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RESUMEN

La contaminación del aire en localidades adyacentes y viento abajo de las grandes ciudades puede ser similar 
o incluso mayor que en la ciudad misma. En el caso de las localidades que constituyen el área metropolitana 
de Bogotá, con más de medio millón de habitantes y una fuerte actividad industrial, poco se sabe sobre los 
factores que inciden en la mala calidad del aire. Este trabajo investigó el exceso incremental en la composi-
ción y el aporte de fuentes a PM2.5 en dos sitios cerca de Bogotá (Soacha: 4º35’4.59” N, 74º13’11.62” W; y 
Mosquera: 4º42’9.75” N, 74º13’54.94” W), usando el modelo de receptor de Balance de Masa Químico con 
marcadores moleculares orgánicos y análisis de retro-trayectoria. La recolección simultánea de muestras se 
llevó a cabo durante dos meses. La materia orgánica fue el componente principal de la masa de PM2.5 (66 ± 
14 % y 61 ± 12 %), mientras que los iones inorgánicos secundarios (sulfato, nitrato y amonio) constituyeron 
el 13 ± 8 % y el 10 ± 2 %. Las principales fuentes antropogénicas que contribuyeron al PM2.5 en Soacha 
fueron la combustión de madera (23 %), los vehículos diésel (19 %) y la combustión de carbón en pequeñas 
instalaciones (11 %). En Mosquera, fueron vehículos de gasolina (26%), vehículos diésel (19%) y combus-
tión de carbón en pequeñas instalaciones ineficientes (15%). La contribución de aerosol orgánico secundario 
regional a PM2.5 fue significativa (19% y 15%), provenientes en su mayoría de la cuenca del Orinoco, pero 
en mayor cantidad en masas de aire provenientes de la selva amazónica. La contribución regional de aerosol 
inorgánico secundario fue mayor con vientos provenientes del Valle del Magdalena. Los métodos presentados 
en este trabajo serán útiles en otras megaciudades y grandes ciudades para gestionar mejor los impactos de 
las fuentes locales y regionales de contaminación del aire.

ABSTRACT

Air pollution in towns adjacent to and downwind of large cities can be similar or even higher than in the city 
itself. In the case of towns constituting the greater Bogotá area, with more than half a million inhabitants 
and strong industrial activity, little is known about the factors that affect their poor air quality. This work 
investigated the incremental excess of the composition and source contribution to PM2.5 in two sites near 
Bogotá (Soacha: 4º35’4.59” N, 74º13’11.62” W; and Mosquera: 4º42’9.75” N, 74º13’54.94” W), using the 
Chemical Mass Balance receptor model with organic molecular markers, and back trajectory analysis. Si-
multaneous sample collection was carried out for two-months. Organic matter was the major component of 
the PM2.5 mass (66 ± 14% and 61 ± 12%), while secondary inorganic ions (sulfate, nitrate, and ammonium) 
constituted 13 ± 8 % and 10 ± 2 %. The main anthropogenic sources contributing to PM2.5 at Soacha were 
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wood combustion (23%), diesel vehicles (19%), and coal combustion at small facilities (11%). At Mosquera, 
they were gasoline vehicles (26%), diesel vehicles (19%), and coal combustion at small inefficient facilities 
(15%). The contribution of regional secondary organic aerosol to PM2.5 was significant (19% and 15%), 
arriving mostly from the Orinoco basin but higher in air masses arriving from the Amazon rainforest. The 
regional contribution to secondary inorganic aerosols was higher with winds from the Magdalena Valley. 
The methods presented in this manuscript will be useful in other megacities and large cities to better manage 
impacts of local and regional air pollution sources.

Keywords: Incremental excess, Molecular markers, Chemical Mass Balance, Source apportionment, Back 
trajectories.

1.	 Introduction
Latin America exhibits the highest urbanization rate 
in the world, with more than 80% of its population 
living in cities and the fastest growth (Cohen, 2004; 
Sanchez-Rodriguez and Bonilla, 2007). These urban-
ization processes have not been accompanied by long-
term urban planning strategies or robust environmental 
controls. Consequently, despite improvements made 
in the last decade, cities in the region still have an 
obsolete vehicle fleet and highly polluting industries 
within densely populated areas (Green and Sánchez, 
2013; Henríquez and Romero, 2019; Huneeus et al., 
2020; Sanchez-Rodriguez and Bonilla, 2007). Recent 
economic growth has exacerbated the problem by in-
creasing motorization rates as a result of higher income 
per capita and, hence, intensifying traffic congestion 
and emissions (Mangones et al., 2019; Gómez Gélvez 
and Obando Forero, 2014).

Small towns and cities within large metropolitan 
areas or close to larger cities in the region are now 
following similar fast-growth processes as a result 
of urban sprawl, already suffering from poor air 
quality (Piña, 2014). As traffic congestion and other 
difficulties increase in large urban centers, part of 
the population and some businesses and industries 
decide to move to neighboring towns, leading to an 
unplanned growth. In other cases, these towns and 
cities have been providing goods and services to 
large cities for long periods but have not been able to 
benefit from their activity, owing to multiple factors, 
including corruption, lack of political will and weak 
institutions. As a result, they have suffered poverty 
and strong environmental degradation, including 
severe air pollution, driven by the fast growth of 
large cities (Pardo and Alfonso, 2013). However, 
their specific air pollution problems have been barely 
investigated.

