig. 13), the most significant 
positive trends were most relevant in different geo-
graphical areas of the country, i.e., higher in the west 
center (Guadalajara and León), southeast (Tuxtla 
Gutiérrez), some urban areas located in the central 
part (Úrsula Coapa, Toluca, Chapingo, Tlaxcala and 
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Fig. 12. Spatial patterns of trends of the location parameter 
(μ) for the maximum temperature. Red (blue) triangles 
mean positive (negative) values. Full triangles mean sig-
nificant trends at the 5% level. The symbol ⊗ indicates 
without change.

Fig. 13. Spatial patterns of trends of the location parameter 
(μ) for the minimum temperature. Red (blue) triangles 
mean positive (negative) values. Full triangles mean sig-
nificant trends at the 5% level. 
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Puebla), and in the northeast and northwest (Monter-
rey and Mexicali), whereas the lowest positive trend 
occurred in the urban area of Tijuana (with a value of 
0.30). The most significant negative trend occurred 
in an urban area. 

Once the best models were selected, the return 
levels of the extreme, maximum, and minimum tem-
peratures were estimated. Tables III and IV present 
the estimators and confidence intervals for return 
levels to 10, 20, 50, and 100 years, for both station-
ary and non-stationary models. The stationary return 
levels for TXX in Table III, indicate that the values 
increase for increasingly larger periods (10, 20, 50, 
and 100 years), except for the urban area of Tuxtla 
Gutiérrez. In addition, the confidence intervals were 
increasingly wider as the periods of return increased. 
In Aguascalientes the TXX can be expected to pro-
gressively exceed 37.1 ºC on average every 10 years, 
37.9 ºC on average every 20 years, 38.9 ºC on average 
every 50 years, and 39.7 ºC on average every 100 
years. The 95% confidence intervals for these return 
periods, in ºC, were 36.4-37.8, 37.0-38.9, 37.5-40.4, 
and 37.8-41.5, respectively. 

Among the locations considered in that block, and 
in the context of the stationary return levels, Monter-
rey (in the northeast of the country) was associated 
with the highest return levels, and Milpa Alta (in 
the metropolitan area of the Valley of Mexico in the 
center of the country) had the lowest return levels. 
Based on the 95% confidence interval and according 
to Table III, we can expect that the largest TXX event 
recorded for Milpa Alta could reappear for the next 
10 years. Moreover, there is a high probability that 
the annual TXX will exceed the maximum historical 
value in the next 50 years, except in the sites Gran 
Canal and Monterrey. 

The estimated return levels assume stationarity, 
meaning that the level of return for a return period is 
the same for the successive years. This implies that 
the statistical properties of the parameters μ, σ, and 
ξ are constant.

In a non-stationary case, the parameters of the 
GEV distribution vary over time, and the return 
levels of extreme temperatures will also follow that 
temporal trend. Under a changing climate, the return 
value can be interpreted as an extreme quantile of a 

Table III. Stationary and non-stationary return levels for extreme maximum temperature and its 95% confidence 
levels (in parentheses).

Urban zone Return levels
(10 years)

Return levels 
(20 years)

Return levels
(50 years)

Return levels
(100 years)

Stationary return levels (ºC)

Aguascalientes 37.1 (36.4-37.8) 37.9 (37.0-38.9) 38.9 (37.5-40.4) 39.7 (37.8-41.5)
Tuxtla Gutiérrez 41.7 (41.5-42.0) 41.9 (41.7-42.0) 42.0 (41.8-42.2) 42.0 (41.8-42.2)
Úrsula Coapa 34.7 (34.2-35.2) 35.1 (34.6-35.6) 35.5 (35.0-36.1) 35.8 (35.1-36.4)
Gran Canal 34.7 (34.0-35.4) 35.5 (34.6-36.5) 36.5 (35.1-37.9) 37.2 (35.4-39.1)
Milpa Alta 31.4 (30.7-32.2) 32.2 (31.2-33.1) 33.0 (31.8-34.2) 33.6 (32.0-35.1)
León 37.6 (37.0-38.1) 38.2 (37.5-38.9) 38.9 (37.9-39.8) 39.3 (38.8-40.4)
Monterrey 43.8 (43.0-44.6) 44.7 (43.8-45.6) 45.7 (44.6-46.9) 46.4 (45.0-47.7)
Tlaxcala 34.7 (33.6-35.8) 35.8 (34.1-37.6) 37.5 (34.4-40.5) 38.8 (34.5-43.2)

