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RESUMEN

Este artículo analiza la relación entre COVID-19, contaminación atmosférica y movilidad en el transporte 
público de la Zona Metropolitana de la Ciudad de México (ZMCM). Analizamos si las restricciones a la 
actividad económica introducidas para mitigar los contagios por COVID-19 están asociadas con un cambio 
estructural en los niveles de contaminación atmosférica y movilidad en el transporte público. Nuestros re-
sultados muestran que la movilidad en el transporte público se redujo significativamente dadas las recomen-
daciones gubernamentales. No obstante, la reducción en movilidad no fue acompañada de una reducción en 
contaminación atmosférica. Más aún, las pruebas de Granger-causalidad muestran que la relación de prece-
dencia entre movilidad en transporte público y contaminación atmosférica desapareció como consecuencia 
de las restricciones. Por lo tanto, nuestros resultados sugieren que la contaminación atmosférica en la ZMCM 
se asocia primordialmente a actividad industrial y movilidad en transporte privado. En este sentido, el go-
bierno debería redoblar sus esfuerzos para implementar políticas públicas dirigidas a reducir contaminación 
industrial y el uso del automóvil.

ABSTRACT

This paper analyzes the relation between COVID-19, air pollution, and public transport mobility in the Mex-
ico City Metropolitan Area (MCMA). We test if the restrictions to economic activity introduced to mitigate 
the spread of COVID-19 are associated with a structural change in air pollution levels and public transport 
mobility. Our results show that mobility in public transportation was significantly reduced following the gov-
ernment’s recommendations. Nonetheless, we show that the reduction in mobility was not accompanied by 
a reduction in air pollution. Furthermore, Granger-causality tests show that the precedence relation between 
public transport mobility and air pollution disappeared as a product of the restrictions. Thus, our results suggest 
that air pollution in the MCMA seems primarily driven by industry and private car usage. In this regard, the 
government should redouble its efforts to develop policies to reduce industrial pollution and private car usage.

Keywords: pandemic, structural change, Granger-causality, particle matters, public transport.

1.	 Introduction
The COVID-19 pandemic is one of the most severe 
health crises in recent memory. The official death 
toll around the world surpassed one million as of 

September 29, 2020. Considering reporting problems 
in some countries and that the pandemic is still not 
under control, the actual death toll may not be known 
for several years. 
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Countries worldwide have imposed restrictions 
on economic activity to slow the rate of infection. 
Most of the restrictions can be motivated by the 
early results from the rate of infection in Wuhan, 
China (Kraemer et al., 2020; Prem et al., 2020). The 
restrictions on economic activity resulted in mass 
unemployment and reductions to the GDP worldwide. 
If the current pandemic follows similar dynamics 
as previous ones, the economic effects may be felt 
even in the long run  (Rodríguez-Caballero and Ve-
ra-Valdés, 2020). In this context, assessing the effect 
of economic restrictions on public transport mobility 
and air pollution emissions is of great importance.

Most governments have imposed restrictions on 
public transport mobility throughout the COVID-19 
pandemic. For example, Badr et al. (2020) and 
Cartenì et al. (2020) document the restrictions in the 
USA and Italy, respectively. These mobility limits 
may introduce a structural change in the global 
dynamic of public transport systems. As in other 
large cities, the local government in the Mexico City 
Metropolitan Area (MCMA) has imposed restrictions 
on the city’s public mobility. The MCMA is an in-
teresting case due to its high population density and 
the high number of workers in the informal sector. 
Therefore, it is relevant to formally study whether 
MCMA’s restrictions cause a statistically significant 
reduction in passengers in the most used public 
transport systems: the subway system (Metro) and 
the bus rapid transit system (Metrobús). 

In connection with the study of possible structural 
changes in public transport mobility, it is crucial 
to test if the government restrictions also result in 
lower air pollution levels. The evidence on the effect 
that restrictions have on pollution levels across the 
world is mixed. Significant reductions in nitrogen 
dioxide (NO2) are encountered in, among others, 
Brazil, India, and Spain (Baldasano, 2020; Shehzad 
et al., 2020; Nakada and Urban, 2020). However, 
Adams (2020) finds that PM2.5 (inhalable particles 
with diameters of 2.5 µm and smaller) levels do not 
change in response to a region-wide state of emer-
gency in Ontario, Canada. Meanwhile, Berman and 
Ebisu (2020) find slight declines in PM2.5 levels in 
the USA, but the results differ significantly between 
urban and non-urban counties. The authors argue that 
the different effects of economic restrictions between 
NO2 and PM2.5 may be explained by the fact that 

multiple non-transportation sources, including emis-
sions from food industries and biomass burning, 
contribute to PM2.5 levels. In this regard, they argue 
for more research on the impacts of the COVID-19 
pandemic on industrial sourced pollutants. Moreover, 
Wang et al. (2020) find that severe air pollution events 
still occurred in most North China Plain areas even 
after all avoidable activities in China were prohibited 
on January 23, 2020. 