Bogotá is Colombia’s capital and largest city, with 
ca. 8 million inhabitants. It is located in northern 
South America (4º 39’ N, 74º 06’ W) on a plateau at 
2,600 m.a.s.l. in the middle of the oriental branch of 
the Colombian Andes. Air pollution has been moni-
tored for more than 20 years, showing that particulate 
matter is the most important air pollutant, frequently 
exceeding the Colombian ambient air quality stan-
dards, higher than the WHO air quality guidelines 
(Green and Sánchez, 2013; Henríquez and Romero, 
2019). Several studies have determined PM10 source 
contributions using receptor models and have esti-
mated emission inventories. The city government, 
through its environmental agency, Secretaría Distrital 
de Ambiente (SDA), has partially implemented a ten-
year pollution abatement plan that started in 2010, 
based on some of these studies. The contribution of 
different sources to particulate matter air pollution is 
fairly well understood in Bogotá. Vargas et al. (2012) 
and Vargas and Rojas (2010) have shown that mobile 
sources (60%), resuspended dust (9%), and second-
ary pollutants and long-range transport contribute 
to PM10 in a residential/commercial area, whereas 
industrial emissions (44%), mobile emissions (35%) 
and resuspended dust (21%) contribute to PM10 in an 
area with mixed activities (residential, commercial, 
industrial). In a longer study, (Ramírez et al., 2018a) 
found that 51% of PM10 was attributable to dust re-
suspension (28% to enriched fugitive dust and 23% 
to road dust), 23% to vehicle exhaust, 21% to second-
ary aerosol, and 5.1% to industrial sources (4.4% to 
ferrous smelters and 0.5% to Pb-related emissions) 
in a central urban background site. Analyzing the 
carbonaceous compounds at the same site and during 
the same period, (Ramírez et al., 2018b) found that 
Elemental Carbon was 9%, Primary Organic Carbon 
(POC) was 13.2% and Secondary Organic Carbon 
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was 10.8% of PM10, and that the OC/EC ratio ranged 
from 1.66 in June to 4.88 in March. Primary sources 
(industrial and vehicle exhaust emissions) dominate 
the organic fraction of PM10 from June to August, 
whereas Secondary Organic Carbon (SOC), probably 
from different sources, dominates the organic fraction 
during the rest of the year. Note that even though 
PM2.5 has a higher association with morbidity and 
mortality of the population, source apportionment 
studies in Bogotá have been focused on PM10, and 
that no study has applied a Chemical Mass Balance 
model. Moreover, no study has been conducted to in-
vestigate in depth the organic fraction of the aerosol.

The metropolitan area of Bogotá includes ad-
ditionally 3 counties (Sabana Centro, Sabana Oc-
cidente, and Soacha), with 12 municipalities and a 
population of ca. 1.5 million inhabitants (Figure S1), 
which are under the jurisdiction of a different 
environmental agency, Corporación Autónoma 
Regional de Cundinamarca (CAR). These counties 
have industrial areas and are currently facing a chal-
lenging growth process of their economy and their 
population, associated with Bogotá’s urban sprawl. 
Some of their towns have suffered air pollution 
impacts for several years and others are recently 
starting to experience them. Particulate matter has 
been identified as the most concerning pollutant of 
the area under the jurisdiction of CAR, frequently 
exceeding the Colombian ambient air quality stan-
dards. The Soacha county, with ca. 550,000 inhab-
itants, and the Sabana Occidente county, with ca. 
420,000 inhabitants, are of special interest because 
of the presence of important industrial districts in 
the towns of Soacha, Mosquera, Funza, Madrid 
and Facatativá; mining for construction materials 
and clay in Soacha; and national roads that connect 
Bogotá with western and southern cities and the 
Pacific coast. This work will focus on these coun-
ties, with sites in Soacha and Mosquera. Figure S2 
shows the map of the Sabana Occidente county and 
the location of the Soacha and Mosquera monitoring 
sites. Bogotá’s ten-year pollution abatement plan 
did not include these neighboring counties but only 
its main urban center, the Distrito Capital (Capital 
District). Source contribution to particulate matter 
is unknown in this area (Zafra Mejía et al., 2013). 
Therefore, in addition to improving emission in-
ventories, the chemical characterization of airborne 

particulate matter and the application of receptor 
models are necessary and valuable to determine the 
source contribution to particulate matter, particu-
larly PM2.5. This source contribution is essential to 
design an appropriate and prioritized air pollution 
abatement plan for these counties.

Given the importance of the carbonaceous fraction 
of PM10 in Bogotá found by Ramírez et al. (2018b), 
and the higher association of PM2.5 with health effects 
than PM10, the aim of this work was to determine 
the source apportionment to PM2.5 using molecular 
markers (Bullock et al., 2008; Huang et al., 2015; 
Lambe et al., 2009; Oros and Simoneit, 2000; Rob-
inson et al., 2006; Schauer et al., 1996; Shrivastava 
et al., 2007; Stone et al., 2008; Villalobos et al., 
2017, 2015) and to understand the incremental excess 
between two neighboring towns of Bogotá. Similar 
studies in Latin America have focused on the source 
contributions to fine particulate matter in Temuco and 
Santiago (Villalobos et al., 2017, 2015), and Mexico 
(Stone et al., 2010, 2008; Vega et al., 2004). On the 
other hand, McGinnis et al. (2014) examined PM2.5 
concentrations, source contributions, and incremen-
tal excess across three sites in the same airshed in 
Wisconsin, USA. 

This study will determine the chemical compo-
sition of PM2.5 in two sites adjacent to Bogotá and 
assess source contributions to PM2.5, based on the 
concentrations of molecular markers and the appli-
cation of the chemical mass balance (CMB) model 
to better characterize the air pollution problem at the 
regional scale. 

2.	 Methods
2.1. Sampling sites and strategy
Sampling sites were installed in Mosquera (in Sabana 
Occidente county) and Soacha (in Soacha county), 
western neighboring towns of Bogotá’s Capital 
District, both influenced by industrial activities and 
the transit of a high volume of trucks, buses, and 
vehicles. The sampling sites were separated 13.1 
km. The Mosquera sampling site (4º42’9.75” N, 
74º13’54.94” W) was located at a 7-m high moni-
toring platform regularly used for manual particulate 
matter monitoring, in the middle of the Villa Olímpica 
public sports fields. Mosquera has ca. 83,000 inhab-
itants and has an important industrial corridor, with 
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food and beverage, metalwork, and plastics sectors 
contributing significantly. The Soacha sampling site 
(4º35’4.59” N, 74º13’11.62” W) was located on the 
roof of the 5-story Mario Gaitán Yanguas Public 
Hospital building. The hospital is on a narrow but 
congested street, with a medium volume of vehicles 
and small buses, at 620 meters from Autopista Sur, 
the main corridor connecting Bogotá with southern 
and western Colombia and one of the most congest-
ed highways in the country, particularly because 
of a massive volume of heavy-duty trucks. Soacha 
also has a large industrial corridor, with mining for 
construction materials a significant activity, which 
keeps growing at an alarming rate under insufficient 
planning provisions.

