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RESUMEN

Se calculó un mapa de temperatura media anual mediante el método de interpolación de Kriging para la 
zona centro-norte de México con la finalidad de obtener la condición actual de aridez, así como posibles 
escenarios en el futuro cercano y lejano. El gradiente altitudinal se estimó mediante regresión lineal y se usó 
en la estimación de la temperatura media. Las Áreas de Influencia Climática (CIA) se obtuvieron superpo-
niendo la capa de precipitación oficial y la capa de temperatura media anual con la ayuda de herramientas 
de Sistemas de Información Geográfica. Se generaron bases de datos mensuales de variables climáticas para 
cada CIA y se estimó la evapotranspiración potencial utilizando la metodología de Thorthwaite. El Índice de 
Aridez (IA) se calculó y mapeo para un escenario base (1970-2000). Posteriormente, se proyectó y mapeó el 
comportamiento de aridez para algunos escenarios, utilizando los modelos de clima global HADGEM 2.0, 
GFDLCM 3.0, MIP_ESM y CRNMCM5. Se pronosticaron algunos escenarios, en el mejor escenario la aridez 
debilitará los ecosistemas húmedos y en el peor escenario aparecerán climas hiper áridos en el área de estudio.

ABSTRACT

An annual mean temperature map was calculated using the Kriging interpolation method for the north-central 
zone of Mexico to obtain the current aridity, as well as possible scenarios for the near and distant future. 
The altitudinal gradient was estimated by linear regression, and it was used to estimate the mean tempera-
ture. Climate Influence Areas (CIA) were obtained by superimposing the official precipitation layer and the 
annual mean temperature layer using Geographic Information Systems tools. Monthly databases of climatic 
variables were generated for each CIA and potential evapotranspiration was estimated using the Thorthwaite 
methodology. The Aridity Index (AI) was calculated and mapped for a base scenario (1970-2000). Subse-
quently, the aridity behavior of some scenarios was projected and mapped using the global climate models 
HADGEM 2.0, GFDLCM 3.0, MIP_ESM, and CRNMCM5. Under the best scenario projected, aridity will 
weaken the humid ecosystems and in the worst scenario, hyper-arid climates will appear in the study region.

Keywords: Kriging, Climate Change, Potential Evapotranspiration, Linear Regression.

1. Introduction
The United Nations Framework Convention on Cli-
mate Change (UNFCCC) defines climate change as 
“a change attributed directly or indirectly to human 

activity that alters the composition of the global 
atmosphere and affects the natural variability of 
the observed climate over comparable periods”. 
In Mexico, aridity is promoted by climate change, 
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which directly impacts population development 
since it affects the production of goods and services. 
The advance in aridity can contribute enormously 
to the loss of land productivity and become a severe 
problem of desertification. According to data from 
the United Nations Department of Economic and 
Social Affairs (ONU, 2018), desertification affects 
approximately one-sixth of the world’s population 
and 70% of all drylands. Furthermore, desertification 
decreases food production, increases infertility and 
soil salinization, increases flooding in lower areas, 
lead to water scarcity, increases health problems due 
to wind-borne dust (e.g., eye infections, respiratory 
diseases, and allergies), changes biological cycles, 
and reduces livelihoods, which can contribute to 
stimulate migration (Hori et al. 2011).

Arid, semi-arid, and dry sub-humid lands are 
found in Mexico mainly in the central regions in-
fluenced by the Western and Eastern Sierra Madre 
mountain ranges. Drylands occupy approximately 
101.5 million hectares in Mexico, just over half of 
the territory; arid zones represent 15.7%, semi-arid 
regions 58%, and dry sub-humid regions 26.3% 
(UACh, 2011), so, it is important to study their 
behavior considering that climate is being modified 
by humans.

In the present work, aridity is addressed through 
variables such as temperature, precipitation, and 
evapotranspiration; statistical tools, geostatistical 
concepts, model theoretical foundations, theory 
of spatial autocorrelation, statistical assumptions, 
and interpolation are described. Different projected 
scenarios are compared and estimates of current and 
future weather conditions are presented. The world 
climate is a whole, and what happens in a particular 
area may be replicated in other places with similar 
characteristics; the present study contributes to val-
idate results from other sites worldwide.

2. Study region
Eight economic regions of Mexico are described in 
reports by the National Commission for the Exploita-
tion and Use of Biodiversity (Bassols, 1985; CON-
ABIO, 2010). Each region can include more than 
one state that share characteristics of the biophysical 
environment and with common economic activities 
in the primary, secondary, and tertiary sectors. In the 

present work, region II is considered given its current 
characteristics as dry climates and limiting surface of 
water distribution, conditions that make it especially 
vulnerable to climate change from the point of view 
of drought (CONAGUA, 2021). Region II (Figure 1) 
covers the states of Chihuahua, Coahuila, Durango, 
San Luis Potosí and Zacatecas and it is located be-
tween 110 º 0 ‘0’ and 95 º 0 ‘0’ west longitude and 
35 º 0 ‘0’ and 30 º 0 ‘0’ north latitude.