This paper contributes to the literature by testing 
the effects of social distancing restrictions on public 
transport mobility and air pollution in the MCMA. 
Furthermore, we use the Granger-causality test to 
show that the precedence relation between public 
transport mobility and air pollution vanished during 
the restrictions.

This article proceeds as follows. The following 
section presents the data used in this study. Sec-
tion 3 analyzes if the restrictions introduced due to 
COVID-19 result in structural changes in air pollution 
levels and mobility in the MCMA, while section 4 
presents results from Granger-causality tests between 
mobility and air pollution in times of COVID-19. 
Section 5 concludes.

2.	 Data
The data come from the Portal de Datos Abiertos de 
la CDMX (Mexico City’s data repository). We gather 
data on air pollution (PM10, PM2.5, and SO2) levels at 
all stations and the number of passengers at all Metro 
and Metrobús stations. The data span from January 1, 
2017, to July 31, 2020, and it presents several missing 
observations and some outliers that we clean first. 

Outliers are detected in some of the Metro lines. 
A few observations (no more than 10 in total) show 
a thousand-fold increase compared to the rest. We 
attribute these differences to errors in capturing the 
data. We remove the outliers and impute them using 
observations in close proximity. It is worth pointing 
out that the small proportion of imputed outliers do 
not qualitatively alter the results. 

Missing data are reported for some of the air pol-
lution measuring stations. The missing values seem to 
randomly occur for some days. To correct the missing 
values, we use the vast amount of information to con-
struct daily indexes for the air pollution measured in 
the MCMA. The index construction is motivated by 
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the strong correlation across air pollution measuring 
stations (Fig. 1). In this regard, missing observations 
are smoothed out by the construction of the index.

Furthermore, the data show some seasonal pat-
terns. 

For the mobility indexes, weekends and holidays 
show a clear seasonal pattern with a significant de-
crease in users. We control the seasonality by using 
data on nearby dates using linear imputation. 

For the air pollution indices, the data show some 
natural seasonal patterns related to the weather. 
Therefore, we control the seasonality by using month-
ly dummy variables as is standard in the literature.

3.	 Structural changes due to COVID-19
The Mexican government established a Jornada 
Nacional de Sana Distancia (National Campaign 
of Social Distancing, NCSD), on March 23, 2020 
(Secretaría de Salud, 2020). The plan established 
four measures to mitigate the effects of COVID-19 
on the general population: (a) personal hygiene rec-
ommendations; (b) suspension of activities deemed 
non-essential; (c) postponement of mass gathering 
events (more than 5000 participants); and (c) guide-
lines for care of the elderly. The plan was heralded 
by “Susana Distancia”, a fictitious heroine promoting 

social distancing. The preventive measures ended on 
May 30, 2020.

The goal of the plan was to impose social dis-
tancing measures and slow the spread of the virus. 
This section uses NCSD as a natural experiment to 
test if the restrictions introduced structural changes 
in pollution and public transport mobility.

As a first step, we study the trend mechanism of the 
series. We employ a broad range of unit root tests: the 
Augmented Dickey-Fuller (ADF) (Dickey and Fuller, 
1979), the Phillips-Perron (PP) (Phillips and Perron, 
1988), the Dickey-Fuller Generalized Least Squares 
(DG-GLS) (Elliott et al., 1996), and the Ng-Perron (Ng 
and Perron, 1995). In the unit root literature, it is well 
known that these tests suffer from a loss of power in 
the presence of structural breaks under the alternative 
hypothesis. As previously argued, we consider that 
the restrictions imposed due to COVID-19 provoked 
an exogenous break as in Perron (1989). Nonetheless, 
as a robustness exercise, we use unit root tests that 
allow for endogenous breaks (those not imposed by 
the practitioner). Therefore, we employ the tests of 
Zivot and Andrews (1992) (ZA92), that allows for a 
break under the alternative; Perron (1997), (P97), that 
allows for structural breaks under both the null and 
the alternative, and Kapetanios (2005) (K05), which 
allows for up to three breaks under the alternative. 