Simultaneous sampling of 24-h integrated PM2.5 
filters was performed at each site between 12 Sep-
tember 2014 and 11 November 2014 using paired 
samplers. In Soacha, three 16.7 lpm speciation sam-
plers (Rupprecht & Patashnick, USA), one loaded 
with a PTFE filter (Zefluor membrane, 2 µm, 47 
mm, Pall Corporation, USA) and two loaded with 
quartz filters (QMA, 47 mm, Whatman, USA), were 
used. In Mosquera, one 16.7 lpm speciation sampler 
was loaded with a PTFE filter and one high volume 
sampler equipped with a brushless monitor (TE-1000, 
200 lpm, Tisch Environmental, USA) was loaded 
with a 100-mm quartz filter, cut from a larger sheet 
(QM-A, 203.2 x 254 mm, Whatman, USA). PTFE 
filters were used to determine PM2.5 mass, ions and 
trace metals, and quartz filters to determine ECOC 
and organic tracer speciation. Before and after sam-
pling, filters were stored and transported in Petri 
dishes, with internal aluminum foil holders and an 
external Teflon tape seal, refrigerated at -20ºC until 
chemical analyses.

To ensure an appropriate mass loading for chem-
ical speciation, filters compositing was performed. 
Composites from stage 1 corresponded to 3 groups 
of consecutive days of the same week: Monday-Tues-
day, Wednesday to Friday, and Saturday-Sunday, 
which were analyzed for WSOC and ions. Any dif-
ferences in these components between weekdays and 
weekends could be detected in this way. Composites 
from stage 2 corresponded to weekly groups, which 
were analyzed for metals and organics. As a result, 25 
composites from stage 1 and 9 weekly composites of 
each filter material at each site were formed.

2.2. PM2.5 mass concentration and chemical analysis
Teflon filters used for gravimetric analysis were 
conditioned at 20±3ºC and 35±5% for 24-48 h before 
being weighed with a microbalance (MX5, ±1 µg, 
Mettler Toledo, USA). Each filter was weighed three 
times and re-weighed if a difference higher than 15 
µg in consecutive weights was found.

Three samples per week from each site were 
analyzed for organic carbon (OC), elemental carbon 
(EC), Water-Soluble Organic Carbon (WSOC), and 
water-soluble inorganic ions (WSII). EC and OC 
were determined through the NIOSH thermal optical 
transmission method and flame ionization detection 
(FID) (Schauer et al., 2003) on a 1.0 cm2 quartz 
filter punch in a Thermal Optical Analyzer (Sunset 
Laboratories, Forest Grove, OR, USA). WSOC was 
determined using a TOC-V SCH Shimadzu total 
organic carbon analyzer on an extract of a quarter 
of each PTFE filter in 15 mL of Milli-Q water (Mi-
yazaki et al., 2011; Yang et al., 2003). The difference 
OC – WSOC produced the Water-insoluble organic 
carbon (WIOC), with an uncertainty calculated by 
uncertainty propagation. WSII were analyzed using 
ion chromatography (IC) (Dionex ICS 2100 and 
Dionex ICS 100) (Wang et al., 2005). Seven ions 
were measured: sulfate, nitrate, chloride, sodium, 
ammonium, potassium, and calcium.

Weekly composites for each site with at least 
500 μg of OC were prepared to analyze organic 
compounds by gas chromatography/mass spec-
trometry (GC-6980, quadrupole MS-5973, Agilent 
Technology). Isotopically-labeled standard solutions 
were used to spike the filter composites before the 
extraction using four alternate and equal volumes of 
dichloromethane and acetone, each one sonicated for 
20 minutes. Solvents were evaporated in a rotavapor 
and reduced in volume by blowing ultrapure nitro-
gen. Two aliquots of each extract were analyzed by 
GC–MS. In the first one, diazomethane was used 
to derivatize carboxylic acids. In the second one, 
a silylating reagent derivatized hydroxyl groups 
(Nolte et al., 2002; Stone et al., 2008). A sample 
of SRM 1649a (Urban Dust, NIST) and a standard 
spike sample were analyzed together with each batch 
of samples for quality control. All concentrations 
were blank-corrected. Uncertainties were estimated 
using the detection limits of the instruments and the 
standard deviation of field blanks. Details on the 
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analytical methods can be found elsewhere (Vil-
lalobos, 2015; Miyazaki et al., 2011; Stone et al., 
2008; Wang et al., 2005; Schauer et al., 2003; Yang 
et al., 2003; Nolte et al., 2002).

2.3. Source apportionment
The EPA Chemical Mass Balance model software 
CMB v8.2 (Watson et al., 1984) was used to estimate 
primary source contributions to organic carbon (OC) 
for the eight weekly composite samples at each site.  
Organic compounds included in the model were se-
lected for their stability and low volatility during their 
transport in the atmosphere (Schauer et al., 1996): 
polycyclic aromatic hydrocarbons (such as benzo(b)
fluoranthene, benzo(k)fluoranthene, benzo(e)pyrene, 
indeno(1.2.3-cd)pyrene, benzo(ghi) perylene, ABB-
20R-C27-cholestane, ABB-20R-C29-sitostane, ABB-
20S-C29-sitostane) as tracers of vehicle emissions 
and biomass burning (Ravindra et al., 2008); picene 
as a tracer of coal combustion (Oros and Simoneit, 
2000); hopanes (such as 17α(H)-22. 29. 30-trisnor-
hopane, 17α(H)-21β(H)-30-norhopane, 17α(H)-21β 
(H)-hopane) as tracers of gasoline, diesel, and fuel oil 
combustion (Rogge et al., 1997; Schauer et al., 1996; 
Shrivastava et al., 2007); and levoglucosan as a tracer 
of biomass burning (Bi et al., 2008; Fine et al., 2004; 
Huang et al., 2015; Pereira et al., 2019; Rincón-Riveros 
et al., 2020; Simoneit et al., 1999; T. Zhang et al., 2008; 
Zhang et al., 2007). Since no local source profiles 
were available, we selected published source profiles 
for the model: natural gas combustion (Rogge et al., 
1993), diesel vehicles (Lough et al., 2007; Lough and 
Schauer, 2007), gasoline vehicles (Lough et al., 2007; 
Lough and Schauer, 2007), wood smoke (Fine et al., 
2004) and residential coal burning (Zhang et al., 2008) 
assimilating small facilities. These sources have been 
used in Latin America by Villalobos et al. (2017; 2015) 
for source apportionment in Santiago and Temuco, 
Chile. Other source profiles such as meat cooking and 
vegetative detritus were included in preliminary runs 
of the model but were not found to produce acceptable 
results. Source contributions to OC from the CMB 
model were converted to PM2.5 contributions using 
specific OC/PM2.5 ratios for each source (Sheesley et 
al., 2007; Turpin and Lim, 2001; Zhang et al., 2008). 
As it will be shown, sources that were not resolved by 
the CMB model were assumed to be associated with 
secondary organic compounds and converted using 

