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RESUMEN

Se utiliza un algoritmo de ventana dividida en la cuenca de la presa de Ilam para determinar la relación entre 
la temperatura de la superficie terrestre (LST, por sus siglas en inglés) y los tipos de uso de suelo. Se utilizan 
imágenes satelitales Landsat del sensor TM para 1990, 1995, 2000, 2005 y 2010 y Landsat 8 (sensor OLI) 
para 2015 y 2018. Después de las correcciones geométricas y radiométricas de las imágenes satelitales, los 
mapas de uso del suelo se extraen mediante el método de lógica difusa ARTMAP. Una evaluación de precisión 
mostró que el valor más alto del coeficiente kappa fue de 94% con una precisión total de 0.95 para 2015, y 
que su valor más bajo fue de 87% con una precisión total de 0.9 para 1990. Los valores altos de estos coefi-
cientes indican una precisión aceptable en el uso de datos de teledetección Landsat para el uso del suelo. Los 
cambios más importantes en el uso del suelo están relacionados con bosques densos y bosques dispersos, con 
una disminución de 20.07 y 17.04%, respectivamente. Los valores mínimos de LST en 1990, 2010 y 2018 
en bosques densos son de 21.27, 30.55 y 33.82 ºC, respectivamente. Los valores máximos de LST para el 
uso de tierras forestales dispersas en 1990 y 2010 es 52.48 y 56.09 ºC, respectivamente, y de 56.10 ºC para 
el uso de tierras forestales densas en 2018. Como resultado, el LST promedio en tierras agrícolas fue más 
bajo que en bosques dispersos y pastizales, lo cual se debe principalmente al alto contenido de humedad y a 
la mayor tasa de evapotranspiración. Las variaciones de uso del suelo/cobertura del suelo (LULC) de 1990 
a 2018 muestran que en todos los usos del suelo se ha experimentado un aumento de la LST.

ABSTRACT

A split-window algorithm has been used in the Ilam dam watershed to determine the relationship between 
land surface temperature (LST) and types of land use. Landsat satellite images of the TM sensor for 1990, 
1995, 2000, 2005 and 2010 and Landsat 8 (OLI Sensor) for 2015 and 2018 are used. After geometric and 
radiometric corrections of satellite images, land use maps are extracted by using the fuzzy ARTMAP method. 
An accuracy assessment showed that the highest value of the kappa coefficient was 94% with a total accuracy 
of 0.95 for 2015, and the lowest kappa coefficient value was 87% with a total accuracy of 0.9 for 1990. The 
high values of these coefficients indicate the acceptable accuracy of using Landsat’s remote sensing data for 
land use detection. The most important land use change is related to dense forest and sparse forest land uses, 
with decreases of 20.07 and 17.04%, respectively. The minimum LST measures in 1990, 2010, and 2018 in 
dense forest are 21.27, 30.55 and 33.82 ºC, respectively. The maximum LSTs for the sparse forest land use 
in 1990 and 2010 are 52.48 and 56.09, and 56.10 ºC for the dense forest land use in 2018. As a result, the 
average LST in agricultural lands was lower than in sparse forest and rangeland;, which is mainly due to the 
high moisture content and the greater evapotranspiration rate. Land use/land cover variations from 1990 to 
2018 show that all land uses have experienced an increase in LST.

Key words: Landsat satellite, split-window algorithm, fuzzy ARTMAP, kappa coefficient, Ilam dam watershed.
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1.	 Introduction
Land use and land cover change (LUCC) are among 
the major driving forces of regional and global 
climate change (Feddema et al., 2005). However, 
climatic effects of deforestation and agricultural 
development vary from one region to another, and 
studies clearly show that land use changes and land 
cover play an important biophysical and biochemical 
role in climate systems at local, regional, and even 
continental scales (Brovkin et al., 2013; Luyssaert 
et al., 2014; Mahmood et al., 2014). These also de-
pend on seasonality and land-atmosphere interaction 
(Halder et al., 2016). Contemporaneous social and 
economic developments have intensified the impact 
of human activities on land surface temperature 
(LST). Urban development, due to the reduction in 
vegetation cover (Feng et al., 2012) and the increase 
in impervious materials such as concrete and asphalt 
(Connors et al., 2013; Hasanlou and Mostofi, 2015; 
Pal and Ziaul, 2017; Ziaul and Pal, 2018a), increases 
LST (Amiri et al., 2009). Other factors such as radi-
ation conditions, heat conduction in the upper layer 
of the Earth’s surface, elevation from the surface 
of the Earth, relief, cloudiness, oceanic flows, and 
horizontal and vertical air flow are also important to 
determine LST. Therefore, intensity of land use can 
reflect the intensity of human activities, providing 
a basis to assess the relationship between land use 
change and environmental modifications.

LST is a major parameter in assessing the ex-
change of surface material, energy balance, and phys-
ical and chemical processes, and is now widely used 
in soil, hydrology, biology, and geochemistry studies 
(Tomlinson et al., 2011; Hao et al., 2016). Also, LST 
is an important factor in global studies, and heat stress 
is considered as a sign of climate change (Srivastava 
et al., 2009). Because of reflection from surface and 
roughness of different types of land uses, land use/
land cover (LULC) changes are the main causes of 
LST variations (Hou et al., 2010). The soil LST is 
sensitive to vegetation cover and soil moisture, so 
it can be used to track land cover changes and land 
use, contributing to a better understanding of the 
desertification phenomena.

