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RESUMEN

Se realiza la asimilación de datos meteorológicos procedentes de observaciones de superficie (PREPBUFR) 
y radiancia de satélites (BUFR) obtenidos de los Centros Nacionales de Predicción Ambiental (NCEP) de 
EUA para determinar su posible influencia en las concentraciones de variables químicas como el ozono (O3), 
resultado de la modelación de la calidad del aire en el centro de México empleando el modelo fotoquímico 
de Investigación y Pronóstico del Tiempo con Química (WRF-Chem) durante una contingencia ambiental 
por O3 declarada en la Zona Metropolitana de la Ciudad de México, del 1 al 4 de mayo de 2013. Para ello 
se adaptó a WRF-Chem el módulo de asimilación de datos de WRF (WRFDA) y se seleccionó la técnica 
de asimilación con variación en tres dimensiones (3DVAR) implementada en dicho módulo. Se definen seis 
casos de estudio tomando en cuenta la combinación del tipo de fuente de datos con el horario de comienzo 
del proceso de asimilación (00:00 y 12:00 UTC). Los resultados indican que, de modo general e independien-
temente de estos factores, la asimilación modifica las condiciones iniciales de las variables meteorológicas 
estudiadas (temperatura y viento) para obtener una mejor correspondencia entre las salidas del modelo y 
las observaciones, si bien iniciando a las 00:00 UTC y empleando una combinación de datos PREPBUFR 
más BUFR (caso PB+RD) los resultados estadísticos son incluso superiores. También se comprueba que sí 
hay influencia sobre las concentraciones de O3, ya que las métricas estadísticas obtenidas para los distintos 
experimentos realizados indican modificación; sin embargo, es insuficiente para mejorar considerablemente 
el desempeño del modelo para esta variable química.

ABSTRACT

Meteorological data assimilation from surface observations (PREPBUFR) and satellite radiance (BUFR) 
provided by the National Centers for Environmental Prediction (NCEP) is carried out to determine their 
possible influence on chemical variables concentrations such as ozone (O3), obtained from air quality mod-
eling over central Mexico using the photochemical Weather Research and Forecasting Model with Chemistry 
(WRF-Chem) during a bad-pollution event due to high O3 concentrations in the Mexico City Metropolitan 
Area on May 1-4, 2013. For this, the Weather Research and Forecasting Data Assimilation (WRFDA) module 
was adapted to run with WRF-Chem, and the 3DVAR assimilation technique (which is implemented in the 
WRFDA) was selected. Six study cases were defined taking into account the combination of the data source 
type with the assimilation process start times (00:00 and 12:00 UTC). Results indicate that independently 
of these factors, data assimilation modifies in general the meteorological variables (temperature and wind) 
initial conditions to obtain a better agreement between model simulations and observations, although statis-
tics results are even higher when the process starts at 12:00 UTC using a combination of PREPBUFR and 
BUFR data (PB+RD cases). It was also verified that there is an influence on O3 concentrations since the 
statistical metrics obtained for the different experiments carried out are modified; however, it is insufficient 
to considerably improve the chemical variable model performance.

Keywords: WRFDA, WRF-Chem, 3DVAR, meteorological data assimilation.
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1. Introduction
One of the main and most effective ways today to 
estimate air quality in an area is numerical prediction, 
which is a physical-mathematical tool that allows 
simulating pollutants transportation and dispersion in 
the atmosphere, as a result of the interaction between 
the meteorological conditions and those related with 
emission sources (Pu and Kalnay, 2019). This is done 
through air quality models, which are widely used to 
identify emission source contributions to atmospheric 
pollution problems; to assist in the design of strat-
egies to reduce harmful air pollutants; to define the 
measurement systems location and resolution, and 
also to address their shortcomings in terms of spatial 
and temporal resolution. Once an air quality model 
is validated and adapted to the conditions of its area 
of application, it constitutes a representative, cheaper 
and faster option than measurements (Turtos, 2013).

Atmospheric dynamics are governed by physical 
laws expressed through mathematical equations that 
must be solved by the numerical models as an initial 
conditions problem integrated in time (Kalnay, 2003), 
which is a complex task that depends on the accuracy 
of a large number of internal and external parameters. 
Despite some advances in computer technology, ini-
tial data collection, numerical modeling techniques 
and model configurations (such as parameterizations 
or grid resolution), among others, evaluations of air 
quality models performance show that their solutions 
may still contain errors. In this sense, the most im-
portant topics include imperfect knowledge about the 
pollutants emissions pattern and rate, in addition to 
the chemical species initial and boundary conditions 
(Russell and Dennis, 2000).

From the first experiences in numerical prediction, 
particularly in air quality models, it became evident 
that one of the main limitations were the uncertain-
ties in initial and boundary conditions, due to data 
scarcity and the use of inappropriate techniques to 
construct the model input grids (Charney, 1951). 
Today, numerical models use global and regional 
model outputs as the main input data, but these are 
often not representative of the study area or lack the 
necessary resolution. Therefore, there have been 
continued efforts to develop different tools that allow 
refining these data according to real observations.

Data assimilation is a powerful tool for this 
purpose. It can be defined as the process to include 

observed data in a model, maintaining the coherence 
of the laws that govern the evolution over time and 
the atmosphere physical properties (Bouttier and 
Courtier, 1999). Studies in this field consider data as-
similation from different sources, such as surface ob-
servations, radiosondes, and indirect measurements 
obtained from radar and satellites, among others.