an OC/PM2.5 ratio of 0.5 (Daher et al., 2012; Turpin 
and Lim, 2001; Utembe et al., 2009; Yin et al., 2010), 
even though there may be other unresolved sources 
such as meat cooking and trash burning.

2.4. Backward trajectories
Potential pollutant sources were identified based on 
cluster and 2D kernel density analysis of backward 
trajectories (BWT) of air masses during the sampling 
periods (weekly from 15 September 2014 to 9 Novem-
ber 2014). The HYSPLIT Lagrangian back trajectory 
model (Stein et al., 2015) was used to track the origin 
and location of air masses arriving at the sampling 
sites (Mosquera: 4º42’9.75” N, 74º13’54.94” W, and 
Soacha: 4º35’4.59” N, 74º13’11.62” W). The con-
figuration used by Mendez-Espinosa et al. (2019) to 
calculate BWT was followed. BWTs were calculated 
eight times per day (starting at 1 UTC-5 <local time>, 
every 3 hours). Each trajectory was computed for 72 
h to analyze short, middle, and long-range transport 
in the mesoscale (less than 600 km). The Global Data 
Assimilation System of 1º x 1º (GDAS1) was used 
as input gridded meteorological dataset since it is 
more suitable over complex topography and diver-
sified land uses (Su et al., 2015), using SplitR v0.4 
R-package by (Iannone, 2016). As the inaccuracy of 
BWT models could be directly proportional to shorter 
receptor heights given that local winds, turbulence 
processes, and frictional effects cannot be accurately 
represented (McGowan and Clark, 2008; Sapkota 
et al., 2005; Zielinski et al., 2016), BWT were cal-
culated for two receptor heights: 500m, and 1000m 
above ground level (AGL).  Receptor heights were 
set up below and near mixing height (~1500m/year) 
(Mendez-Espinosa et al., 2019). BWT were linked 
with pollutant species, hereafter, they were grouped 
according to their angle. Angular distance clustering 
was computed using the OpenAir package (Carslaw 
and Ropkins, 2012). The results are shown as con-
centration per chemical concentrations associated 
with clustering trajectories. Then, back-trajectories 
density maps were created by clusters to estimate the 
areas with the larger density of points related to the 
geo-location of air masses.

In the cluster analysis, a normality test (Shap-
iro-Wilk) was applied to the data. No dataset per 
cluster and pollutant was found to be normally 
distributed, and therefore, non-parametric Krus-
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kal-Wallis tests (one-way ANOVA on ranks) were 
calculated to determine whether or not there was a 
significant difference (p-value <0.05) among clusters 
per observed pollutant.

3.	 Results and Discussion
3.1. PM2.5 mass concentrations, bulk composition, 
and mass reconstruction
Daily PM2.5 concentrations, shown in Figure S3, 
during the sampling period were 31 ± 15 µg m–3 
in Soacha (max. 78 µg m–3) and 26 ± 12 µg m–3 in 

Mosquera (max. 87 µg m–3). The percentage of samples 
exceeding the current Colombian Air Quality Stan-
dard (37 µg m–3) and the WHO guideline (25 µg m–3) 
was 30%, and 60% respectively in Soacha, 16%, and 
45% respectively in Mosquera. Figure 1 shows daily 
scatter plot comparisons of PM2.5 and major constit-
uents (3 samples per week were analyzed) between 
Soacha and Mosquera. For each chemical species, 
the Pearson correlation coefficient (r) and the Coef-
ficient of Divergence (COD) between both sampling 
sites were calculated. The Pearson coefficient shows 
the degree of correspondence, so values close to 1 
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Fig. 1. Daily scatter plot comparisons of PM2.5 and major constituents between Soacha and 
Mosquera. 3 daily samples were analyzed per week. Different symbols represent different weeks.
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indicate that concentrations at both sites are propor-
tional. The COD shows the heterogeneity, so values 
lower than 0.2 indicate that concentrations have a 
homogeneous spatial distributions between both sites 
and values close to 1 indicate that concentrations are 
heterogeneous (Xie et al., 2012; Yatkin et al., 2020). 
Nitrate (r = 0.75, COD = 0.29), sulfate (r = 0.66, COD 
= 0.27) and calcium (r = 0.70, COD = 0.27) concen-
trations showed the highest r, suggesting that there 
is some regional influence of secondary inorganic 
aerosols and dust, although their spatial distribution 
was heterogeneous. EC (r = -0.02, COD = 0.25), OC 
(r2 = -0.05, COD = 0.23) and PM2.5 (r = 0.12, COD 
= 0.25), are poorly correlated and heterogeneous, 
which suggests that the main sources of PM2.5 and its 
carbonaceous fractions are local at both sites.