Fuzzy ARTMAP is an artificial neural network 
based on the adaptive resonance theory. The networks 
which work based on the adaptive resonance theory 
with supervised learning are known as ARTMAP 

(Carpenter et al., 1991). Each ARTMAP system con-
sists of two modules (ARTa, ARTb) that create stable 
recognition classes in response to arbitrary sequences 
of input patterns. These two modules are connected 
to each other through an interface module called Fast 
Appearance-Based Mapping (Fab). The split-window 
algorithm requires only three parameters (emissiv-
ity, atmospheric emission, and average effective air 
temperature) to calculate LST. This algorithm was 
developed in 2001 to calculate the surface tempera-
ture by using the Landsat 5 Thematic Mapper (TM) 
sensor. With slight changes in the coefficients of the 
equations, it was then calibrated for other sensors 
(Rozenstein et al., 2014). This algorithm is based on 
mathematical analysis, and calculates LST by using 
ground data, a thermal infrared sensor (TIRS), land 
surface emissivity (LSE), and fractional vegetation 
cover (FVC), obtained from an operational land 
imager (OLI) (Latif, 2014).

LSTs can be estimated from infrared radiation, 
which is emitted from the surface, by the Ste-
fan-Boltzmann inverse equation (Reutter et al., 
1994). On the other hand, the Normalized Differ-
ence Vegetation Index (NDVI) is a good indicator 
of long-term changes in land cover and its status 
(Baihua and Isabela, 2015). It should be noted that 
an increase in temperature might raise the density 
of vegetation in areas with enough water resources 
(Xu et al., 2011). It has been demonstrated that 
there is a logical connection between NDVI and 
LST (Kustas et al., 2003; Weng et al., 2004; Agam 
et al., 2007; Inamdar et al., 2008; Wei et al., 2015). 
While temperature data, recorded by synoptic sta-
tions, are not useful for obtaining a good and wide 
spatial resolution, remote sensing (RS) images are 
a good source of information for the preparation of 
thermal maps, which is due to their extensive and 
continuous coverage, and timeliness (and the ability 
to obtain information in the reflection and thermal 
fields of electromagnetic waves) (Jiménez-Muñoz 
and Sobrino, 2010).

Due to the spatial correlation between data, 
conventional statistical methods are not suitable 
to analyze environmental data (Ripley, 1977). In 
this regard, various studies have been conducted to 
measure LST using RS technology (Herb et al., 2008; 
Feizizadeh et al., 2012. Qian et al., 2015; Isaya and 
Avdan, 2016; Fathizad et al., 2017; Deng et al., 2018; 
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Li and Jiang, 2018; Ziaul and Pal, 2018 a, b; Tariq 
and Shu, 2020; Tariq et al., 2020).

Over the past decades, droughts, increased human 
intervention in soil and natural resources, degrada-
tion, rapid population growth, and increasing need 
for food and new energy resources have caused 
overexploitation of natural resources in Iran. Un-
doubtedly, the land use in the Ilam dam watershed has 
undergone some changes and can be a threat for the 
residents of the region. So, this study investigates the 
relationship between land use changes and LST over 
28 years (1990-2018) using Landsat satellite imag-
ery, and identifies land uses with the highest surface 
temperature in the study region. Due to the limited 
access to ground-based data, the satellite imagery has 
been used to study the temperature patterns.

2.	 Materials and methods
2.1. Materials
2.1.1 Study area
This research was conducted in the Ilam dam water-
shed in Iran (Fig. 1), with a total area of 47 652 ha, 
located at 46º 16’ 50’’-46º 38’ 56’’ E, 33º 23’ 24’’-33º 
38’ 58’’ N, and 936-2584 masl. Figure 1 shows the 
location of the study area.

The study area forms a part of the folded Zagros 
zone. Zagros Mountains are a complex chain of ridg-
es and mountains in SW Iran, extending NW-SE from 
the border areas of eastern Turkey and northern Iraq 
to the Strait of Hormuz. The Zagros range is about 
1600 and 240 km long and wide, respectively. This 
mountain forms the extreme western boundary of the 
Iranian plateau and its foothills extend into adjacent 
countries. It divides the region between Iran’s dry 
inland plateau to the east and the fertile plains of Mes-
opotamia and the Persian Gulf lowlands to the west.

The main kind of vegetation in the Zagros forest 
habitat is oak trees. At altitudes above the forest bor-
der (about 2300 masl) there are dense grasslands and 
shrubs. In the west of Iran, especially in the Zagros 
region, oak is the most important and abundant tree 
species. The Zagros Mountains are the largest and 
most important habitat of various oak species in Iran, 
and therefore this region is of special importance.

2.1.2 Remote sensing data
In this research, Landsat Thematic Mapper (TM) 
imagery for 1990, 1995, 2000, 2005 and 2010 (pass/
row: 167/37) with six spectral lines with a resolution 
of 30 m, and Landsat 8 (Operational Land Imager 
[OLI] Sensor) for 2015 and 2018 (pass/row: 167/37) 
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Fig. 1. Location of the study area in Iran and Ilam province.
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bands 1 to 7 with a resolution of 30 m, band 8 with 
a resolution of 15 m and bands 9, 10 and 11 with 
a 30 m resolution were (Table I). Landsat images, 
published by the United States Geological Survey 
(USGS), were retrieved from the Earth Explorer 
website (http://earthexplorer.usgs.gov).