Data assimilation studies started from the numer-
ical weather prediction when Richardson (1922) and 
later Charney et al. (1950) used available observa-
tions in manual interpolations to initialize a regular 
grid of points that would be digitalized, while its use 
in atmospheric chemistry is quite recent, because air 
quality models have been used routinely only since 
the mid-1990s (Bocquet et al., 2015). Elbern and 
Schmidt (2001) showed that optimizing initial con-
ditions offered considerable improvement for ozone 
(O3) concentrations predicted in the atmosphere; 
similar conclusions were reached in other studies 
(Wu et al., 2008; Tombette et al., 2009; Wang et al., 
2011; Curier et al., 2012), while Chai et al. (2006) 
did it for nitrogen monoxide (NO), nitrogen dioxide 
(NO2) and polyacrylonitrile (PAN). 

Approaches to data assimilation have also been 
used to combine measurements and model results in 
the air quality assessments context (Candiani et al., 
2013), as well as to improve emission inventories 
(Mijling and van der A, 2012; Koohkan et al., 2013), 
to establish optimal monitoring networks (Rayner, 
2004; Wu and Bocquet, 2010; Wu et al., 2010; Lau-
vaux et al., 2012), in inverse modeling to improve or 
identify errors in emission rates (Elbern et al., 2007; 
Vira and Sofiev, 2012; Yumimoto et al., 2012), for 
boundary conditions (Roustan and Bocquet, 2006), 
in the adjustment of model parameters (Barbu et 
al., 2009; Bocquet, 2012), and for satellite chemical 
variables data assimilation (Wang et al. 2011), among 
others (Bocquet et al., 2015).

Current challenges focus on coupled chemi-
cal-meteorological models because they offer the 
possibility to assimilate meteorological and chem-
ical data. It is a more recent and less developed 
topic, although its use has increased in recent years 
employing a variety of techniques (Zhang, 2008; 
Baklanov et al., 2014; Bocquet et al. 2015). In this 
sense, several researches have been conducted with 
the coupled Weather Research and Forecasting Model 
with Chemistry (WRF-Chem): Pagowski et al. (2010) 
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used Gridpoint Statistical Interpolation (GSI) and the 
Three-Dimensional Variational (3DVAR) method 
to assimilate both O3 and surface concentrations of 
particulate matter (PM) with a diameter of 2.5 µ or 
less (PM2.5) over North Americ; Liu et al. (2011) 
assimilated aerosol optical depth (AOD) from the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) to simulate a 2010 dust episode in Asia, 
while Chen et al. (2014) used a similar approach to 
improve simulations of PM2.5 and organic carbon 
surface concentrations during a wild biomass fire 
event in the United States; Pagowski and Grell 
(2012) compared 3DVAR and the Ensemble Kalman 
Filter (EnKF) techniques to assimilate PM2.5 surface 
concentrations; Schwartz et al. (2012) also used GSI 
and the 3DVAR technique to assimilate both AOD 
from MODIS and PM2.5 surface concentrations to 
improved simulated PM2.5 concentrations over North 
America, while Schwartz et al. (2014) assimilated the 
same data using the Ensemble Square Root Filter (En-
SRF) and a hybrid ensemble 3DVAR methods; Jiang 
et al. (2013) also used GSI and 3DVAR to assimilate 
surface concentrations of PM with a diameter of 10 µ 
or less (PM10) in China; Peng et al. (2017) assimilated 
PM2.5 surface concentrations with EnKF, while Peng 
et al. (2018) also used EnKF to assimilate multi-spe-
cies surface chemical observations, both to improve 
air quality forecasts over China, among others. 

The above-mentioned papers only address the 
data assimilation of chemical variables. However, 
meteorology also plays a crucial role in air quality 
modeling, because it defines the physical and dynam-
ical environment for atmospheric chemistry, that is, 
meteorology has a strong influence in the emissions 
transformation, chemical species, aerosols and PM 
in the atmosphere. In addition, the rates at which 
secondary species and aerosols form and certain 
chemical reaction take place are affected directly by 
relative humidity, solar energy, temperature, winds, 
and cover clouds. The significant uncertainty present 
in meteorological data during an air quality model 
simulation has the potential to affect negatively the 
simulation results. Therefore, as computer technolo-
gy continues to rapidly grow and new remote sensing 
instruments become available, a greater amount of 
meteorological data can be collected and assimilated 
(with or without chemical data feedback) to improve 
air quality modeling (Seaman, 2000, 2003).

WRFDA is a data assimilation module developed 
for the Weather Research Forecast (WRF) model 
which allows to assimilate meteorological data. 
However, some research conducted by the National 
Center for Atmospheric Research (NCAR) is current-
ly underway, focused on developing the WRFDA’s 
capacity to assimilate chemical data and to adapt 
this module for WRF-Chem. In this sense, Guerrette 
and Henze (2015) developed a new module based 
on WRFDA capable to assimilate both types of data 
using the Four-Dimensional Variational (4DVAR) 
technique, which was tested in a sensitivity study 
of anthropogenic and biomass burning sources in 
California. The main problem with this tool is that 
it has not yet been included in the WRFDA version 
available to the international scientific community 
(personal communication with the authors). In addi-
tion, Eltahan and Alahmadi (2019) showed the impact 
of meteorological data assimilation alone using both 
3DVAR and 4DVAR algorithms within the WRFDA 
framework to simulate AOD of a dust storm over 
Egypt; they found out that assimilating wind speed 
data improved the model performance. 