PM2.5 mass reconstruction was performed for the 
three samples per week analyzed from each site, by 
adding EC, Organic Material (OM) and WSII. OM 
concentrations were calculated using an OM/OC fac-
tor of 1.6 for both sites, as recommended by Turpin 
and Lim (2001) for urban aerosols. Reconstructed 
mass was 104 ± 25% and 103 ± 26% in Soacha and 
Mosquera, respectively. OM constituted a large frac-
tion of PM2.5, with 68 ± 19% (22.3 ± 7.1 µg m–3) and 
63 ± 19% (17.8 ± 7.6 µg m–3) in Soacha and Mos-
quera, respectively. EC represented 21 ± 5% and 25 
± 5% of PM2.5, respectively. The most abundant ion 
was Sulfate (5.7 ± 2.0% and 5.4 ± 2.8%), followed by 
ammonium (3.0 ± 1.3% and 2.9 ± 1.4%) and nitrate 
(1.5 ± 0.7% and 1.8 ± 0.3%). Chloride (1.5 ± 0.6% 
and 1.1 ± 0.6%) and Calcium (1.3 ± 0.8% and 1.5 ± 
0.8%) contributions to PM2.5 are as high as nitrate. 
Figure S4 shows the PM2.5 mass reconstruction for 

all the samples analyzed at both sites: 3 samples per 
week for 8 weeks. Figure 2a shows the weekly av-
erage PM2.5 concentrations and bulk composition at 
Soacha. Figure 2b and Table SII show the incremental 
excess of PM2.5 concentrations and bulk composition 
in Soacha compared to Mosquera. An excess of PM2.5 
was found in Soacha compared to Mosquera for most 
of the sampling period, excepting weeks 1 and 3. 
Similarly, an excess of the PM2.5 carbonaceous frac-
tions (EC, WIOM, and WSOM) was found in Soacha 
compared to Mosquera, excepting EC in weeks 1, 3, 
and 5, and WIOM in week 1. A mixed situation was 
found for ions.

3.2. Molecular markers
Molecular markers used in the CMB model made 
up a small fraction of OM, but they are useful to 
identify and quantify the OM and PM2.5 sources. 
Table SI shows the weekly average concentrations 
of organic fractions and molecular markers with 
their corresponding uncertainties, and variability 
metrics for each species (median, interquartile range 
and standard deviation). Even though the sampling 
period was short, the observed concentration vari-
ability was reasonably good for the application of 
the CMB model.

Figures 2 to 7 show the weekly concentrations of 
EC + OC and molecular markers in Soacha (part a) 
and the incremental excess of EC + OC and molecular 
markers in Soacha compared to Mosquera (part b). 
EC + OC showed similar temporal trends to PM2.5 at 
both sites, with higher-than-average concentrations at 
Soacha during weeks 2 and, especially, during week 7 
(Fig. 3a). There was a consistent incremental excess 
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of EC at Soacha compared to Mosquera, with the 
only exception of week 1. The incremental excess 
of OC at Soacha compared to Mosquera (Fig. 3b) 
was negative in weeks 1, 3, and, to a lesser extent, 
5, and positive for the rest of the weeks, with higher 
excess in weeks 7 and 8. OC/EC ratios were 1.91 ± 
0.37 at Soacha and 1.60 ± 0.30 at Mosquera. These 
ratios can be considered as typical of urban aerosols 
with an influence of secondary aerosol formation 
(Blanchard et al., 2011; Khan et al., 2012). They 
were lower than the ratios measured in Santiago 
(Villalobos et al., 2015) and Temuco (Villalobos et al., 
2017) - with a high influence of biomass burning for 
heating in winter. They were similar to the ratio found 
at Xalostoc industrial site and lower than those at La 
Merced commercial site and Pedregal residential site 
in Mexico City (Vega et al., 2004).

Individual concentrations of PAHs in Soacha (Fig. 4a) 
were 1.98 ± 0.77 ng m–3 for benzo[b]fluoranthene, 
1.69 ± 0.64 ng m–3 for benzo[k]fluoranthene and 1.69 

± 0.64 ng m–3 for benzo[e]pyrene). They were in a 
similar range to those measured in Temuco and lower 
than those in Santiago during winter (Villalobos et 
al., 2017, 2015), but 20 times higher than near an oil 
refinery in northeastern Mexico (Montaño-Soto et al., 
2017), 10 times higher than in Monterrey, Mexico 
(Longoria-Rodríguez et al., 2020) and around 70%-
80% of the levels found in Cuernavaca, México 
(Murillo-Tovar et al., 2018; Saldarriaga-Noreña et al., 
2015). Incremental excess of all these compounds in 
Soacha compared to Mosquera (Fig. 4b) were nega-
tive in weeks 1, 3, 5, and, particularly, 8. The negative 
excess was consistent for benzo(k)fluoranthene for 
the rest of the period. There was also a slight negative 
excess of benzo(e)pyrene in week 2 for benzo(e)
pyrene. Overall, the incremental excess in Soacha 
tended to be negative for these PAHs (Fig. 4b).

Picene concentrations were around one half and 
75% of those measured in Temuco (Villalobos et 
al., 2017) at Soacha (Fig. 7a) and Mosquera (0.37 ± 
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0.09 ng m–3 and 0.55 ± 0.13 ng m–3, respectively), 
showing that coal burning contributes to PM2.5 at 
both sites. Picene was not detected during week 3 
at Mosquera. The incremental excess (Fig. 7b) was 
positive only for weeks 3, 4, and 7 (Fig. 7b). Overall, 
picene concentrations suggest that the impact of coal 
burning is similar at both sites.

Hopane concentrations were 1.27 ± 0.20 ng m–3 at 
Soacha (Fig. 5a) and 2.81 ± 0.24 ng m–3 at Mosquera, 
a similar range to that found in Santiago (Villalobos 
et al., 2015) and Mexico City (Stone et al., 2008), 
and higher than in Temuco (Villalobos et al., 2017). 
All the hopanes included in this analysis had a neg-
ative incremental excess in Soacha, showing a lower 
impact of gasoline vehicles compared to Mosquera 
(Fig. 5b).