2.1.3 Software packages
ENVI 4.8, ArcGIS10.3 and Excel have been used 
in this study. The pre-processing works, including 
geometric and radiometric corrections, and post-pro-
cessing tasks such as land use classification and LST 
layers have been extracted with the ENVI 4.8 soft-
ware. ArcGIS 10.3 is used to provide the output of 
the maps and Excel is used to perform the statistical 
analysis.

2.2 Methodology
2.2.1 Pre-processing of images
The initial raw images of satellite data have incorrect 
geometry for reasons such as Earth orbits and chang-
es in satellite elevation, in which case these images 
are not matched with the other satellite data. So, 35 
ground control points from topographic maps were 
gathered for processing and interpreting multi-tem-
poral satellite data. Further, the geometry of images 
was corrected in the ENVI 4.8 software environment 
by using the Global Positioning System (GPS).

Radiometric correction is necessary in remote 
sensing. Removing the undesirable effects of atmo-
sphere is more important when the goal is comparing 

multi-temporal images (Chavez, 1988). In the present 
study, the Chavez method, which diminishes the val-
ue of dark object subtraction, is used for radiometric 
correction, and the value of dark object subtraction 
in the image is reduced to make the classification 
process highly accurate. For geometrical correction, 
topographic maps with a scale of 1.55000, prepared 
by the national geographical organization of Iran, 
were used. Images used in this research have been 
corrected by using ground control points and re-sam-
pling equations. So, 45 ground control points with 
suitable distribution were used at the intersection of 
roads, waterways, etc., leading to a more accurate 
mathematical model. The average error obtained 
for the image sensor used was equal to 0.54 pixels, 
which is acceptable.

There are two types of radiometric corrections, 
absolute radiometric correction and relative radio-
metric correction. The absolute radiometric correction 
method requires data of atmospheric properties and 
sensor calibration. This type of correction is often very 
difficult, especially for older data (Du et al., 2002). 
In contrast, relative radiometric corrections are done 
with the aim of reducing the expected atmospheric 
variables, etc., between multi-time images. The 
dark-object subtraction technique is a simple relative 
radiometric correction method widely used in many 
cases (Chavez and MacKinnon, 1994). For radiometric 
correction, digital values are converted into spectral 
radiance in the first step by using the calibration co-
efficients of the sensor and the following equation:

Table I. Applied Landsat satellite imagery.

Sensor Data Pass/row Resolution (m) Number of bands

MSS 1985. 07. 22 167/37 60 4

TM

1990. 08. 29 167/37 30 7
1995. 08. 19 167/37 30 7
2000. 08. 16 167/37 30 7
2005. 10. 1 167/37 30 7
2010. 07. 11 167/37 30 7

OLI 2015. 08. 26 167/37 30 11
2018. 08. 18 167/37 30 11

MSS: Multispectral Scanner System; TM: Thematic Mapper; OLI: Operational 
Land Imager.
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L = gain × DN + offset	 (1)

where L is the spectral radiance (Wem–2 Ster–1 μm–1), 
DN the digital value of the pixel (0 to 255), and gain 
and offset are the calibration coefficients of the sensor. 
In the next step, according to Eq. (2), the amount of 
spectral radiance is converted into spectral reflectance 
(Richards, 2013; Lillesand et al., 2015):

p = Ld 2

ESUN .COS(SZ )
	 (2)

where p is the spectral reflectance without units, from 
0 to 1; L is the spectral radiance in the sensor; d2 is the 
square of the distance between the Earth and the Sun 
based on astronomical units; ESUN is the height of 
the Sun, and SZ is the angle of the Sun when radiating 
while recording a satellite image.

By converting spectral radiance values to spectral 
reflectance, the effects of changes in the Sun light, 
season, latitude, and weather conditions on the imag-
es are eliminated. The outcome is relatively standard 
and can be used to directly compare the reflections 
of phenomena between different images and an im-
age at different times. In this study, the method of 
reducing the darkness of the phenomenon, which is 
implemented in ENVI software, has been used for 
radiometric correction. This process is to reduce the 
effects of atmospheric diffusion on the image.

2.2.2 Post-processing of images
After geometric and radiometric corrections of the 
satellite image and cutting it in the study area, the 
land use map was extracted by using the fuzzy ART-
MAP supervised classification method to six land use 
types of fair rangeland (26-50% of climax condition), 
poor rangeland (0-25% of climax condition), dense 
forest (canopy cover less than 25%), sparse forest 
(canopy cover more than 25%), agricultural land, 
and a water body. The main advantage of the fuzzy 
ARTMAP is that it requires lower training data for 
accuracy analysis compared with other methods. In 
addition, this method does not depend on the statisti-
cal distribution of data and does not require specific 
statistical variables. In order to verify the accuracy 
of the classification, a comparison was made with 
existing land use maps and field observations. In 
this way, the reference map or reality map from all 
parts of the study area was prepared by using other 

methods. A random sampling method was used to 
assess the accuracy of the obtained maps. Samples 
were recorded by using a GPS method in a number 
of polygons, by using a land use map and local views 
from the study area. In order to classify and separate 
the land uses of previous years from each other, the 
vegetation map of Ilam province (developed by the 
Forest, Range and Watersheds Management Organi-
zation of Iran [FRWO]) was used together with aerial 
photographs (1:20000) prepared by the National 
Cartographic Center of Iran (NCC).