To the best of our knowledge, very little research 
related to data assimilation has been conducted in 
Mexico. In this sense, Bei et al. (2008) used the 
3DVAR technique to assimilate meteorological 
fields such as wind, humidity and temperature to 
improve O3 simulations in Mexico City with the 
NCAR/Penn State mesoscale model (MM5) and the 
Comprehensive Air Quality Model with extension 
(CMAx). The best results were obtained early in the 
morning, especially regarding O3 concentration peaks 
and plume position. Based on this research, Bei et al. 
(2010) subsequently carried out meteorological data 
assimilation during the MCMA-2006/MILAGRO 
campaign (Molina et al., 2010) with similar objec-
tives, but this time they used an ensemble forecast 
obtained from meteorological initial conditions, 
which were generated with the WRF-3DVAR tech-
nique (Barker et al., 2004). Then, following this same 
idea, Bei et al. (2012) investigated the uncertainties 
in the simulation of secondary organic aerosol in 
the Mexico City Metropolitan Area (MCMA) but 
using the WRF-Chem model also through ensemble 
simulations. In addition, Bei et al (2014) evaluated 
the impact of EnKF (Evensen, 1994) on air quality 
simulations in the California-Mexico border region 
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during the Cal-Mex 2010 campaign and compared 
them with ensemble and nudging techniques. 

This work aims to provide an initial overview of 
the influence on air quality numerical simulation with 
WRF-Chem over Central Mexico, of meteorological 
data assimilation from satellite observations and sur-
face measurements using the 3DVAR algorithm. In 
addition, the WRFDA module was adapted to WRF-
Chem. To carry out the simulations, an environmental 
contingency period between May 1 and 4, 2013 in the 
MCMA was selected. Six study cases were defined, 
taking into account the combination of two elements: 
the assimilated data sources and the numerical sim-
ulations start times. Firstly, a descriptive analysis 
of the assimilation process is performed. Then, the 
WRF-Chem model performance is evaluated for 
chemical and meteorological variables, using a set 
of statistical metrics that are proposed to determine 
which could be the most appropriate time to initialize 
the numerical simulation with meteorological data 
assimilation, as well as the best data source. In this 
way, a first approach to this topic is offered in Mexico, 
which can serve as a basis for future research about 
both meteorological and chemical data assimilation 
from different sources and is also applicable to other 
countries.

2. Materials and methods 
2.1 Study area and modelling domains
The study area is located in the region known as 
central Mexico, which mainly includes Mexico City 
and the states of Mexico, Morelos, Hidalgo, Tlaxcala 
and Puebla (Fig. 1a). The most important region 
within this area is the MCMA, located in the Valley 
of Mexico basin, with geographic center in 19º 30’ 
N and 99º 02’ W. Its average height is 2240 masl. 
The MCMA is surrounded by elevations that allow 
pollutants accumulation over the city, imposing seri-
ous threats to human health and economic activities 
(SEMARNAT, 2002).

For all simulation runs, two modeling domains 
were constructed (Fig. 1b): a larger one (D-1) with 90 
× 90 grid points and a 9-km resolution, and a smaller 
one (D-2) that covers the MCMA, with 88 ×88 grid 
points and a 3-km resolution. Both domains run at 
the same time and are completely interactive (two-
way nesting). Vertically, 27 levels were considered.

2.2 WRF-Chem model: description and configura-
tion
In this work we used the new generation regional 
air quality modeling system WRF-Chem (v. 3.8.1) 
developed by the National Oceanic and Atmospheric 
Administration Earth System Research Laboratory 
(NOAA/ESRL) and NCAR, to carry out the numer-
ical simulations and to obtain hourly outputs. WRF-
Chem simulates the emission, transport, mixing and 
chemical transformation of trace gases and aerosols 
simultaneously with the meteorology, i.e., both com-
ponents are fully coupled and use the same transport 
scheme, the same horizontal and vertical grids, the 
same physics schemes and the same time-step for 
transport and vertical mixing. The model has several 
options for spatial discretization, diffusion, nesting, 
lateral boundary conditions and parameterization 
schemes for sub-grid scale physical processes. The 
physics consists of microphysics, cumulus convec-
tion, planetary boundary layer turbulence, land sur-
face, longwave and shortwave radiation. WRF-Chem 
is used for investigating regional-scale air quality, 
field program analysis, cloud-scale interactions be-
tween clouds and chemistry, among others, and it 
also includes an initialization program to prepare 
the initial and boundary conditions for any domain, 
which is the Weather Preprocessing System (WPS) 
(Grell et al. 2005; Fast et al. 2006).

The physical parameterizations used in WRF-
Chem were selected as follows:

• The Yonsei University (YSU) scheme, a first-or-
der non-local scheme with a counter-gradient 
term in the eddy-diffusion equation, was used for 
the planetary boundary layer (Hong and Dudhia, 
2003).

• The revised MM5-Similarity scheme, which uses 
a stability function to compute surface exchange 
coefficients for heat, moisture and momentum, 
was selected for surface layer (Zhang and Anthes, 
1982).

• The WRF Single-Moment class 5 (WSM5) 
scheme, which predicts five water species and 
allows mixed-phase cloud formation, was chosen 
as the microphysics option (Hong et al., 2004).

• The Noah scheme (LSM), a four-layer model that 
calculates thermal and moisture stocks and fluxes 
on land, including vegetation, root and canopy 

https://link.springer.com/article/10.1007/s11869-019-00698-5
https://link.springer.com/article/10.1007/s11869-019-00698-5
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effects, was used as soil-land parameterization 
(Chen and Dudhia, 2001).

• Atmospheric short-wave and long-wave radia-
tions were computed, respectively, by the MM5 
Dudhia scheme, a simple broadband and down-
ward solar flux scheme which uses look-up tables 
for cloud properties (Dudhia, 1989), and the Rapid 
Radiative Transfer Model (RRTM), which uses 
the correlated-k approach to calculate fluxes and 
heating rates efficiently and accurately (Mlawer 
et al., 1997).

• The Kain-Fritsch scheme was used to represent 
cumulus. This scheme assumes that cloud base 
mass flux is determined by the amount of convec-
tive available potential energy in the environment 
that needs to be removed (Kain and Fritsch, 1993). 
Feedback from aerosols to the radiation scheme 
was turned on (aer_ra_feedback = 1) running with 
direct effect (cu_rad_feedback = .true), i.e., the 
shortwave and photolysis schemes included the 
effects of unresolved clouds in the simulations 
(Forkel et al., 2012). 