3. Materials and methods
Precipitation and temperature data were obtained 
from stations grouped in the Rapid Climate Infor-
mation Extractor (ERIC) of the National Institute of 
Water Technology (IMTA) version III (IMTA, 2010). 
Data quality of many climatological stations is not 
good, with large gaps of missing data due to little 
maintenance and even permanent deactivation. Only 
496 stations with 80% or more viable information 
were considered. The analyzed variables were maxi-
mum temperature (Tmax) and minimum temperature 
(Tmin) for the period 1970-2000. Precipitation values 
were obtained from the Informatics Unit for Atmo-
spheric and Environmental Sciences (UNIATMOS) 
of the National Autonomous University of Mexico 
from 1950 to 2000 (UNAM, 2017).

Additional information was obtained from car-
tography of climate change models, scenarios of 
climatology (Hijmans, et al., 2005), climate global 

Fig. 1. Economic regions of Mexico (Bassols, 1985 and 
CONABIO, 2010).
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models, and emission scenarios of the Intergovern-
mental Panel on Climate Change (IPCC) that were 
processed and interpolated for Mexico and Central 
America, based on the Model for the Assessment 
of Greenhouse-gas Inducted Climate Change – 
MAGICC (UCAR, 2005).

3.1 Geostatistical analysis
The concept of spatial autocorrelation is supported by 
Tobler’s principle, which states that in a geographic 
space everything is related and the closest areas are 
more related (Tobler, 1970). Spatial autocorrelation 
helps to understand the degree of similitude of one 
object with another (ESRI, 2019). In general, there 
is spatial autocorrelation (SA) whenever there is a 
pattern in the behavior of the variable according to 
the geographical location of the data.

Geostatistical techniques require second-order 
stationarity data, that is, at least the variance must 
be the same in different sub-regions. The lack of 
stationarity is commonly linked to anomalies in 
space, or to the existence of a trend or spatial gra-
dient whose dimension is greater than the study 
region (Cressie, 1993). Stationarity can be a problem 
when interpolating points in space, but it does not 
justify abandoning geostatistics in favor of other 
interpolation techniques such as inverse distance 
weighted (IDW) since it is equally sensitive to lack 
of stationarity as described by Isaaks and Srivastava 
(1989).

3.2 Moran’s Global Index and G general of Getis-
Ord
The global Moran Index (Moran, 1950) measures 
spatial autocorrelation based on locations and values 
of the entities simultaneously. Given a set of entities 
and an associated attribute, it evaluates whether the 
expressed pattern is clustered, sparse, or random 
(ESRI, 2019). The Moran index (I) for spatial auto-
correlation is given by equation (1):

 I =
n
S0

∑n
i=1 ∑n

j=1 wi, jzizj

∑n
i=1 z2

i
 (1)

where, zi = (xi – x̅) is the deviation of an attribute or 
characteristic from its mean; xi is an attribute value 
for characteristic i; wi,j is a spatial weight between 
feature i and j, n is the total number of features, and 
S0 is the aggregate of all spatial weights which is 

computed as follows, S0 =
n

∑
i =1

n

∑
j =1

wi, j. To test if the 
spatial configuration occurs at random (H0) vs the 
alternate hypothesis (H1) that the spatial configuration 
does not occur at random, we use the standardized 
Moran index, zI = I − E [ I ]

V [I ] .
The Getis-Ord general statistic (G) (Getis and 

Ord, 1992) measures the concentration of high or 
low values in a given study region and is given by 
equation (2):

 G =
∑n

i=1 ∑n
j=1 wi, j xixj

∑n
i=1 ∑n

j=1 xixj
,    j ≠ i (2)

where xi and xj are attribute values for characteristics 
i and j, wi,j is the spatial weight between character-
istic i and j, n is the number of characteristics in the 
data set. The null hypothesis for the High / Low 
Clustering statistic (General G) states, H0 : There is 
no spatial grouping of entity values vs the alternate 
hypothesis H1: There is a spatial grouping of entity 
values. The test statistic is based on the standard-
ized Getis-Ord index given by zG =

V [G]

G − E [G]
 with 

E[G] = ∑n
i= 1 ∑n

j= 1 wi, j ,   j ≠ i(n − 1) . The zG statistic is 
important for the interpretation when the null hy-
pothesis is rejected. If zG is positive, high values are 
clustered, otherwise low values are clustered. The 
software ArcMap was used to calculate Moran’s 
Index (I) and Getis-Ord index (G), the z-scores, and 
the p-values to assess the significance (ESRI, 2019).