Also, a split-window algorithm, which removes 
atmospheric effects, was developed and applied to 
estimate the emissivity and LST. In fact, LST is 
obtained by using the corrected thermal radiance. To 
calculate the corrected thermal radiance, it is neces-
sary to determine the emissivity in the thermal bond.

2.2.3 Fuzzy ARTMAP classification method
The fuzzy ARTMAP method is a remote sensing 
classification based on neural network analysis and 
the Adaptive Resonance Theory (ART). The fuzzy 
ARTMAP supervised classification method con-
sists of four layers: input layer (F1), category layer 
(F2), field layer, and output layer. The input layer 
represents the imported images, so there are some 
neurons to measure each criterion. The input layer 
for the infinity of the criterion is as follows:

I = a,ac( ) = a1,a2...an,1 – a1,  1 – a2...1 – an( )	 (3)

In this method, the number of F2 layer neurons is 
automatically determined. The field layer and output 
layer are constructed with the ARTb model. Each of 
these two layers has m neurons. There is a one-to-one 
connection between these two layers.

2.2.4. Split-window algorithm for LST calculation
With this algorithm, LST is obtained by using correct-
ed thermal radiance (Waters et al., 2002). To calculate 
the corrected thermal radiance, it is necessary to 
calculate the emissivity in the thermal bond. In fact, 
every land-related phenomenon is characterized by 
a specific emissivity, which was indicated by Snyder 
(1998). After detecting the minimum and maximum 
values, the NDVI is obtained; therefore, the average of 
soil and vegetation emissivity and the distribution 
of other areas can be calculated from Eq. (4).
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dPsP ++= )1( 	 (4)

Where εv and εs are the emissivity of areas with com-
plete vegetation and areas with dry soil, respectively, 
and dε is the effect of surface distribution, which is 
calculated by using Eq. (5).

)1)(1( Fsd = 	 (5)

Where F is the form factor and its mean value is 
equal to 0.55, and Pv is the vegetation percentage, 
which is calculated by Eq. (6).

a

NDVINDVI
NDVINDVIP =

minmax

max 	 (6)

2.2.5. NDVI index
This index is one of the most practical indicators 
for vegetation studies. It has a simple computa-
tional process and has the best dynamic power 
compared to other indicators. This index is more 
sensitive to vegetation changes and less suscep-
tible to atmospheric and soil effects, except in 
cases where vegetation is low. The NDVI index is 
derived from Eq. (7).

REDNIR
REDNIRNDVI
+

= 	 (7)

where NIR is the reflection in the near infrared band 
and RED is the reflection in the red band. From a 
theoretical point of view, the value of this index is 
in the range of ±1. The values of this indicator for 
dense vegetation cover tend to be +1. Clouds, snow 
and water are identified with negative values. Rocks 
and bare lands, with similar spectral responses in 
two bands, are seen at values close to zero. In this 
index, the common soil is equal to 1. Density of 
vegetation is determined by the distance between 
the indices of one pixel higher than the soil value 
(Allison, 1989).

2.2.6. Correction of LST
In this method, LST is obtained in ºK by using Eq. 
(8) (Artis and Carnahan, 1982).

LnT
TLST

B

B

+
=

1 	 (8)

Where LST is land surface temperature in ºK, λ is 
the wavelength of the desired band (11.5 μm) (Weng 
et al., 2004), ρ is the Boltzmann constant (Eq. 9), h is 
the Planck’s constant (6.626 × 10–34), c is the speed 
of light (2.998 × 108 m s–1), and TB is the brightness 
temperature in ºK obtained from Eq. (10).

mk
ch

210438.1
= 	 (9)

+
=

1ln 1

2

L
K
KTB 	 (10)

K1 and K2 are correction coefficients with values of 
666.09 and 1287.71, respectively (for Landsat images).

In ENVI, after obtaining the temperature of the 
black body and multiplying it by the coefficients of 
any phenomenon (emissivity), temperature can be 
calculated in ºC or ºK. It is also possible to calculate 
LST by using ENVI. Finally, the statistical param-
eters of each land use and LST for the years 1985, 
1990, 1995, 2000, 2005, 2010, 2015 and 2018 are 
plotted on ArcGIS.

The final part of this procedure is the accuracy 
evaluation of the results. So, by using the ground 
control points, the correctness of calculations is 
evaluated by using the error matrix and statistical 
parameters of the total accuracy, kappa coefficient, 
and user’s and producer’s accuracy (Lu et al., 2004).

2.2.7. Accuracy assessment
Estimating accuracy is very important to understand 
the results and make decisions. The most common 
parameters for estimating accuracy are the overall 
accuracy, producer’s accuracy, user’s accuracy, and 
kappa coefficient (Lu et al., 2004). From a probability 
theory point of view, overall accuracy (Eq. 11) can-
not be a good criterion for evaluating classification 
results; randomness may play a significant role in 
this index. 