• The Regional Acid Deposition Model v. 2 
(RADM2) was used as gas-phase chemistry 
mechanism. It determines the chemical species 
emissions distribution based on reactivity to the 

hydroxyl radical (OH) and includes 21 inorganic 
and 42 organic species with 136 chemical reac-
tions (of which 21 are photochemical reactions) 
(Stockwell et al., 1990).

2.2.1 Input data
Meteorological data obtained from the North Amer-
ican Regional Reanalysis (NARR), developed by 
the National Centers for Environmental Prediction 
(NCEP), was used to generate the initial and bound-
ary conditions of the meteorological fields for WRF-
Chem. NARR is a long-term, dynamically consistent, 
high-resolution, high-frequency, atmospheric and 
land surface hydrology dataset. It provides data every 
3 h and contains information of air temperature, zonal 
and meridional winds, pressure, geopotential height, 
humidity, soil data, precipitation and dozens of other 
parameters. The grid resolution is approximately 0.3º 
× 0.3º (32 km) with 29 pressure levels, covering the 
North American region (Mesinger et al., 2006).

In this work, we used the default chemical initial 
and boundary conditions hardcoded in the WRF-
Chem model, based on an idealized, northern-hemi-
spheric, mid-latitude, environmentally clean vertical 
profile from the NOAA Aeronomy Lab Regional 
Oxidant Model (NALROM) (Peckham et al., 2017). 
The anthropogenic emissions input was based on 
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the 2008 Mexico National Emissions Inventory 
provided by the Secretaría de Medio Ambiente y 
Recursos Naturales (Ministry of the Environment 
and Natural Resources, SEMARNAT), which con-
tains the classification of emissions from all fixed, 
mobile and area sources in their different categories 
and includes annual emissions by municipality of the 
main atmospheric pollutants such as sulfur dioxide 
(SO2), carbon monoxide (CO), NO, NO2, PM10, 
PM2.5, volatile organic compounds (VOCs), ammonia 
(NH3) and others (García et al., 2018). The Model 
of Emissions of Gases and Aerosols from Nature 
(MEGAN2; Guenther et al., 1994, 2006) was used 
to obtain biogenic emissions.

2.3 WRFDA data assimilation
WRFDA is a module implemented for the WRF 
which allows meteorological data assimilation 
through different techniques such as 3DVAR (Barker 
et al., 2004), 4DVAR (Huang et al., 2009), and hybrid 
variants that combine these with ensembles (Wang 
et al., 2008a, b). Variational techniques are applied 
through an iterative minimization process to a known 
cost function (the conjugate gradient is the iterative 
method implemented in WRFDA module), and one 
of its benefits is that dynamic constraints such as 
geostrophic and hydrostatic balances are included 
when the cost function is minimized. WRFDA al-
lows the assimilation of conventional observation 
data in the American Standard Code for Information 
Interchange (ASCII) format using the observation 
processor (OBSPROC) tool, satellite radiance data 
in binary universal form for the representation of 
meteorological data (BUFR) and PREPBUFR format 
data (Barker et al., 2012). 

The assimilation technique chosen to carry out 
the experiments was 3DVAR (Sasaki, 1970; Bouttier 
and Rabier, 1997), which can be described formally 
from an equation matrix for multiple grid points and 
variables, given by:

1
2J(x) = – (x – xb)

T B–1 (x – xb) + 

(x – xo)
T B–1 (x – xo)

1
2

 (1)

where J(x) is the Jacobian of x, which is a vector 
of n × m values (n is the number of points and m 
represents the dependent variables number); B and 
R are covariance matrices that contain statistical 

background and observation errors information, 
respectively; (x – xb), known as analysis increments, 
is the subtraction between analysis x (field obtained 
after data assimilation) and first approximation field 
xb, known as background (initial condition obtained, 
in this work, from NARR fields); and xo represents 
observations, which are usually transformed into a 
consistent matrix with the system through a linear 
operator and are obtained in a 3-h window. In this 
way, from a control variable the minimum of J(x) 
is sought, looking for an analysis state as close as 
possible to the true state.

2.3.1 WRFDA for WRF-Chem
To adjust WRFDA for WRF-Chem it was necessary 
to turn off the model’s chemical component during 
the module compilation process. Once the execut-
able for WRFDA was obtained, WRF-Chem was 
reinstalled in a directory underlying WRFDA. In this 
way, the model was ready to generate initial mete-
orological conditions with WRFDA and integrating 
them into WRF-Chem. For this, WRFDA requires 
three input files: 

• WRF first guess file, which is taken from WPS/
real.exe output (wrfinput) for each assimilation 
cycle.

• Observations, which include two sources pro-
vided by NCEP: a PREPBUFR data file (surface 
stations, ships, atmospheric soundings, GPS 
observations such as water vapor, and air traffic 
data), and BUFR satellite radiance data com-
prised by 10 polar satellite sensors (six advanced 
microwave sounding unit-A [AMSU-A] sensors 
from NOAA 15-16-18-19 Aqua Missions from the 
Earth Observing System [EOS-Aqua] and mete-
orological operational satellites-2 [METOP-2]; 
three microwave humidity sounder [MHS] sen-
sors from NOAA 18-19 and METOP-2; and one 
atmospheric infrared sounder [AIRS] sensor from 
EOS-Aqua).

• A background error statistics file provided by 
WRFDA using covariance option 3 (CV3) (Par-
rish and Derber, 1992). 