Fig. 1. Air pollution measurements in all stations in the MCMA.
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Table I displays the results from the seven unit-
root tests considered. As seen, we reject the null hy-
pothesis of unit root processes in our variables. Note 
that the ADF and Ng-Perron tests fail to reject the 
null, possibly due to a loss of power due to the break. 
Nevertheless, note that the last four tests reject the 
possible unit root involved. Breaks in ZA92, P97, and 
K05 tests are located in the neighborhood of March 
23, 2020. This date matches the origin of the NCSD. 

Moreover, given that aggregation is used to con-
struct the indexes, we estimate the fractional difference 
parameter for the series (Granger, 1980; Haldrup and 
Vera-Valdés, 2017). We use semiparametric estima-
tors in the frequency domain to avoid the effect of 

the mean’s specification to affect the results (Geweke 
and Porter-Hudak, 1983; Künsch, 1987; Shimotsu 
and Phillips, 2005). Results from the long memory 
estimates are presented in Table II. All tests find the 
data to be in the stationary range, well below the unit 
root scenario. Note that all stationarity tests consider 
the subperiod between January 1, 2017, and December 
31, 2019, to avoid spurious results due to the possible 
structural change (Martínez-Rivera et al., 2012). 

Once we guarantee that our data is stationary, 
we consider the following specification to test for a 
structural change:

yt = α0 + β0t + α1DUt + β1DTt + εt,	 (1)

Table II. Long memory estimates, confidence intervals are shown below. 
Standard T1/2 bandwidth where T is the sample size.

Variable GPH LW ELW

Metro 0.199 0.234 0.271
[–0.021-0.419] [0.063-0.405] [0.100-0.442]

Metrobús 0.643 0.632 0.660
[0.423-0.863] [0.461-0.803] [0.483-0.831]

PM10 0.408 0.378 0.419
[0.188-0.628] [0.207-0.549] [0.248-0.590]

PM2.5 0.347 0.358 0.402
[0.127-0.567] [0.187-0.529] [0.231-0.573]

SO2 0.184 0.174 0.201
[–0.036-0.404] [0.003-0.345] [0.030-0.372]

GPH: Geweke and Porter-Hudak (1983) long memory estimators; LW: 
Künsch (1987) long memory estimators; ELW: Shimotsu and Phillips 
(2005) long memory estimators.(1983)

Table I. Unit root tests without constant term for pollutants, Metrobús, and Metro using full-sample data. 

Variable ADF PP DF–GLS Ng–Perron ZA92 P97 K05

PM10 –13.31*** –17.65*** –4.28*** –11.07** –16.72*** –11.06*** –14.31***
PM25 –13.70*** –18.74*** –2.95*** –7.84** –17.30*** –14.75*** –14.69***
SO2 –20.29*** –23.18*** –5.05*** –14.50*** –21.67*** –21.46*** –21.49***
Metrobús –2.07 –2.74* –1.32** –4.12 –10.32*** –9.11*** –9.09***
Metro –3.35** –13.14*** –3.04*** –13.33** –17.50*** –11.85*** –14.38***

Notes: Lags in ADF and DF-GLS with Schwarz information criteria. Model with constant in PP. Model 
with intercept in ZA92 with two lags. P97 test considering model A. *, **, and *** denote rejection of 
the null hypothesis (unit root) at 10, 5, and 1%, respectively.
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where yt is the air pollution or mobility measure, and 
t = [1,2,…,T]', with T the sample size. Furthermore, 
DU and DT are dummy variables that model the 
possible structural change due to NCSD. That is, 
DU = [0,…,0,1,…,1]', and DT = [0,…,0,1,2,…,T1]', 
where the non-zero elements start on March 23, 2020, 
and T1 is the size of the subsample after that date. We 
test for a change in level if α1 ≠ 0, and for a change 
in both level and trend if α1 ≠ 0 and β1 ≠ 0.

The test for structural change proceeds as follows:

•	 Estimate the unrestricted model (Eq. [1]), and 
recover the unrestricted residual sum of squares, 
URSS, given by URSS = Σet

2, where et are the 
residuals from estimating Eq. (1).