= iiP
N

OA 1 	 (11)

where OA is the overall accuracy, n is the number of 
experimental pixels, and Pii are the elements of the 
original diameter of the error matrix.

Due to the problems of overall accuracy, the kappa 
coefficient is often used in executive tasks where the 



707Spatial and temporal changes of land uses and its relationship with LST

comparison of classification accuracy is considered 
(Mesgari, 2002).

100
1

=
c

co

p
ppKappa 	 (12)

where Po stands for correctly observed and Pc for 
expected agreement.

The producer’s accuracy is the probability that a 
pixel in the classification image will be placed on the 
ground in the same class, and the user’s accuracy is 
the probability that a specific class will be placed on 
the ground in the same class on the classified image 
(Eqs. 13 and 14)

100
1

=
n
taUA 	 (13)

100=
ga
taPA 	 (14) 

where PA is the percentage accuracy of a class for 
producer’s accuracy, ta is the number of correct pixels 
classified as class a, ga is the number of class a pixels in 
ground reality, UA is the percentage accuracy of a 

class for user’s accuracy, and n1 is the number of 
pixels in class a as a result of classification.

By cutting the classified maps with the ground 
reality map obtained from the field survey, an error 
matrix was formed to evaluate the accuracy of the 
classified maps, and based on that, the overall accu-
racy and the kappa coefficient were calculated.

3.	 Results
3.1. Land use map 
In this research, a neural network fuzzy ARTMAP 
algorithm was used to determine and plot land use 
maps for 1990, 1995, 2000, 2005, 2010, 2015 and 
2018 by using Landsat satellite images. Classes of 
Landsat images in the study area included range-
land, poor rangeland, dense forest, sparse forest, 
agricultural, and water body land use types. The 
land use map of the study area for 1990, 1995, 2000, 
2005, 2010, 2015 and 2018 is shown in Figure 2. 

The results of the accuracy evaluation of the 
classified images are given in Table II, in which 
total, producer’s and user’s accuracy, as well as 

1990 1995 2000 2005

201820152010

Legend
Fair rangeland 
Poor rangeland 
Dense forest
Sparse forest
Agriculture
Water body 0 2.5 5 10 15 20 kilometers

Fig. 2. Land use map of the study area based on the neural network fuzzy ARTMAP classification method for the years 
1990, 1995, 2000, 2005, 2010, 2015 and 2018.
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kappa coefficient, are also reported. High values of 
these coefficients indicate the acceptable accuracy 
for the land use identification by using RS data of 
Landsat images. It is observed that the classification 
accuracy for all the mentioned years is above 85%, 
which is an appropriate precision for classification 
of land uses.

3.2. Land use changes
Results about changes in land use types of the study 
area during the investigated time periods are shown 
in Figure 3. They show that during the 28-year pe-
riod (1990-2018), the area of agricultural land use 
has increased by 8650.6 ha (18.155%), highlighting 
an rise in population as well as in human pressure 
in the studied area. The most important land use 
change is related to dense and sparse forest land 
uses, with a decrease of 9867.14 and 8125.11 ha 
(20.07 and 17.04%), respectively. The study area 
has been conserved by governmental organizations 
in recent years. However, a decline in the extent of 
forest land use in the region is still seen. In a study 
that examined oak decline in the province of Ilam, 
results indicated a kind of ailment called charcoal 

disease (Biscogniauxia mediterranea) and borer 
beetles, which cause trees to die and fall. This dis-
ease has developed in recent years due to climatic 
conditions including rainfall reduction, drought and 
moisture stress which provide a suitable field for 
disease outbreaks (Mirabolfathi, 2013). Indeed, the 
rising demand for wood, timber, shelter and agricul-
tural products has led to the destruction of natural 

Table II: Results of accuracy evaluation of the classified land use images for the period 1985 
to 2018.

Year/class
User’s accuracy

1990 1995 2000 2005 2010 2015 2018

Fair rangeland 0.67 0.73 0.78 0.75 0.74 0.81 0.85
Poor rangeland 0.95 0.95 0.95 0.94 0.94 0.99 0.97
Dense forest 0.8 0.94 0.96 0.92 0.88 0.95 1
Sparse forest 0.84 0.91 0.91 0.88 0.86 0.94 0.83
Agricultural 0.94 0.95 0.88 0.91 0.90 0.94 0.93
Water body — — 0.99 0.99 0.99 1 1
Total accuracy (%) 0.90 0.94 0.92 0.92 0.91 0.95 0.93

Year/class
Producer’s accuracy

1990 1995 2000 2005 2010 2015 2018

Fair rangeland 0.81 0.99 0.93 0.96 0.94 0.98 0.99
Poor rangeland 0.96 0.93 0.96 0.94 0.94 0.97 0.94
Dense forest 0.85 0.88 0.88 0.85 0.84 0.93 0.69
Sparse forest 0.80 0.92 0.86 0.89 0.85 0.90 0.96
Agricultural 0.89 0.91 0.88 0.89 0.88 0.95 0.94
Water body — — 0.92 0.96 0.95 0.98 0.93
Kappa coefficient (%) 0.87 0.92 0.90 0.90 0.89 0.94 0.91
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land cover, especially forests that are becoming 
agricultural land at an alarming rate. The pressure 
from population growth has also led to uncontrolled 
alterations in exploitation, especially forestry in a 
wide area of the region. Hence, erosion and destruc-
tion of land are two of the most important current 
problems of this region. Negative effects of land use 
change in the study area include declining soil fer-
tility, reduced vegetation and animal diversity, flood 
events, and increased landslide risk. The area of fair 
and poor rangeland land use types has increased by 
1399.77 and 7652.16 ha (2.93 and 16.05%), which is 
due to the change of forest land to rangeland. Water 
bodies were not included in land use categories in 
1985 and they were added in 2000. This land use 
is related to the Ilam dam, constructed in 2000 to 
supply drinking water.