For satellite radiance data assimilation it was 
necessary to make structural changes in the namelist.
input file of the WRFDA module, such as to define 



317Meteorological data assimilation with WRF-Chem in Mexico

the BUFR format as the type input data and to add 
detailed information about satellite sensors, among 
others. Moreover, to run WRFDA a script was written 
in which links to BUFR satellite radiance data, to 
PREPBUFR conventional observations data and the 
necessary coefficients for the Community Radiative 
Transfer Model (CRTM) were created. Finally, the 
data assimilation process was done witha  6-h cycling 
interval. 

2.4 Study period and experiments description
To select the study period the dates of environmental 
contingencies reported in 2013 were taken into ac-
count. Therefore, the dates were set between May 1 
and 4 because an air pollution contingency triggered 
by O3 began on May 2 at 17:00 LT lasting until the 
next day at 20:00 LT. Anomalous values of O3 con-
centrations were reported southwest of the MCMA, 
reaching a value in the Índice Metropolitano de 
Calidad del Aire (metropolitan index of air quality, 
IMECA) of 157 points. At the beginning of the study 
period the region was in a barometric marasmus. 
There was also a dry line to the north, which is typical 
during May within this region. In the last day of the 
period the study area was under a weak influence 
from migratory high pressures with weak gradients. 
In the center and south of the country, towards the 
Pacific coast, low pressures were observed.
The combination of two elements was taken into 
account to select the six case studies: the assimilat-
ed data sources and the numerical simulations start 
times. Three options were defined: without data as-
similation (WA), with PREPBUFR data from NCEP 
assimilation (PB), and with PB plus satellite radiance 
data assimilation (PB+RD). Two start times were 
selected: May 1 at 00:00 UTC (19:00 LT) and May 1 
at 12:00 UTC (19:00 LT) because they were synoptic 
times and had greater data availability. 

2.5 Statistic metrics
A statistical analysis for each proposed case was 

carried through point-by-point comparison between 
simulations results for three variables: temperature 
(T2), wind speed (WS) and O3 and observations 
from seven surface stations belonging to RAMA 
in the MCMA (Fig. 2): Hospital General (HGM), 
Merced (MER), Pedregal (PED), Santa Fe (SFE), 
Tlalnepantla (TLA), Tlalpan (TPN), and Xalostoc 

(XAL). These stations are deemed as suitable for the 
analysis of O3 behavior by the MCMA 2017 study 
framework (LTMCE2, 2017) and were available 
in the selected modeling period. The Unified Post 
Processor version 3.1 (UPPv3.1) and Model Eval-
uation Tool (METv5.0) release packages were used 
to perform this comparison. 

The statistic metrics used to evaluate the model 
performance were the following:

Willmott Concordance Index (IOA; Willmott, 
1981, 1982). This index is currently used as the 
main indicator for these purposes; it assesses the 
model performance on a scale from 0 to 1, where 
1 is the perfect match with the measurement, and 
is calculated as:

IOA = 1 – ∑N
i=1 (pi – oi)2

∑N
i=1 (|pi – o |+|oi – o|)2

 (2)

Root Mean Square Error (RMSE; Fox, 1981): 
It describes the average difference between pre-
dictions and measurements, that is, the decrease 
of RMSE implies the improvement of the model 
performance, which can be defined as: 

TLA
XAL

MER

SFE
HGM

TPN

Fig. 2. Location of selected surface stations from RAMA 
in the MCMA.
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[ ]RMSE = ∑N
i=1 (pi – oi)21

2

1/2

 (3)

Pearson Correlation Coefficient (ρ; Pielke, 1984): 
It describes the level of agreement between fore-
cast and observed values, and is defined as:

ρ=
∑N

i=1 (oi – o)(pi – p)

σ(o)σ(p)

1
2  (4)

Normalized Bias (BIAS; Pielke, 1984): It indi-
cates whether there is a model overestimation or 
sub-estimation with respect to the measurements, 
which can be calculated as:  

BIAS = * 100
(pi – oi)

∑N
i=1

1
N oi

 (5)

where pi is the predicted value; oi is the value ob-
served at the same time i; o̅ is the average of observed 
values; p̅ is the average of predicted values; N is 
the measurements number per station, and σ is the 
standard deviation. 

3. Results and discussion
3.1 Initial conditions performance in the assimila-
tion process
First of all, we calculated analysis increments since 
they provide measures for the variation of variables 
once the minimization process is done. WS and T2 are 
taken as examples of this, because they are part of the 
modified meteorological fields in the data assimilation 
process. All results are shown for the D-2 domain.

Figures 3 and 4 show (a) a first approximation to 
T2 and (b-c) analysis fields and their (d-e) increments 
fields, obtained for the two different assimilation cas-
es defined (PB and PB+RD) and the two chosen time 
test cases (00:00 and 12:00 UTC). The background 
fields show a generally warm environment in all do-
main for both times, with higher T2 values than the 
normal averages for May, which is in agreement with 
the presence of high pressures in the area, which was 
mentioned above. However, considerably high T2 
values are observed in the extreme relief area (valley 
and mountain), indicating that the initial conditions 
without data assimilation, which would be used to 
perform the simulation, might not show the T2 actual 
behavior in the study area. 

The analysis fields indicate that both data as-
similation options modify T2 values throughout the 
domain, which shows their impact on the variable. 
Also, through the increment fields it is observed that, 
in general, data assimilation aims to decrease T2 
initial values in a large portion of the domain, which 
is of order 0(10) in accordance to the characteristic 
scale of the studied variable, reaching even more 
than –18 ºC over mountain areas at 00:00 UTC. This 
shows that the original data from NARR (which are 
average analysis fields for variables) seem unable 
to describe T2 values in this relief type; however, 
by including observations data in the assimilation 
process, they can correct T2 initial fields. For the 
MCMA, both assimilation options indicate that a 
positive correction should be made to T2 variables 
greater than 3º C, which are very frequent in urban 
areas highly affected by the urban heat island (UHI) 
effect, a phenomenon that numerical models cannot 
simulate efficiently.