Non-stationary return levels (ºC)

Mexicali 48.5 (48.0-49.1) 49.4 (48.8-50.1) 50.9 (50.1-51.7) 52.7 (51.7-53.7)
Tijuana 41.1 (40.3-41.8) 42.2 (41.3-43.0) 43.9 (42.8-45.0) 45.9 (44.5-47.2)
Guadalajara 38.2 (37.8-38.7) 38.3 (37.7-38.8) 37.6 (36.9-38.3) 36.1 (35.2-36.9)
Toluca 30.0 (28.9 -31.0) 31.5 (30.1-32.9) 34.6 (32.4-36.8) 38.6 (35.7-41.5)
Chapingo 33.5 (32.9-34.1) 34.5 (33.8-35.3) 36.6 (35.6-37.6) 39.5 (38.2-40.7)
Puebla 30.2 (29.4-31.0) 32.0 (31.0-32.9) 36.3 (35.1-37.5) 42.8 (41.4-44.2)
Veracruz 36.3 (35.3-37.3) 37.9 (36.2-39.5) 40.7 (37.9-43.5) 44.0 (40.0-48.1)
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temperature distribution that varies over time (for 
example, a return value of 20 years can be interpreted 
as a value that has a 5% probability to be exceeded 
in a particular year). 

It is now possible to estimate return levels for 
any year, which are also presented in Table III. For 
example, note that the average return levels (in ºC) for 
Mexicali for 10, 20, 50, and 100 years, are 48.5, 49.4, 
50.9 and 52.7, respectively. The confidence intervals 
at 95% (in º C) are 48.0-49.1, 48.8-50.1, 50.1-51.7, 
and 51.7-53.7, respectively. The differences in return 
levels between stations is remarkable, both in the 
stationary GEV models and in the non-stationary 
models. Mexicali, in the northwest of Mexico, is 
associated with the highest return levels, whereas 
Milpa Alta, a metropolitan area in Mexico City, has 
the lowest return levels.

With respect to TNN, Table IV shows that only 
stations Milpa Alta and Veracruz have stationary 
return levels, and that the values increase slightly for 
increasingly large return periods (10, 20, 50, and 100 
years). In addition, the confidence intervals remain 
nearly constant as the periods of return increase. For 
example, Milpa Alta could expect the TNN to exceed 
1.9 ºC on average every 10 years, 2.3 ºC on average 

every 20 years, 2.6 ºC on average every 50 years, and 
2.8 ºC on average every 100 years. The confidence 
intervals, at 95% (in ºC) are 1.4-2.3, 1.8-2.7, 2.2-3.1, 
and 2.3-3.3, respectively. 

As already mentioned, the estimated return levels 
assume stationarity, meaning that the level of return 
for a return period is the same for successive years. 
This also implies that the statistical properties, as 
mentioned for TXX, keep the parameters μ, σ, y, 
and ξ constant.

In a non-stationary case (as with TXX), the 
parameters vary in time and the return levels of 
extreme temperatures will follow a similar temporal 
trend. It is possible to estimate return levels for any 
year of interest in a time period. The return levels 
for the non-stationary TNN series are presented in 
Table IV. Note that the average return levels of 10, 
20, 50, and 100 years (in ºC) for Aguascalientes are 
–1.3, –0.3, 2.1, and 5.9, respectively, whereas their 
confidence intervals, at 95% and in ºC, progress from 
–1.9 to –0.7, –1.0 to 0.4, 1.3 to 3.0, and 4.9 to 7.0, 
respectively.