•	 Estimate the restricted model (Eq. [1]), with α1 = 0 
and β1 = 0, or β1 = 0, and recover the restricted 
residual sum of squares, RRSS. The restricted sum 
of squares is given by URSS = Σet

2, where et are 
the residuals from estimating Eq. (1) imposing α1 
= 0 and β1 = 0, or β1 = 0.

•	 Compute the test statistic for the null hypothesis 
of no structural change by 

F =
RRSS − URSS

r
URSS
T − k

,	 (2)

where T is the sample size, k is the number of 
parameters in the unrestricted model, and r is the 
number of restrictions.

•	 The test statistic follows an F distribution with r 
and T – k degrees of freedom.

The structural change test assumes that the date of 
the break is known. As argued above, the restrictions 
due to COVID-19 are considered exogenous with a 
precise start date. Thus, the assumptions of the F-test 
are satisfied. Nonetheless, as a robustness exercise, 
we use the method developed by Bai and Perron 
(1998) to estimate the date of the break endogenously. 

3.1 Mobility data
Figure 2 presents the mobility indexes for Metro and 
Metrobús. The data range from January 1, 2017, to 
July 31, 2020. The shaded region contains the period 
considered in NCSD. Also plotted are the estimates 
from the linear model in Eq. (1). We allow for both 
a change in level and a change in level and trend 
at the start of the NCSD. As can be seen from the 
figure, the dynamics of the mobility indices change 
significantly due to NCSD.

Table III presents the estimates from Eq. (1) 
allowing for a change in level and a change in level 
and trend and the structural change test results. The 
table presents some interesting findings. First, note 
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the different results regarding the trend coefficient, β0. 
There is no significant trend in the number of Metro 
users, while a significant but small positive trend in 
Metrobús users over the last three years. The results 
suggest that more people started using public transit 
systems in the MCMA in the last few years.

Second, note the statistically significant decrease 
in the level of public transport users associated with 
NCSD. These results are in line with those from Badr 
et al. (2020) and Cartenì et al. (2020) for the USA 
and Italy. For the MCMA, the structural change is 
quite significant. The number of users more than 
halved during NCSD. That is, most users seem to 
have followed the government’s recommendations 
and avoided the public transport system. Nonetheless, 
given the lack of data on the number of private cars 
and their number of passengers, we cannot extrapo-
late this result to state that people remained at home 
during NCSD. Furthermore, as a robustness exercise, 
we test all Metro and Metrobús lines individually for 
a structural change (Table IV and Fig. 3). The results 
from the robustness exercise are in line with the ones 
for the indices. 

Regarding the method to estimate the break en-
dogenously, it finds the break date on March 21, 2020, 
with NCSD contained in the confidence interval. 
That is, the date of the break estimated endogenously 
coincides with the start of NCSD. 

3.2 Pollution data
Figure 4 presents the air pollution indices. The figure 
shows PM10, PM2.5, and SO2 levels from January 1, 
2017, to July 31, 2020. The shaded region contains 
the period considered in NCSD. Also plotted are the 
estimates from the linear model in Eq. (1). We allow 

for both a change in level and a change in level and 
trend at the start of the NCSD. As shown in the figure, 
the dynamics of air pollution do not significantly 
change due to NCSD.

Furthermore, Table III presents the estimates from 
Eq. (1) allowing for a change in level and a change in 
level and trend and the structural change test results. 
The table presents some interesting findings. 

First, the estimates show a significant decreasing 
trend for all pollutants across the period considered. 

Table III. Unrestricted equation estimation and test for structural change.

Variable
Change in level Change in level and trend

α0 β0 α1 F α0 β0 α1 β1 F

Metro 4(105)*** –5.386 –3(105)*** 2086*** 4(105)*** –5.682 –3(105)*** 215* 1046***
Metrobús 2(105)*** 42.5*** –2(105)*** 7006*** 2(105)*** 42.4*** –2(105)*** 69.3* 3510***
PM10 4.412*** –0.01*** –1.322 1.101 4.428*** –0.01*** –2.681 0.021 0.849
PM2.5 1.806*** –0.00*** –1.431* 3.149* 1.805*** –0.00*** –1.384 –0.001 1.574
SO2 1.027*** –0.00*** –0.028 0.006 1.029*** –0.00*** –0.157 0.002 0.039

*, **, and *** denote rejection of the null hypothesis at 10, 5, and 1%, respectively.

Table IV. Structural change test for individual Metro and 
Metrobús lines and number of cyclists at several reporting 
stations.