The sum of concentrations of n-Alkanes from C27 
to C33 were 34.2 ± 9.46 ng m–3 at Soacha (Fig. 6a) 
and 54.8 ± 5.86 ng m–3 at Mosquera, 1.8 and 3-fold 
the concentration measured in Temuco (Villalobos et 
al., 2017) and similar to those measured in Santiago 

before and after wintertime (Villalobos et al., 2015). 
For most of the sampling weeks, the incremental 
excess of n-alkanes in Soacha was negative, except 
for octacosane in week 4; heptacosane, octacosane, 
and nonacosane in week 7 (Fig. 6b). The Carbon 
Preference Index – CPI applied to the C28 to C33 
n-alkanes had values of 0.82 to 0.99 at Soacha and 
1.04 to 1.42 at Mosquera, indicating that n-alkanes 
in PM2.5 originate from anthropogenic sources.

Levoglucosan concentrations were 599.7 ± 72.35 
ng m–3 at Soacha (Fig. 8a) and 258.3 ± 28.5 ng m–3 
at Mosquera, similar to those measured in Santiago 
between April and May (Villalobos et al., 2015), and 
70% and 30%, respectively, of those measured in 
Temuco (Villalobos et al., 2017), a city that is known 
for its high wood-burning contribution to PM2.5 in 
winter. The incremental excess in Soacha was pos-
itive throughout the sampling period, indicating a 
much stronger impact of wood burning compared 
to Mosquera (Fig. 8b). The average Levoglucosan/
PM2.5 ratio was slightly lower than that in Temuco 
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in winter and Santiago from June to September at 
Soacha (0.018) and one half of that value at Mosquera 
(0.009). Levoglucosan had a similar trend to PM2.5 
at Soacha, with a higher peak during week 2 and low 
concentration during week 5. At Mosquera, levoglu-
cosan did not have strong variations and showed a 
fairly similar trend to PM2.5.

3.3. Chemical mass balance source apportionment 
to organic carbon
The sources that are more likely to contribute to 
organic carbon at the two sites are diesel trucks, gas-
oline vehicles, natural gas combustion, coal combus-
tion in small facilities, and wood combustion in local 
bakeries. The ratio-ratio plots for Indeno(1,2,3-cd)
pyrene x 1000/EC and benzo(g,h,i)perylene x 1000/
EC in Figure S7, suggested by Robinson et al. (2006) 
as a useful tool to visualize the potential combination 
of sources, shows that all the ambient samples fell 
within the region formed by connecting the ratios of 
the source profiles selected for applying the CMB 
model. Ambient samples in Soacha (Fig. S7a) were 
close to the line connecting the ratios for wood 

combustion and diesel vehicles, whereas those in 
Mosquera (Fig. S7b) fell in the center of the polygon, 
showing that gasoline vehicles and coal combustion 
may have a higher contribution than in Soacha.

Considering the concentration/uncertainty ratios 
shown in Figure S6, and results from preliminary 
runs of the CMB model, the fitting species selected 
for the definite run were: EC, benzo(b)fluoranthene, 
benzo(k)fluoranthene, benzo(e)pyrene, benzo(g,h,i)
perylene, 17A(H)-22,29,30-Trisnorhopane, 17A(H)-
21B(H)-30-Norhopane, 17A(H)-21B(H)-Hopane, 
ABB-20R-C27-Cholestane, ABB-20R-C29-Sitos-
tane + ABB-20S-C29-Sitostane, Levoglucosane and 
Picene.

CMB model results are shown in Table I, includ-
ing the values for the fitting statistics R2 and χ2, and 
the percent of OC mass explained by the model. R2 
values above 0.97 and χ2 values below 2.2 indicate 
a good fit between the selected sources and ambient 
measurements at both sites. The percent of OC mass 
explained by the model was within the accepted 
range (80% - 120%) for just half of the weekly sam-
ples at both sites and lower than 80% for the other 
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half. The unexplained mass was considered to be 
due to “Other” source, which was calculated as the 
difference between the measured OC concentration 
and the sum of the calculated concentrations of the 
significant fitting sources. It is, therefore, a measure 
of unresolved sources. Wood combustion, diesel 
vehicles, and gasoline vehicles had significant con-
tributions for all samples at both sites. Natural gas 
combustion was not significant during weeks 2 and 

3 at both sites. Coal combustion at small facilities 
was not significant during weeks 1 and 3 at Soacha 
and was significant only during weeks 4, 7, and 8 at 
Mosquera. Other sources were not significant during 
weeks 2, 4, and 6 at Soacha, and during weeks 3 and 
7 at Mosquera.

The main contributor to OC in Soacha (Fig. 9a) 
was wood combustion (6.02 ± 1.35 µg m–3) fol-
lowed by diesel vehicles (2.46 ± 0.25 µg m–3), other 

Table I. Source contribution to OC at the study sites. Significant sources are shown in bold.

a) Soacha

Week Wood burning 
µg m–3

Natural gas 
µg m–3

Diesel 
µg m–3

Gasoline 
µg m–3

Coal
µg m–3

Other
µg m–3

R2 χ2 % OC 
Mass

1 5.66 ± 1.26 0.04 ± 0.02 1.40 ± 0.16 2.04 ± 0.23 0.06 ± 0.04 2.23 ± 1.24 0.97 1.89 80.9
2 8.88 ± 1.94 0.02 ± 0.03 2.48 ± 0.27 3.15 ± 0.34 0.12 ± 0.05 1.13 ± 1.90 0.98 1.1 92.9
3 4.81 ± 1.09 0.02 ± 0.02 1.61 ± 0.17 1.78 ± 0.20 0.04 ± 0.03 3.97 ± 1.07 0.97 1.74 67.8
4 5.78 ± 1.31 0.08 ± 0.03 2.13 ± 0.22 2.21 ± 0.28 0.18 ± 0.06 0.98 ± 1.30 0.98 1.26 91.4
5 2.80 ± 0.68 0.02 ± 0.01 1.94 ± 0.19 1.35 ± 0.16 0.09 ± 0.03 5.37 ± 0.69 0.98 1.36 53.6
6 6.05 ± 1.37 0.06 ± 0.02 2.36 ± 0.24 2.14 ± 0.25 0.23 ± 0.06 2.57 ± 1.35 0.99 0.65 80.8
7 9.37 ± 2.09 0.11 ± 0.04 4.58 ± 0.44 2.51 ± 0.31 0.23 ± 0.07 4.78 ± 2.07 0.98 1.33 77.9
8 4.80 ± 1.10 0.04 ± 0.02 3.21 ± 0.30 2.03 ± 0.24 0.17 ± 0.05 2.93 ± 1.11 0.98 1.15 77.7