In the case of a non-stationary series, for both 
TXX and TNN, a positive trend of the location pa-
rameter (μ1) will be reflected in the positive trend of 

Table IV. Stationary and non-stationary return levels for extreme minimum temperature and its 95% confidence 
levels (in parentheses).

Urban zone Return levels
(10 years)

Return levels 
(20 years)

Return levels
(50 years)

Return levels
(100 years)

Stationary return levels (ºC)

Milpa Alta 1.9 (1.4-2.3) 2.3 (1.8-2.7) 2.6 (2.2-3.1) 2.8 (2.3-3.3)
Veracruz 14.9 (14.6-15.2) 15.3 (15.0-15.6) 15.6 (15.3-16.0) 15.8 (15.5-16.2)

Non-stationary return levels (ºC)

Aguascalientes –1.3 [–1.9-(–0.7)] -0.3 [–1.0-(0.4)] 2.1 (1.3-3.0) 5.9 (4.9-7.0)
Mexicali –0.3 [–0.9-(0.3)] 1.0 (0.4-1.6) 3.8 (3.1-4.5) 8.0 (7.1-8.8)
Tijuana 2.6 (1.8-3.4) 3.4 (2.2-4.7) 5.0 (2.8-7.3) 7.1 (3.9-10.3)
Tuxtla Gutiérrez 11.5 (11.1-12.0) 12.7 (12.3-13.2) 15.8 (15.2-16.3) 20.6 (19.9-21.2)
Úrsula Coapa 2.5 (1.7-3.3) 3.8 (2.9-4.8) 6.5 (5.3-7.8) 10.2 (8.6-11.8)
León 2.3 (1.7-2.8) 3.3 (2.7-3.8) 5.8 (5.2-6.5) 9.8 (9.0-10.5)
Guadalajara 5.2 (4.7-5.7) 6.5 (6.1-7.0) 9.8 (9.3-10.2) 14.9 (14.4-15.4)
Aculco 2.6 (2.2-2.9) 2.6 (2.3-2.9) 2.3 (1.9-2.7) 1.7 (1.3-2.1)
Toluca –5.7 [–6.4-(–5.0)] –4.6 [–5.3-(–3.8)] –1.9 [–2.9-(–0.8)] 2.2 (1.0-3.4)
Chapingo –2.4 [–3.0-(–1.8)] –1.2 [–1.8-(–0.6)] 1.3 (0.6-2.0) 5.1 (4.3-5.9)
Monterrey 2.1 (1.5-2.8) 3.1 (2.5-3.7) 5.1 (4.5-5.6) 8.0 (7.5-8.6)
Puebla 0.7 (0.2-1.2) 1.8 (1.2-2.4) 3.9 (3.2-4.7) 6.9 (6.0-7.8)
Tlaxcala –1.3 [–1.7-(–1.0)] –0.6 [–1.0-(–0.3)] 1.0 (0.6-1.3) 3.5 (3.1-3.9)
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the return levels (Chen and Chu, 2014). This means 
that with greater magnitudes of the trend return levels 
will increase considerably, and threshold values of 
return levels will contain greater variation over time. 
As examples of estimators of return levels, the time 
series of return levels for TXX for the city of Puebla 
(Fig. 14) and for TNN for the city of Guadalajara 
(Fig. 15) are plotted, according to the GEV adjust-
ment non-stationary model. The difference in the 
return level for 2 years for the city of Puebla from 
the beginning of the period (1955) to the end (2013) 
is approximately 5 ºC, whereas the difference in the 
return level of 2 years for the city of Guadalajara 
from the beginning of the period (1957) to the end 
(2013) is approximately 3 ºC.