On the other hand, at 00:00 UTC it is observed 
that the PB+RD case suggests a less abrupt T2 val-
ues correction compared to the PB option, which 
could be explained because PB+RD includes sat-
ellite radiance data assimilation that have full cov-
erage of the study area and allow a data correction 
that best describes the real variable behavior, while 
PREPBUFR is mainly composed of stations data 
and PB suggests more abrupt corrections. However, 
at 12:00 UTC the differences between corrections 
proposed by both assimilation options are much 
smaller, which may be related to the fact that there is 
a greater volume of meteorological data available at 
this time; therefore, point observations can improve 
their effectiveness. 

Figures 5 and 6 show the wind fields (wind 
direction [WD] and WS) following the same idea 
as the previous two figures. In general, the back-
grounds for both periods indicate a continuous 
wind flow with variable direction (prevailing from 
the west and southwest) over the domain, although 
for the southern MCMA winds are observed from 
the northwest at 12:00 UTC. No wind patterns are 
identified through the images at the synoptic or 
mesoscale scale. The smoothness in the WS and 
WD initial fields is appreciated, which is related 
to the fact that NARR offers average fields for the 
different variables reflecting their characteristics 
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on a larger scale than that used in the modeling 
domain mesh in this research, and this may not 
accurately describe the variable behavior in the 
study area.

When assimilation is performed, analysis fields 
show changes in WD and WS for all cases (highest at 
12:00 UTC) for the entire domain, with much more 
irregular variables’ behavior, which would be more 
in line with the terrain characteristics in the area and 
with the grid resolution used for the simulations. This 

could improve the description of pollutants dispersion 
over the study area, given the decisive influence of 
the wind over it. 

The pattern obtained for increment fields at 12:00 
UTC is very similar for both assimilation options. 
However, the most notable differences are observed 
at 00:00 UTC, which again may be related to the 
greater data availability at 12:00 UTC; also, it should 
be noted that satellite radiance data assimilation has 
less influence for WD and WS than for T2.
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Fig. 3. (a) T2 first approximation, (b, c) analysis and (d, e) increments fields for PB and 
PB+RD cases at 00:00 UTC. 



320 E. E. Martínez-Sabari and J. A. García-Reynoso

Figures 7 and 8 represent temporal evolution of 
the T2 and WS spatial distribution (a-c), respectively, 
analysis increments for PB (d-f) and PB+RD cases (g-
i) for the 3rd, 6th and 9th assimilation cycles (starting 
from 00:00 UTC). These graphs show that the T2 and 
WS fields undergo changes during the different cycles 
indicated for each assimilation case and also with 
respect to the others. For both variables, the absolute 
values of the increments are much lower in each cy-
cle than in the first case analyzed in Figures 5 and 6, 

which may be due to the “cold start way” in which 
the data assimilation process begins. This means that 
the analysis fields from NARR were used to obtain 
the initial conditions for the first assimilation cycle 
for t = 0, which may cause the greatest increment 
differences to be observed in the initial cycle. On the 
other hand, the rest of the cycles begin in a “warm 
start way”, that is, the immediate previous WRF-
Chem model forecast is taken as an initial condition 
to carry out the next assimilation cycle. Therefore, 
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Fig. 4. (a) T2 first approximation, (b, c) analysis and (d, e) increments fields for PB and 
PB+RD cases at 12:00 UTC. 
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analysis increments are expected to be smaller since 
the forecast is the numerical integration result over 
time of all the equations in the model, taking into 
account the initial conditions previously adjusted; this 
should reflect a better variables’ behavior in relation 
to the case study being modeled with respect to the 
domain spatial resolution, topography and specific 
physical processes. Furthermore, as the time-steps 
run increase, the numerical model itself adjusts 
continuously, therefore analysis increments should 
decrease as assimilation cycles increase. 

For T2, the largest increases (up to 4 ºC) are attained 
in the 6th assimilation cycle for the PB+RD case, while 
for WS the increments proposed are smaller, and they 
are also greater in the PB+RD option with respect to PB.

It is now possible to appreciate the importance of 
data assimilation (mainly satellite radiance) to obtain 
useful T2 and WS initial fields for numerical simu-
lation at higher resolutions than data models such as 
NARR, which allows to show the real behavior of 
variables in the study area and to contribute positively 
to the improvement of model performance. 
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Fig. 5. (a) WS first approximation, (b, c) analysis and (d, e) increments fields for PB and 
PB+RD cases at 00:00 UTC. 
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Figure 9 shows the temporal evolution of the O3 
spatial distribution (a-c) and the differences between 
O3 fields with respect to the WA field for PB (d-f) 
and PB+RD (g-i) for the 3rd, 6th and 9th assimilation 
cycles (starting from 00:00 UTC). It can be observed 
through the differences between these fields (which 
are not analysis increments because this variable was 
not assimilated) that changes in the O3 values do 
occur throughout the domain, both when comparing 
the assimilation options between each other and 

with respect to the WA case, also with the course of 
assimilation cycles. These differences do not exceed 
more than 40 ppb and are generally concentrated in 
the MCMA and surrounding areas. The highest val-
ues are observed in the PB+RD case. Therefore, it is 
worth noting how O3 varies both in time and space 
once the meteorological data have been assimilated, 
which shows that there is a sensitivity (although low) 
in the chemical variables’ behavior when meteoro-
logical initial conditions are modified. 
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Fig. 6. (a) WS first approximation, (b, c) analysis and (d, e) increments fields for PB and 
PB+RD cases at 12:00 UTC. 
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Fig. 7. (a-c) Temporal evolution of the T2 spatial distribution, (d-f) analysis increments 
for PB cases, and (g-i) analysis increments for PB+RD cases, for the 3rd, 6th and 9th 
assimilation cycles (starting from 00:00 UTC).
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Fig. 7. (a-c) Temporal evolution of the WS spatial distribution, (d-f) analysis increments for PB cases, and (g-i) analysis 
increments for PB+RD cases, for the 3rd, 6th and 9th assimilation cycles (starting from 00:00 UTC).
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Fig. 8. (a-c) Temporal evolution of the WS spatial distribution, (d-f) analysis increments for PB cases, and (g-i) 
analysis increments for PB+RD cases, for the 3rd, 6th and 9th assimilation cycles (starting from 00:00 UTC).
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3.2 Statistical analysis
The statistical analysis results obtained for each 
proposed case are presented below. 