Mobility Flevel Ftrend

Metro Line 1 1839*** 930***
Metro Line 2 1729*** 865***
Metro Line 3 1030*** 515***
Metro Line 4 1382*** 691***
Metro Line 5 934*** 467***
Metro Line 6 945*** 471***
Metro Line 7 953*** 476***
Metro Line 8 1523*** 762***
Metro Line 9 760*** 380***
Metro Line A 559*** 280***
Metro Line B 1878*** 943***
Metro Line 12 1134*** 533***
Metrobús Line 1 5429*** 2716***
Metrobús Line 2 2947*** 1471***
Metrobús Line 3 5646*** 2824***
Metrobús Line 4 4993*** 2616***
Metrobús Line 5 4469*** 2232***
Metrobús Line 6 3446*** 1720***

*, **, and *** denote rejection of the null (no structural 
change) at 10, 5, and 1%, respectively.
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Nonetheless, the estimates from the trend parameter 
are relatively small. Air pollutant levels have been 
decreasing through the years, but the decrease seems 
to be occurring at a slow pace. 

Second, note that the null of no structural change 
is not rejected for both tests. The restrictions imposed 
by NCSD do not seem to be associated with a lower 
level of air pollution. These results are in line with the 
ones reported by Adams (2020) for Ontario, Canada. 
The author finds no significant reduction in PM2.5 re-
sulting from restrictions imposed due to COVID-19. 
Moreover, Wang et al. (2020) find that severe air 
pollution events still occurred in most of the North 
China Plain areas, even after all avoidable activities 
in China were prohibited on January 23, 2020. 

Third, NCSD can be considered a natural exper-
iment regarding public transport usage on air pollu-
tion. The lack of structural change in air pollution 
during NCSD coupled with the significant decrease in 
the mobility indices point to a non-significant effect 
of the number of users of the public transport system 
on pollution. As argued before, this may relate to a 
higher number of private cars during NCSD. Thus, 
these results suggest that tackling air pollution in the 
MCMA requires specific policies to reduce private car 

usage, particularly in light of the positive willingness 
to pay for clean air by inhabitants of the MCMA 
(Rodríguez-Sánchez, 2014; Filippini and Martínez-
Cruz, 2016; Fontenla et al., 2019). 

Finally, regarding the method to estimate the date 
of the break endogenously, the method does not find 
a break in 2020. Thus, our results are robust to an 
endogenous specification of the date of the break.

To properly assess the relationship between public 
transport and air pollution, the following section uses 
the Granger-causality test to assess if there exists a 
relation of precedence between them. Furthermore, 
we test if there is a change in this relationship after 
NCSD.

4.	 Granger-causality
In this section, we test the type of relation that exists 
between public transport mobility and air pollution 
indices. We use the concept of causality developed by 
Granger (1969). Although sometimes misrepresented 
in the literature, the test evaluates if a variable x has 
explanatory power on the variable y in the sense that 
x precedes y. We interpret this precedence as changes 
in variable x being related to changes in variable y. 
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model with a change in level (dashed orange) and change in level and trend 
(dashed-dotted yellow). NCSD is shown in the shaded area.
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Note that this does not necessarily denote a causal 
relation, given that a third variable could be driving 
both x and y. Nonetheless, the literature has settled on 
denoting this type of test as Granger-causality tests.

The test for Granger causality proceeds as follows:

•	 Estimate the unrestricted model given by

yt = α0 + ∑
k

i=1
α0yt−i + ∑

m

i=1
βixt−i + εt,	 (3)

where k, m are the number of lags included in the 
regression. In applied work, k = m is common. 
From the estimation, we recover the residual 
sum of squares, URSS. Our analysis considers 
specifications with the same number of lags for 
both variables from the previous day and two 
days before.

•	 Estimate the restricted model given by

yt = α0 + ∑
k

i=1
α0yt−i + εt	 (4)

and recover the residual sum of squares, .
•	 Compute the test statistic for the null hypothesis 

of no structural change by

F =
RRSS − URSS

m
URSS

T − k − m − 1

,	 (5)

where T is the sample size, k is the number of 
parameters in the unrestricted model, and m is 
the number of restrictions.

•	 The test statistic follows an F distribution with m 
and T – k – m – 1 degrees of freedom.