The application of the stationary and non-sta-
tionary GEV distributions has allowed this study to 
model the behavior of extreme temperatures in some 
cities of Mexico. Due to the lack of reliable data, only 
16 climate stations were used, focusing on 12 urban 
areas. The latitudinal dispersion of these climatic 
stations ranged from 16º 45’ (Tuxtla Gutiérrez) to 
32º 39’ (Mexicali), and with altitudes above sea level 
varying from 4 m (Mexicali) to 2726 m (Toluca). 
This resulted in several types of climates according 
to the geographical location (García-Cueto et al. 
2018), making the analysis by chosen city even more 
interesting. This is particularly true for those cities 
that show significant trends and periods of return 
that could put the adaptation of people and the urban 
ecosystem at risk, particularly the fauna and flora. 
We found that the TXX is increasing in Mexicali, 
Tijuana, Toluca, Chapingo, Puebla and Veracruz, 
and no significant changes were detected in the other 
10 urban zones. A larger number of climatological 
stations indicate increasing TNN compared to TXX, 
namely Aguascalientes, Mexicali, Tijuana, Tuxtla 
Gutiérrez, Úrsula Coapa, León, Guadalajara, Aculco, 
Toluca, Chapingo, Monterrey, Puebla and Tlaxcala. 
Non significant increases were detected in only two 
stations, i.e., Milpa Alta and Veracruz.

A comparison of the obtained results with those 
from studies using the ETCDDI indices shows 
similarities and some differences. For example, 
García-Cueto et al. (2018) used the same database 
herein and found a statistically significant increasing 
trend in the TX90 (warm days) and TN90 (warm 
nights) indices for Aguascalientes, whereas for Mil-
pa Alta, both indices (TX90 and TN90) decreased 
significantly. The difference is between the TXX 
(stationary in this study) and TX90 (increasing trend) 
for Aguascalientes; in the case of Milpa Alta, there 
are coincidences in both indices (TXX with TX90 
and TNN with TN90) that show decreasing trends.

At the country level, according to Gosling et 
al. (2011), Mexico has experienced a generalized 
warming since 1960. The frequency of cold days 
has decreased, and the frequency of warm nights has 
increased. There has also been a general increase in 
average winter temperatures in the country as a result 
of human influences on climate. Thus, during the 
winter season, the occurrences of warm temperatures 
are more frequent, and those of cold temperatures are 

2-year level
20-year level
100-year level
Observed

30
35

40
R

et
ur

n 
le

ve
l (

ºC
)

1955 1965 1975 1985 1995 2005 2015
Year

Fig. 14. Time series of extreme maximum temperature 
(TXX) return levels in Puebla in accordance with the 
non-stationary generalized extreme value (GEV) model. 
The red, green, and blue lines represent the return levels 
of 2, 20, and 100 years, respectively. The black line rep-
resents observed values.

Fig. 15. Time series of extreme minimum temperature 
(TNN) return levels in Guadalajara in accordance with 
the non-stationary GEV model. The red, green, and blue 
lines represent the return levels of 2, 20, and 100 years, 
respectively. The black line represents observed values.

2-year level
20-year level
100-year level
Observed

0
5

10
R

et
ur

n 
le

ve
l (

ºC
)

1957 1967 1977 1987 1997 2007 2013
Year



248 O. R. García-Cueto et al.

less frequent. For the A1B emissions scenario, the 
projected temperature increases of the Coupled Mod-
el Intercomparison Project Phase 3 (CMIP3) over 
Mexico are approximately 4 ºC near the US border, 
with increases in the rest of the country between 2.5 
and 3.5 ºC. This implies that the influence of GHGs 
will have an additive effect on the potential warming 
caused by urbanization. This can become a major 
problem affecting city dwellers both positively and 
negatively, depending on their latitudinal location.

Significant trends in extreme maximum and min-
imum temperatures found in many parts of the world 
(Heim Jr., 2015; Easterling et al., 2016; Houngninou 
et al., 2017) reinforce the results obtained here. In the 
US, extremely hot maximum and minimum tempera-
tures have shown increasing trends between the 20th 
and 21st centuries and during the last four decades 
(1971-2013), whereas the presence of extremely low 
and minimum temperatures has decreased during 
these periods (Hartmann et al., 2013).