Figures 10 and 11 show, respectively, the times 
series for observed and modeled T2 and WS values 
in (a, d) all stations, (b, e) MER, and (c, f) SFE at 
00:00 and 12:00 UTC for all assimilation cases. The 
time elapsed since the data assimilation starting time 
is indicated in the x axis. Figure 10 shows that the 
model is capable of reproducing the T2 daily cycle 
reaching maximum and minimum values at the 
corresponding times. Nevertheless, the maximum is 
underestimated in all cases, which is very frequent 
in air quality simulations due to the UHI effect in 
the MCMA (Jáuregui, 1997; Cui and de Foy, 2012). 
Furthermore, the PB+RD option is closest to the ob-
served values, mainly at 12:00 UTC, as depicted in 
the MER and SFE graphs. It is observed that modeled 
cases are closer to observations at the times in which 
the assimilation is carried out. On the other hand, Fig-
ure 11 shows that the WS behavior is not as accurate 
as T2, although modeled values of this variable are 
closer to observations. Both for all stations and for 
the individual stations MER and SFE, better results 

are attained at 00:00 UTC, especially during the first 
steps of execution. PB+RD is the assimilation source 
that shows best results for WS. 

Figure 12 shows the IOA and RSME indicators 
for T2 and WS for the seven selected stations and for 
all assimilation cases at 00:00 and 12:00 UTC. The 
obtained results converge with those mentioned in 
Figures 10 and 11. Regarding the T2 variable, IOA 
values greater than 0.9 are observed for all stations 
in each case and time, which means there is a good 
agreement between modeled and observed values. 
The PB+RD option has the highest IOA in six of the 
seven stations at 00:00 UTC and in all stations at 
12:00 UTC. Also, RMSE values for T2 are always 
between 1 and 3 ºC, with the lowest values found at 
12:00, and TPN being the lowest performing station. 
It should be noted that except for one case, PB+RD 
has the lowest RMSE values, which confirms it is 
the best assimilation source. In the case of WS, IOA 
statigraphs show best results at 00:00 UTC, with 
values always greater than 0.7 for PB and PB+RD, 
which are suitable values for WS. PB+RD values 
remain above 0.8 most of the time, while WA per-
manently exhibits the worst performance with lower 

Fig. 8. (a-c) Temporal evolution of the 
WS spatial distribution, (d-f) analysis 
increments for PB cases, and (g-i) 
analysis increments for PB+RD cases, 
for the 3rd, 6th and 9th assimilation 
cycles (starting from 00:00 UTC).
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Fig. 9. (a-c) Temporal evolution 
of the O3 spatial distribution and 
differences between the O3 fields 
with respect to the WA option 
field for (d-f) PB and (g-i) PB+RD 
cases for the 3rd, 6th and 9th as-
similation cycles (starting from 
00:00 UTC).
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Fig. 10. Time series for simulated and observed T2 values over (a, d) all stations, (b, e) MER and (c, f) SFE at 
00:00 and 12:00 UTC for all assimilation cases.

IOA values. The best performing station is, paradox-
ically, TPN, which did not perform optimally for T2, 
while the station with greater differences regarding 
observations is HGM at 12:00 UTC. RMSE values 
for WS are always lower than 1.5 m s–1, which is an 
optimal result for WS, a variable that is commonly 
difficult to model. These RMSE values are better at 
00:00 UTC and with PB+RD source.

Figure 13 displays the temporal evolution of 
simulated and observed O3 concentrations, while 
Figure 14 depicts the IOA and RSME indicators for 
O3 concentrations, both for all selected stations and 

specifically MER and SFE at 00:00 and 12:00 UTC, 
including all assimilation cases. Overall, the model 
represents adequately the daily O3 cycle, although 
the correspondence between modeled and observed 
values is not as remarkable as in the case of meteoro-
logical variables. It is shown that the model is capable 
of approaching the variables’ maximum at both times, 
but it tends to overestimate minimum values. Besides, 
the overall performance for each assimilation case 
source is different from that shown for T2 and WS. 
For example, although PB+RD exhibits the best re-
sults, it can be seen that in some time series intervals 
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values obtained from the modeling of WA are closer 
to observations, while PB always exhibits a lower 
performance. On the other hand, the results shown in 
the MER and SFE stations are very contrasting. The 
O3 temporal series in MER shows adequate values 
while in SFE a rather poor performance is observed. 
The values of IOA and RMSE show an acceptable 
agreement between model and measurements. In the 
case of IOA at 00:00 UTC, six of the seven stations 
have values greater than 0.7, which is a good result for 

this variable. Also, the best results are observed for 
all stations beginning data assimilation at 12:00 UTC, 
with higher IOA values. For RMSE, all values are 
around 30 ppb. PB has again the lower performance, 
while PB+RD continues to be the best assimilation 
source.