3.3. LST maps
According to LST maps (Fig. 4), the central and 
northwestern parts of the study area have a higher 
temperature because of agricultural activities, dense 
forest, and poor rangeland land use. LST maps (Fig. 4) 
show minimum LSTs of 21.27, 20.88, 25.37, 13.34, 
28.85, 26.95 and 30.71 ºC and maximum of 54.18, 
50.65, 52.85, 46.16, 57.51, 52.04 and 56.10 ºC for 

1990, 1995, 2000, 2005, 2010, 2015 and 2018, 
respectively. In this study, the lowest temperature 
was due to dense forest land use in 1990, when the 
study area had a cool median temperature. However, 
overtime increases in the LST indicate climate change 
effects in the region, which could have devastating 
outcomes in the future. The maximum temperature 
drop of 2005 was caused by increased rainfall (above 
600 mm) in the region, which led to an increase in 
vegetation cover in the study area.

3.4. Relationship between NDVI, LULC and LST
The LST is affected by different surface conditions, 
such that areas with vegetation accumulation tend to 
have lower LST than vegetation-free areas. By ab-
sorbing sunlight and transpiration of water through its 
leaves, vegetation creates a natural air-conditioning 
system. Changes from forest to rangeland and rain-
fed farming land uses reduce the vegetation cover, 
remove the cooling system of natural surfaces and 
increase LST. Figure 5 shows the NDVI and LST 
differences between 1990 and 2018 in the study 
area. As it is obvious, wherever the vegetation has 
increased, LST has decreased and vice versa.

The results of the survey on average LST of the 
land uses in the study area for different years are 

LST-1990 LST-1995 LST-2000 LST-2005

LST-2018LST-2015LST-2010
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Fig. 4. LST maps obtained with the split-window algorithm (in ºC).
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shown in Table III. According to this table, the min-
imum temperature in 1990, 2010, and 2018 in dense 
forest was 3.5, 7.3 and 7.9 ºC, respectively, while the 
maximum surface temperature for sparse forest in 
1990 and 2010 was 9.5, 11.8 ºC, and 10.9 ºC for dense 
forest in 2018. During most of the studied period, 
agricultural land had a lower average temperature 
than sparse forest and rangeland, which is mainly 
due to the high moisture content in agricultural land 
and the greater degree of evapotranspiration. Water 
bodies have the lowest average temperature due to 
the high-water heat capacity. Changes between 1990 
and 2018 show that all land use types were subject 
to an increase in average temperature, which can be 
attributed to the increasing trend in temperature in 
the study area. 

In order to study the effect of land use changes 
on surface temperature, an LST map for different 
time periods between 1990 and 2018 was prepared 
and compared to the land use change map for the 
same time period (Fig. 6). The results show that there 
was an increase in average LST in areas where land 
use change increased, indicating an intensification 
in heat-producing human-based activities, such as 
conversion of forest land use to agricultural use.

3.5. The nature of LST changes and land use
The crosstab method was used to investigate the land 
use and LST changes. In this method, classes of two 

classified maps are compared one by one. As a result, 
it is possible to determine the changes occurring in 
each class relative to the other. Figure 9 shows the 
crossed classified land use maps for 1990 and 2018, 
which exhibit the 1990 LULC variations compared 
to 2018. The difference in LST maps between 1990 
and 2018 was used to examine LST changes (Fig. 5). 
The amount of various land use changes and the LST 
changes are shown in Figure 7 and Table IV. As Table 
IV shows, average temperature for all land use chang-
es was positive and increasing, with the exception 
of dense forest, sparse forest and agricultural land, 
where LST dropped to –12.4 ºC.

3.6. Relationship between LST and NDVI index
For better analysis of the relationship between LST 
and Land use, the correlation coefficients between 
LST and the NDVI index were calculated in 2018, 
based on randomized control points from each land 
use (Fig. 8). The highest correlation coefficient 
was obtained in dense forest and sparse forest land 
uses at 0.833 and 0.814, respectively. The lowest 
correlation coefficient (0.288) was related to water 
body land use, which confirms the lack of vegeta-
tion cover in this site compared to other land uses. 
Comparing the LST values of 2018 (Table III) and 
their correlation with the NDVI index (Fig. 8), it 
can be stated that in each land use where the average 
temperature is higher, the dependence between LST 
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Fig. 5. Role of NDVI and LST (in ºC) differences between 1990 and 2018 in the study area.



Table III: Temperature variations in different land uses (1990-2018).