Average 6.02 ± 1.35 0.06  ± 0.02 2.46 ± 0.25 2.15 ± 0.25 0.17 ± 0.05 3.86 ± 1.23

b) Mosquera

1 1.96 ± 0.52 0.08 ± 0.03 1.59 ± 0.19 5.01 ± 0.53 0.08 ± 0.07 2.58 ± 0.58 0.97 2.02 77.7
2 1.46 ± 0.39 0.02 ± 0.03 1.71 ± 0.22 6.65 ± 0.71 0.08 ± 0.08 3.14 ± 0.67 0.96 2.13 76.6
3 1.46 ± 0.39 0.02 ± 0.03 1.71 ± 0.22 6.65 ± 0.71 0.08 ± 0.08 0.47 ± 0.54 0.96 2.13 96.4
4 1.70 ± 0.45 0.08 ± 0.02 1.69 ± 0.18 3.58 ± 0.41 0.17 ± 0.06 1.01 ± 0.43 0.98 1.18 87.7
5 1.36 ± 0.36 0.05 ± 0.02 1.77 ± 0.20 4.27 ± 0.46 0.08 ± 0.05 2.94 ± 0.54 0.97 1.71 72.4
6 1.85 ± 0.49 0.09 ± 0.03 2.11 ± 0.24 5.02 ± 0.55 0.06 ± 0.06 2.93 ± 0.62 0.96 2.18 76.1
7 1.76 ± 0.47 0.12 ± 0.03 2.86 ± 0.29 4.14 ± 0.51 0.22 ± 0.08 –0.07 ± 0.47 0.98 1.39 100.8
8 2.12 ± 0.57 0.25 ± 0.05 1.51 ± 0.17 3.99 ± 0.51 0.40 ± 0.12 1.90 ± 0.53 0.98 1.35 81.3

Average 1.71 ± 0.46 0.11 ± 0.03 1.87 ± 0.21 4.92 ± 0.55 0.26 ± 0.09 2.42 ± 0.56
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sources (3.86 ± 1.23 µg m–3), gasoline vehicles (2.15 ± 
0.25 µg m–3), coal combustion in small facilities (0.17 
± 0.05 µg m–3) and natural gas combustion (0.06 ± 
0.02 µg m–3). In Mosquera (Fig. 9b), the main con-
tributors were gasoline vehicles (4.92 ± 0.55 µg m–3), 
followed by other sources (2.42 ± 0.56 µg m–3), 
diesel vehicles (1.87 ± 0.21 µg m–3), wood com-
bustion (1.71 ± 0.46 µg m–3), coal combustion in 
small facilities (0.26 ± 0.09 µg m–3) and natural gas 
combustion (0.11 ± 0.03 µg m–3).

The use of chemical source profiles from the USA 
in Colombia is indeed a source of uncertainty in 
determining source contribution by using the CMB 
model, especially regarding vehicle technologies and 
fuels. The vehicle emission profiles used here were 
developed from a wide range of technologies of the 
Californian fleet (1975-2001), in which the Colom-
bian fleet can be considered to be included. On the 
other hand, Colombian fuels meet similar standards 
to those in place in California over that period. 
Therefore, the true emission profiles can be thought 
to be inside the range of the profiles documented by 
Lough and Schauer (2007).

3.4. Source apportionment to PM2.5
Figure 10 shows the results of the source contribution 
to PM2.5, after applying specific OC to PM2.5 factors 
to the source contributions to OC and adding the 
concentrations of WSII. The main contributors at 
Soacha (Fig. 10a) were wood combustion (7.20 ± 
2.59 µg m–3), diesel vehicles (6.05 ± 2.51 µg m–3), 
secondary organic aerosols (5.99 ± 3.21 µg m–3), coal 
combustion in small facilities (3.49 ± 1.87 µg m–3) 

and gasoline vehicles (2.77 ± 0.68 µg m–3). At Mos-
quera (Fig. 10b), the main contributors were gasoline 
vehicles (6.33 ± 1.52 µg m–3), diesel vehicles (4.58 
± 1.07 µg m–3), secondary organic aerosols (3.73 ± 
2.49 µg m–3), coal combustion at small facilities (3.65 
± 2.91 µg m–3) and wood combustion (2.04 ± 0.32 
µg m–3). The average undetermined mass was 8% 
of PM2.5 at Soacha (max 27%) and 11% of PM2.5 at 
Mosquera (max 30%). This fraction may be associ-
ated with dust and other industrial and commercial 
sources. Previous source apportionment studies in 
Bogotá had been made for PM10 (Ramírez et al., 
2018a; Ramírez et al., 2018b; Vargas et al., 2012), 
not for PM2.5, and could not resolve the contributions 
of different types of vehicles.

The scatter plot comparisons of source contribu-
tions between Soacha and Mosquera (Fig. 11) shows 
relatively high correlations for ammonium (r2 = 0.64) 
and sulfate (r2 = 0.72), associated with the regional 
contribution of secondary inorganic aerosols during 
the sampling period. The correlation was also high 
for the contribution of diesel exhaust, which can be 
attributed to similar behavior of the cargo fleet traffic 
at both sites. Natural gas contributions were well 
correlated between both sites most of the time, but a 
higher contribution in Mosquera in week 8 appears 
as an outlier. Other sources are not well correlated, 
indicating that they only have local influence. The 
high variability in the contribution of wood com-
bustion in Soacha contrasts with the fairly constant 
contribution in Mosquera. The opposite is shown 
for the contribution of gasoline, more variable in 
Mosquera, and less variable in Soacha.
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In summary, even though chemical source profiles 
were not developed in Colombia, these source appor-
tionment results are reasonable when considering the 
characteristics and activities found around the sites 
and suggest that future emission inventories exercises 
should not underestimate the importance of wood 
and coal burning in small facilities, often neglected.