The application of a theory of extreme events 
to the TXX and TNN in 16 climatological stations 
located in 12 urban areas of Mexico, in time series 
with different periods, showed general trends in urban 
warming, especially at night. However, values varied 
from city to city. A less clear detection signal was the 
diurnal heating. Although the causes for this behavior 
of heterogeneous trends for TXX and TNN may be 
of purely local origin and caused by the dynamics of 
urbanization (land use change, anthropogenic activi-
ties), it cannot be ruled that they could be caused by 
some other climatic phenomena of a greater scale. 
For example, Mexico could be exposed to blocking 
patterns, or modes of climate variability, such as 
the El Niño Southern Oscillation, Pacific Decadal 
Oscillation, North Atlantic Oscillation, or the Mad-
den-Julian Oscillation, among others. These could be 
causal factors that contribute to thermal trends since 
in other regions of the world they have significantly 
influenced the behavior of extreme temperatures 
(Arblaster and Alexander, 2012; Parker et al., 2014; 
Burgess and Klingaman, 2015; Matsueda and Takaya, 
2015). All these factors are considered important for 
possible attribution but are not the object of this study. 

It is well known that cities will remain the most 
vulnerable geographic spaces, especially in de-
veloping countries such as Mexico, as they often 
concentrate large populations without adequate 

infrastructure. Thus, knowledge of regions where the 
climate is unstable (changing), and the knowledge 
that extreme climate events are not controllable, but 
have showed signals of an increasing trend, will serve 
to generate some potential urban adaptation strategies 
for facing current and future extreme temperatures. 
For example, such temperatures can be addressed 
by redesigning the urban space (making it safe, 
ecological and acceptable) to reduce vulnerability 
and strengthen urban water security. It should be 
noted that each city is a case of analysis, and that an 
adequate scheme of sustainable urban planning can 
only be accomplished through the participation of 
governmental authorities, productive sectors, aca-
demics, and local actors.

6. Conclusions
This study modeled the TXX and TNN recorded 
in 16 climatological stations corresponding to 12 
cities in Mexico, for periods that varied according 
to the series of available data. The longest record 
corresponded to Veracruz with 85 years (1930-
2014), and the shortest to Tuxtla Gutiérrez with 31 
years (1980-2010). Through the application of the 
non-parametric Mann-Kendall test and the Sen meth-
od, a trend towards urban warming was detected, but 
no homogeneous behavior in all cities analyzed was 
found. An important observation was the significant 
prevalence of non-stationary series with the TXX 
in half of the cities analyzed; only Guadalajara, 
located in the center-west of the country, presented 
a significant negative trend, perhaps due the effect 
of “diming” by increases in aerosol pollution (Fon-
seca-Hernández et al., 2018). Therefore, the annual 
trends in daytime warming, represented by TXX, are 
not necessarily identical in all selected urban areas 
of Mexico. In the case of the TNN, which is related 
to night warming, the behavior was more uniform. 
Specifically, 90% of the cities are non-stationary 
with a significant positive trend, and only two areas 
presented a stationary series: one urban area located 
to the east of the metropolitan area of the Valley of 
Mexico (Milpa Alta), and another on the coast of the 
Gulf of Mexico (Veracruz). With the adjustment of 
the non-stationary GEV distribution to the data set 
and by incorporating the trend of the location param-
eter, the trends of the return levels of 10, 20, 50, and 
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100 years were estimated, while keeping the shape 
and scale parameters constant.

The results are very similar to those from 
non-parametric trend detection methods, both for 
TXX and TNN. This confirms the non-stationary 
behavior of half of the stations for TXX, and 90% of 
the stations for TNN. Return periods of the thermal 
extremes estimated in a changing climate for many of 
the cities analyzed in this study vary significantly, and 
the regularity with which extreme temperatures are 
occurring is becoming more frequent. Thus, statistical 
modeling should consider this behavior, due to its im-
portance for risk assessments for human health, flora 
and fauna, and urban infrastructure. The proposed 
non-stationary GEV model has provided new and 
important information concerning changes in extreme 
temperatures, and by estimating return periods, it has 
provided their probability of recurrence. Some main 
modes of climate variability as causal mechanisms 
of attribution of extreme temperatures have not been 
studied, making it a pending task.
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