Class 1990 1995

Min. Max. Mean Std. Min. Max. Mean Std.

Fair rangeland 33.17 51.11 42.93 3.34 27.99 43.09 35.65 2.70
Poor rangeland 28.80 54.18 44.02 3.10 22.70 50.65 40.68 2.97
Dense forest 21.27 51.46 38.25 4.15 20.88 46.54 35.61 4.29
Sparse forest 33.17 52.48 43.89 2.86 22.70 48.42 39.72 3.20
Agriculture 32.00 52.48 42.91 5.42 27.99 49.54 39.36 4.62
Water body — — — — — — — —

Class 2000 2005

Min. Max. Mean Std. Min. Max. Mean Std.

Fair rangeland 30.13 49.17 39.73 3.22 20.88 40.75 30.75 3.26
Poor rangeland 30.13 52.85 43.92 2.56 13.34 46.16 34.41 3.97
Dense forest 30.98 50.65 41.30 3.20 18.11 37.97 28.57 3.22
Sparse forest 25.37 51.02 42.01 3.81 19.51 42.71 32.72 3.75
Agriculture 31.40 50.28 42.92 3.65 22.25 44.25 35.52 3.80
Water body 27.55 40.36 32.09 3.00 23.15 31.40 24.85 1.76

Class 2010 2015

Min. Max. Mean Std. Min. Max. Mean Std.

Fair rangeland 35.95 49.91 43.49 2.39 33.66 49.56 41.54 2.72
Poor rangeland 29.28 57.15 48.13 3.39 28.66 52.04 44.11 2.71
Dense forest 30.55 57.51 44.39 4.60 26.95 50.23 37.31 4.25
Sparse forest 32.24 56.09 48.20 3.17 31.46 51.39 43.85 2.85
Agriculture 32.24 57.15 46.17 4.60 29.24 51.41 43.92 3.70
Water body 28.85 45.02 33.20 3.53 29.65 43.28 32.09 2.42

Class 2018

Min. Max. Mean Std.

Fair rangeland 34.83 51.12 43.20 2.77
Poor rangeland 30.71 54.92 46.90 3.26
Dense forest 33.82 56.10 44.75 4.43
Sparse forest 37.71 54.57 47.87 2.25
Agriculture 33.22 55.20 46.86 4.08
Water body 31.17 45.71 33.60 2.49
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Fig. 6. Change detection map (1990-2018). (a) Land use. (b) LST. 



Legend
Fair rangeland

Fair rangeland | Poor rangeland 

Poor rangeland | Fair rangeland

Poor rangeland | Sparse forest Dense forest | Agriculture
Dense forest | Water body
Sparse forest | Fair rangeland
Sparse forest | Poor rangeland

Sparse forest | Water body
Agriculture | Fair rangeland
Agriculture | Poor rangeland
Agriculture | Dense forest

Agriculture | Water body

Agriculture | Sparse forest
Agriculture

Sparse forest | Agriculture

Sparse forest | Dense forest
Sparse forest

Poor rangeland | Water body
Poor rangeland | Agriculture

Poor rangeland

Fair rangeland | Dense forest
Dense forest | Fair rangeland

Dense forest | Poor rangeland
Dense forest
Dense forest | Sparse forest

Fair rangeland | Poor forest
Fair rangeland | Agriculture

618800 628200 637600 647000 656400 665800

618800

36
97

20
0

37
05

60
0

37
14

00
0

37
22

40
0

36
97

20
0

37
05

60
0

37
14

00
0

37
22

40
0

628200

0 3 6 12 18 24
kilometers

637600 647000 656400 665800

S

W

N

E

Fig. 7. Land use change map (1990 to 2018). In the map legend, each color indicates how the land use has 
changed over time. Some colors show two land uses, meaning that the area has changed from one land use to 
another. Some colors show only one land use, indicating no change in the land use.

Table IV: Results of land use and LST changes.

LST (ºC)
Class

Min. Max. Mean Std.

Fair rangeland | Agriculture –4.6 8.4 2.9 1.4
Dense forest | Poor rangeland –1.0 10.2 6.0 1.4
Dense forest | Fair rangeland –0.5 9.0 5.3 1.2
Agriculture –5.1 14.6 3.7 2.5
Poor rangeland | Agriculture –4.7 8.9 2.9 2.0
Poor rangeland | Fair rangeland 3.0 6.4 4.4 1.1
Sparse forest | Agriculture –4.7 9.5 3.3 1.6
Dense forest | Agriculture –3.3 9.4 4.2 1.7
Poor rangeland –10.6 9.5 4.1 1.6
Sparse forest | Fair rangeland –0.4 7.4 3.3 1.3
Sparse forest | Poor rangeland –10.2 9.9 4.9 1.5
Fair rangeland –1.4 7.7 3.9 1.1
Dense forest | Sparse forest –1.4 9.8 5.0 1.6
Sparse forest –2.8 9.9 4.0 1.4
Fair rangeland | Sparse forest –1.2 8.0 3.6 1.3
Dense forest –0.4 9.1 4.9 1.4
Agriculture | Sparse forest –0.8 10.4 4.6 2.4
Poor rangeland | Sparse forest 0.0 8.8 3.5 1.4
Fair rangeland | Poor rangeland –2.0 7.8 3.3 2.2
Sparse forest | Dense forest 0.9 7.5 4.0 1.2
Fair rangeland | Dense forest 1.7 6.1 4.3 0.8
Agriculture | Poor rangeland –9.0 14.1 4.9 2.8
Agriculture | Fair rangeland 4.3 7.5 5.8 0.8
Agriculture | Dense forest 2.7 5.2 4.4 1.0
Poor rangeland | Water body –19.2 0.2 –10.8 3.5
Sparse forest | Water body –16.8 6.0 –9.4 4.4
Agriculture | Water body –17.8 –4.3 –12.4 3.0
Dense forest | Water body –12.4 –12.3 –12.3 0.1
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and NDVI is lower, indicating the low density of 
vegetation in these land uses. As shown in Figure 
8, the correlation of the rangelands with the forest 
is lower, and their surface temperatures are higher 
than those of the forest.