3.5. Backward trajectories
Back-trajectory kernel densities for both sites for the 
whole sampling period (Fig. 12) show three clusters. 
C1 corresponds to air masses arriving from the Ori-
noco basin, passing over Bogotá, with 64.6 % of the 
trajectories. C2 (24.7 %) has mixed trajectories from 
the Orinoco basin and influence of the Amazon rain-
forest in the South, arriving at the sites from the East, 
having passed over Bogotá. C3 (10.7 %) arrives from 
the Northwest, with air masses from the Magdalena 
Valley, between the Central and Eastern Colombian 
Andes, and the influence of the Pacific Coast.

For a more detailed view, weekly kernel densities 
are shown in Figure S8. Three clusters per week are 
plotted, and the percentage of trajectories represent-
ed by each cluster per week is indicated. The great 
majority of the air mass trajectories arrive at both 
sites from the eastern savanna, which is part of the 
Orinoco basin, having passed over Bogotá. In several 
weeks, two of the three clusters, or even the 3 clusters 
found do not differ significantly from each other. In 
week 7, clusters C1 and C2 arriving at Soacha can 
be associated with C1 arriving at Mosquera, while 
cluster C3 arriving at Soacha can be associated with 
clusters C2 and C3 arriving at Mosquera.

Higher wind speeds, and therefore longer trajec-
tories, were observed during week 1 and, to a lesser 
extent, during week 8, for trajectories arriving from 
the East. Trajectories in cluster C3 in week 4 (21.4 % 
and 23.8 %), and week 6 (14.3 %) arrive from the 
North, at Soacha and Mosquera, respectively. Week 3 
showed a slight influence of southeastern trajectories. 
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Week 5 was the only week with a persistent influence 
of air masses arriving from the South/Southeast (69 % 
and 71.4 % of trajectories in cluster C2 at Soacha 
and Mosquera, respectively). It was during this week 
that a higher contribution of SOA was found at both 
sites; this may be due to the influence of emissions 
from rainforest vegetation.

In contrast, air masses from the Northwest (Magda-
lena Valley) were observed only in week 7. This was 
the week with the highest PM2.5 concentrations and 
the highest contribution of several sources, such as 
diesel combustion, wood combustion, and secondary 
inorganic aerosol compounds (sulfate and ammo-
nium). Emission sources located along trajectories 
from the Northwest are few and weak when compared 
to those from the East (i.e. the city of Bogotá). This 
suggests that there was also poorer dispersion of local 
emissions associated with these Northwest trajectories 
and a contribution of transport of secondary inorganic 
aerosols from the Magdalena Valley.

The percentage of clusters per week was very simi-
lar for both sites, suggesting that both are influenced by 
similar air masses. However, the influence of Bogotá’s 
emissions or long-range transport of pollutants does 
not seem to have been dominant over the concentra-
tions and compositions of PM2.5 of the sites during the 
sampling period. Therefore, the incremental excess 
in the concentrations of PM2.5 and its constituents, as 
well as in the source contribution to organic carbon 
and PM2.5, is mostly a consequence of local emissions.

4.	 Conclusions
This study apportioned OC and PM2.5 at two receptor 
sites, Soacha and Mosquera, located in Sabana Occi-
dente in the greater Bogotá region, using molecular 
markers and the CMB receptor model, during 8 
weeks between 15 September and 9 November 2014. 
To the best of our knowledge, this is the first study 
in Colombia that applies this approach of source 
apportionment to particulate matter. The model and 
the PM2.5 reconstruction derived from it were able 
to resolve the contributions of 6 sources to OC and 
PM2.5, namely: diesel and gasoline vehicles, natural 
gas and wood combustion, coal combustion at small 
facilities, and secondary organic aerosols. The main 
anthropogenic sources contributing to PM2.5 in So-
acha were wood combustion (23%), diesel vehicles 
(19%), and coal combustion at small facilities (11%). 
The main contributors in Mosquera were gasoline 
vehicles (26%), diesel vehicles (19%), secondary 
organic aerosol (15%), and coal combustion at 
small inefficient facilities (15%). The contribution 
of regional secondary organic aerosol to PM2.5 was 
significant at both sites: 19% at Soacha and 15% at 
Mosquera, higher with southerly winds. Moreover, 
our results show that there was a regional contribution 
to secondary inorganic aerosols, higher when winds 
came from the Magdalena Valley.

The high contribution of wood combustion at 
Soacha, and coal combustion at both sites, show 
a different spectrum of sources in smaller towns 

Fig. 12. Kernel densities of backward trajectories arriving at Soacha and Mosquera. Percentages correspond to the 
contribution of C1, C2, and C3 back trajectory clusters at each site.
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when compared with the capital city. Wood is more 
frequently used at local bakeries and restaurants and 
may be used for cooking and heating at homes. Coal 
is used in ovens or kilns at small, inefficient industrial 
facilities. Stringent control of coal use in Bogotá 
has originated a migration of this kind of facility to 
neighboring towns, where emission controls are less 
rigorous.

Our results indicate that previous source appor-
tionment results found in Bogotá would not generate 
the best set of measures to curb air pollution if applied 
in these neighboring towns. The regional environ-
mental agency that has jurisdiction over them needs 
to strengthen their emission control strategies with 
different foci: promote improved wood stoves or 
ovens in commercial activities and homes; demand 
improved facilities for coal combustion or replace 
coal with natural gas at small industrial facilities; 
and, together with the National government, promote 
a faster upgrade of the vehicular fleet. Given the sim-
ilarities among towns in the Sabana Occidente and 
Sabana Centro counties, in terms of climate, culture, 
level of development, and economic activities, these 
conclusions could be applied to the environmental 
management plans in the rest of the metropolitan 
area. However, specific source apportionment studies 
using organic molecular markers would be needed in 
towns with appreciably different features or sources, 
and other regions.
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