In addition, Table I shows the statigraphs aver-
age values found for all stations, both at 00:00 and 
12:00 UTC and for all assimilation options, which 
allows to observe the general trends for each studied 
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Fig. 11. Time series for simulated and observed WS values over (a, d) all stations, (b, e) MER and (c, f) SFE at 
00:00 and 12:00 UTC for all assimilation cases.
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variable. For T2, the metrics results for both sched-
ules are similar and appropriate for this variable. 
The best performance is obtained with PB+RD 
at 12:00 UTC. BIAS indicates that, compared to 
observations, the model underestimates values in 

all cases. RMSE is always lower than 2.5 ºC and ρ 
and IOA are always greater than 0.9. For the WS 
case, a better performance is observed for PB+RD 
at 00:00 UTC. The IOA and ρ values at 00:00 UTC 
are greater than 0.7 in all cases, while for 12:00 
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Fig. 12. IOA and RMSE indicators for T2 and WS for each selected station and all assimilation cases at 00:00 
and 12:00 UTC.
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UTC values are less than 0.66 and 0.63, respec-
tively. These are generally good results for this 
variable, although they could be better, especially 
at 12:00 UTC. BIAS indicates that the model tends 
to slightly overestimates the values as compared 
to observations. For O3, the best performance is 
achieved by the PB+RD option at 12:00 UTC, 
with ρ between 0.6 and 0.7, IOA always greater than 
0.67 and RMSE between 25 and 30 ppb, which are 
suitable values for this variable. BIAS indicates that, 
compared to observed values, the model underes-
timates O3 concentrations for all selected stations.

4. Conclusions
In order to test the influence of meteorological data 
assimilation on air quality modeling within the 
MCMA, the WRFDA data assimilation module is 
adapted to the WRF-Chem model. BUFR satellite 
radiance and PREPBUFR data from NCEP are as-
similated at 00:00 and 12:00 UTC, using the 3DVAR 
algorithm. Six sensitivity cases were analyzed for an 
environmental contingency reported between May 1 
and 4, 2013, in the MCMA, to determine the best pos-
sible combination including assimilated data sources 
and the starting time of numerical simulations.

From the increments calculated in the analysis, we 
obtained a variation measure undergone by the T2 and 

WS initial fields once the minimization process was 
carried out. This variation also allows to show if the 
new fields obtained through data assimilation better 
represent the behavior of meteorological variables 
and describe the physical processes within the study 
domain, mainly related to the grid resolution. In this 
sense, we obtained that the increment of these values 
decreases as the assimilation cycles increase, which 
is in line with the use of a cold start for the initial 
step and a warm start for the following time steps, 
as well as the model's own adjustment through the 
different simulation time steps. In addition, these 
increment values increase by schedules when more 
data is available.

The statistical results show that meteorological 
data assimilation has a positive influence in values   
obtained with the WRF-Chem model for related 
variables such as T2, indicating there is a good 
agreement between modeled and observed data, 
with IOA values greater than 0.90 for all the study 
cases. The model originally tends to underestimate 
T2 values, which is evidenced by the negative BIAS 
values observed in WA. This is somehow corrected 
through data assimilation, reaching a BIAS value 
of –1.28 for the PB+RD case at 12:00 UTC, which 
overall is the best combination for the T2 variable. 
An improvement is also observed in the WS fields, 
mainly for the PB+RD case at 00:00 UTC, although 

Table I. IOA, BIAS, RMSE and ρ values for T2, WS and O3 concentrations regarding the WA, PB and PB+RD 
assimilation cases at 00:00 and 12:00 UTC.

00:00 UTC 12:00 UTC

WA PB PB+RD WA PB PB+RD

T2

IOA 0.91 0.93 0.94 0.93 0.94 0.95
BIAS –2.33 –1.94 –1.62 –1.76 –1.30 –1.28
RMSE 2.49 2.41 2.32 2.46 2.24 2.22
ρ 0.93 0.94 0.96 0.95 0.95 0.96

WS

IOA 0.75 0.77 0.80 0.64 0.63 0.66
BIAS 0.02 –0.03 –0.05 0.07 0.13 0.05
RMSE 0.83 0.54 0.40 1.19 1.21 1.18
ρ 0.72 0.76 0.79 0.61 0.59 0.63

O3

IOA 0.71 0.67 0.72 0.72 0.68 0.74
BIAS –9.61 –11.56 –8.57 –8.74 –10.65 –7.95
RMSE 27.71 29.98 26.39 26.94 29.44 25.53
ρ 0.65 0.62 0.67 0.64 0.64 0.68
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not in the same magnitude as for the T2 field. RMSE 
and BIAS values are close to 0 for the mentioned 
option, demonstrating the positive influence of data 
assimilation, with IOA and ρ values greater than 0.75 
and 0.70, respectively. At 12:00 UTC, lower results 
were obtained.

Regarding the influence of meteorological data 
assimilation on the chemical variables, changes in 
the behavior of O3 are observed after running the 
simulation, in correspondence with the results ob-
tained by Bei et al. (2010, 2012), Liu et al. (2017) 
and Mizzi (2017). The metrics analyzed indicate a 
slight improvement for the PB+RD case, while in 
general PB values show larger differences in the 
WRF-Chem model performance. Also, the best 
results are achieved with runs starting at 12:00 
UTC, which may be related to the largest volume 
of surface observations data available at that time. 
The best data source is PB+RD, which exhibits the 
benefits provided by satellite radiance data assimi-
lation, mainly for T2.

Therefore, chemical data assimilation (instead 
of meteorological data) using 3DVAR and other 
techniques, such as 4DVAR or EnKF, are proposed 
as a first step to improve estimates of pollutant 
concentrations obtained from air quality modeling 
with WRF-Chem in the MCMA. Better results are 
obtained by constantly improving assimilation of the 
initial chemical conditions, through less uncertain 
emissions database used in the simulations.
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