3.7. Spatiotemporal distribution of LST
To study the spatial distribution of LST in the region, 
thermal images from different years were normalized 
by using the highest and lowest amount of surface 
temperature. Then, using average values and standard 
deviation, the normalized thermal images were clas-
sified into five temperature classes of low, medium, 

fairly high, high and very high limit. Figure 9 shows 
the thermal maps, and Figure 10 shows the area of 
temperature classes in the desired time periods. The 
results of the differences in areas between 1990 and 
2018, show that the low, medium and fairly high limit 
classes decreased by 5, 15 and 20%, respectively, and 
the high and very high limit classes increased by 25 
and 15%, respectively.
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Fig. 8. Correlation chart between LST and NDVI index 
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Due to the decrease in forest area and the increase 
in human-induced land uses, the area of lower tem-
perature class has decreased, and the upper tempera-
ture class has experienced a notable increase during 
the time analyzed. The reduced area of dense forest 
and the increasing trend of agricultural and rangeland 
land uses indicate the replacement and conversion 
of the region’s natural coverage to lower value land 
uses. According to Figure 8, it can be said that the 
increase in LST is directly related to the increas in 
population density within the region and, consequent-
ly, the increas in agricultural area. The anticipated 
continuation of this trend provides grounds to expect 
a future (continued) rise in temperature (LST).

4.	 Discussion and conclusions
One of the important results of this research is the 
demonstration of the ability of fuzzy ARTMAP neural 
networks to classify land use types. Fuzzy classifica-
tion includes methods that can provide results better 
suited to ground reality. In these methods, different 
values are calculated as the membership grade of 
each pixel based on land cover variation, while in 
definitive categorization methods each image pixel 
is attributed to only one class. The accuracy of the 
kappa coefficient for land use maps, derived from 
the satellite data classification by using the fuzzy 
ARTMAP classification for 1990, 1995, 2000, 2005, 
2010, 2015, and 2018 is approximately equal to 87, 
92, 90, 90, 89, 94 and 91%, respectively, which rep-
resents the high reliability of this algorithm in the 
classification of satellite data.

The results of the trend in land use change show 
that, in the period 1990-2018, most changes are 
related to agricultural lands and low-density (poor) 
rangeland, which have increased by 18.15 and 
16.05%, respectively. On the other hand, land use 
types of dense forest and sparse forest have decreased 
by 20.70 and 17.04%, respectively, highlighting the 
destruction and change of natural and vegetated lands 
to cultivated lands. Another manmade land use that 
has many negative effects on nature is the construc-
tion of dams. From the time of construction of the 
Ilam dam (2005) until 2018, the water body behind 
the dam has increased by about 0.60%.

From LST maps, the range of surface temperature 
changed from 21.27 to 54.18 ºC in 1990 and from 

30.07 to 56.09 ºC in 2018. Many scholars have fo-
cused on the relationship between the effects of land 
use change and LST. Results of Setturu et al. (2013) 
in the Uttara Kannada district (India), Pal and Ziaul 
(2017) in the English Bazar urban center of West Ben-
gal (India), Fathizad et al. (2017) in southwest Iran, 
and Choudhury et al. (2019) in the Asansol-Durgapur 
Development show that land use changes are directly 
related to the increase in surface temperature. By 
examining the trend of temperature changes in the 
study area during the period 1990-2018, we observe 
an increase of 1.92 ºC, which is in line with the IPCC 
report of 2018.

The results of this study show that the LST has a 
high sensitivity to vegetation cover; land uses with 
higher vegetation density have lower surface tem-
peratures. Hence, it can be used to detect changes in 
land use over time. With regard to the effects of land 
use changes, such as urbanization, establishment of 
communication roads, agricultural development and 
soil erosion in the study area, it can be predicted that 
surface temperature will increase in the future. It is 
evident that land use changes will result in changes 
in LST.

Further studies are required in this area under 
different seasons. Also, to achieve better results, 
particularly to more accurately estimate the LST, we 
suggest the use of image sensors with higher spatial 
resolution of the thermal bonding. In the future, 
more attention is needed to the modeling of land use 
changes, specifically by considering climate factors 
and detecting changes with different types of satellite 
images. This can reduce some degree of uncertainty in 
order to support management decisions. The results are 
potentially useful for various applications, including 
climatology, hydrology, ecology, geology, design and 
improvement of transport and agriculture networks.
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