Intuitively, the test for Granger-causality assesses 
if the extra information contained in the additional 
variable helps explain the dynamics of the dependent 
variable better than the information contained in the 
lags of the dependent variable alone. This additional 
explanatory power is denoted in the literature as a 
precedence relation.

Granger-causality has been shown to produce 
spurious results (rejection of the null when the null is 
true) when the data follow processes with structural 
breaks or unit root processes (Ventosa-Santaulària 
and Vera-Valdés, 2008; Rodríguez-Caballero and 
Ventosa-Santaulària, 2014). Thus, our methodology 
relies on testing for Granger-causality before NCSD 
and contrast the results against estimation in the pe-
riod after NCSD to avoid spurious results. 

Table V presents the results from the Granger-cau-
sality test for the period before NCSD. The table 
shows that Metrobús Granger-causes air pollution 
in terms of PM10 and SO2. Thus, there is statistical 
evidence that Metrobús usage changes are associated 
with PM10 and SO2 air pollution changes. Nonethe-
less, recall that we cannot conclude that changes in 
Metrobús usage cause changes in air pollution in the 
typical sense, given that a third common factor for 
both could be the main driver behind both dynam-
ics. In this context, more Metrobús users could be 
associated with more economic activity and more 
cars on the road.

Table V. Test for public transport Granger-causing air pollution in the periods before and after NCSD. 
The tests consider specifications including lags from the previous day, GC(1), and two days before, 
GC(2).

Variable-period
PM10 PM2.5 SO2

GC(1) GC(2) GC(1) GC(2) GC(1) GC(2)

Metro pre-NCSD 0.269 0.169 0.170 0.201 0.873 0.691
Metro post-NCSD 1.315 1.470 0.680 0.506 2.170 0.667
Metrobús pre-NCSD 3.448* 3.324** 0.477 0.915 4.090** 2.860*
Metrobús post-NCSD 1.829 1.816 0.803 0.536 2.602 0.867

*, **, and *** denote rejection of the null hypothesis (no Granger-causality) at 10, 5, and 1%, 
respectively.
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To evaluate the effect that NCSD had on the pre-
cedence relation between public transport mobility 
and air pollution, Table V presents the results from 
the Granger-causality test for the post-NCSD period. 
The table shows that Granger-causality between 
public transport mobility variables and PM10 and 
SO2 disappeared during NCSD. That is, changes 
in mobility indices do not precede changes in air 
pollution indices. In this regard, we argue that other 
sources of air pollution like industry and private car 
usage may be the major contributors to air pollution 
in the MCMA.

Overall, the results from the Granger-causality 
analysis support the notion that the link between 
public transport users and air pollution was tempo-
rarily broken during NCSD. The reduction in public 
transport users during NCSD was not accompanied 
by a reduction in air pollution. 

5.	 Conclusions
This paper analyzes the relation between COVID-19, 
air pollution exposure, and mobility in the MCMA. 

We test if the Mexican Government’s economic 
and social restrictions to mitigate the spread of the 
virus produced a structural change in air pollution 
and mobility in the MCMA. Our results show that 
mobility in public transportation was significantly 
reduced following the government’s recommenda-
tions. We find that mobility in public transit systems 
in the MCMA decreased by more than 65%. Thus, 
our results suggest that a large share of the inhabitants 
of the MCMA stopped using public transit during 
this period. 

In connection with the structural change in mobil-
ity, we analyze if the restrictions resulted in lower air 
pollution in the MCMA. Our results show an overall 
decreasing trend in pollution levels in the MCMA 
throughout the years. Nonetheless, no statistically 
significant change is detected as a result of economic 
restrictions imposed due to COVID-19. That is, air 
pollution levels and trends were not affected as a 
product of the economic restrictions. 

Furthermore, we use the Granger-causality test 
to analyze the existence of a precedence relation 
between public transport users and air pollution. Our 
results show that before the emergence of COVID-19, 
changes in public transport users were associated with 

changes in air pollution. Nonetheless, the precedence 
relation between public transport mobility and air pol-
lution disappeared following the restrictions. These 
results suggest that additional factors as private car 
usage or industrial pollution may be more significant 
factors behind changes in air pollution.

The results from this analysis could help in de-
signing policies aimed to reduce pollution levels in 
the MCMA. Structural changes in mobility in the 
public system do not seem to be associated with 
changes in air pollution levels. In this regard, our 
results suggest that tackling air pollution requires 
policies aimed explicitly at reducing industrial pol-
lution and private car usage.
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