3.3. Kriging method
Kriging is an advanced geostatistical procedure that 
generates an estimated surface from a set of scattered 
points with z-values. The Kriging tool performs an 
interactive investigation of the spatial behavior of 
the phenomenon represented by the z-values before 
selecting the best estimation method to generate an 
output surface. The kriging technique assumes that 
data are correlated in space. The kriging method is 
considered to be BLUE (Best Linear Unbiased Esti-
mator) and is similar to Inverse Distance Weighted. 
The general equation is given by:

 ̂Z(s0) =
N

∑
i=1

λiZ(Si), (3)

where: Z(Si) is the value measured at location i; λi 
is an unknown weight for the value measured at 
location i; s0 is a location and n is the number of 
measured values.
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In ordinary kriging, λi, depends on a fitted model, 
the distance to the location, and the spatial rela-
tionships between the measured values around the 
location. The kriging interpolation method describes 
dependency rules with variograms and covariance 
functions (spatial autocorrelation). The kriging 
methodology assumes that data follow a Gaussian 
distribution, present stationarity, are spatially con-
tinuous, and the autocorrelation is known, only then, 
kriging is considered an optimal predictor (Gallardo, 
2006). In this work, ordinary kriging was chosen 
due to the nature of the data, in addition, it offers the 
possibility of making different adjustments through 
pre-established models.

For realizations of a variable Z at points xi, i = 
1,2,… n, say, Z (x1), Z (x2),… Z (xn), we want to 
estimate Z (x0), and there was no measurement at 
x0. In this circumstance, the ordinary kriging method 
estimates the variable as a linear combination of the 
n random variables as follows:

 ̂Z(x0) = λ1Z(x1) + … + λnZ(xn) =
n

∑
i=1

λiZ(xi) (4)

where the λi represent weights of the original values. 
Ẑ (x0) is the best linear estimator because the weights 
are obtained in such a way that they minimize the 
variance of the estimation error; other interpolation 
methods such as inverse distances or polygonal do 
not guarantee minimum estimation variance (Samper 
and Carrera, 1990). Weights are estimated by mini-
mizing V [Ẑ (x0) – Z(x0)] subject to 

n

∑ λi = 1
i=1

, using 
the method of Lagrange multipliers. The weights 
λ, also, can be estimated through the semi-variance 
function, for which it is required to know the rela-
tionship between the co-variogram and semi-variance 
functions. The modeling of semi-variograms includes 
two fundamental stages (Xie and Myers, 1995): esti-
mation of the empirical semi-variogram, and fitting 
of a theoretical model, to determine the descriptive 
parameters of the semi-variogram that will later be 
used in the estimation (Journel and Huijbregts, 1976).

3.4 Aridity index
Temperature varies as a function of altitude; the empir-
ical method developed by Fries et al. (2012) estimates 
temperature in mountainous regions, calculates the 
ranges of variation of the annual temperature at dif-
ferent elevations by a simple linear regression model:

 yi = α + βxi + ei, (5)

where yi is the temperature (in ºC), xi is the elevation 
(in meters above the sea level), i = 1,…, n the num-
ber of data points, α is the intercept or temperature 
at sea level, while β is the temperature variation for 
each meter that increases the elevation, as in nature 
there is an inverse relationship between elevation 
and temperature, the value of β is negative, ei is the 
random error, we assume ei~ NIID (0, σe

2), where 
“NIID” stands for Normal Independent and Identi-
cally distributed and σe

2 is the variance associated to 
the errors. The elevation was estimated with models 
of geographical elevation provided by the National 
Institute of Geography and Statistics (INEGI, 2020).

The mean annual temperature layer was obtained 
with ordinary kriging interpolation; ranges of 1ºC 
were generated. The Climate Influence Areas (Gómez 
et al., 2008) were obtained by cross correlating the 
cartography of mean annual temperature with the es-
timated annual precipitation. Potential Evapotranspi-
ration (E) was calculated with Thornthwaite method 
as follows. First, the monthly heat index was calcu-
lated from the monthly mean temperature (Ti, º C), 
as ( Ti

5 )
1.54

; subsequently, the annual heat index (I) was 
calculated with equation 6: 

 I =
12

∑
i=1

(
Ti

5 )

1.514
, (6)

The monthly potential evapotranspiration (mm/
month) for months of 30 days and 12 hours of sun 
(theoretical), E “uncorrected” was calculated also 
based on temperature data, as: 

  Euncorrected i = 16(
10 × Ti

I )

a

,  i = 1, . . . , 12,   (7)

where a = 675(10–9) (I3) – 771(10–7) (I3) + 1792 (10–5)
(I) + 0.49239 is a theoretical adjustment coefficient. 
Finally, the calculation of the corrected E for month 
i is obtained through equation 8,

 Ei = Euncorrected i(
Ni

12 )(
di

30 ), (8)

where, Ni is the maximum number of hours of sunshine 
in month i and di is the number of days in month i. The 
Aridity Index (AI) is a qualitative characteristic of the 
climate, which makes it possible to measure the degree 
of sufficient or insufficient precipitation. The Aridity 
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Index (AI) was established in in Mexico through the 
Official Gazette of the Federation, on 1 June 1995 to 
define an aridity classification based on the Precipita-
tion (P) and Evapotranspiration (E) as AI=P/E (DOF, 
1995). The AI allows the classification into eight 
categories: hyper-arid (< 0.051), arid (0.051-0.201), 
semi-arid (0.201-0.501), dry subhumid (0.501-0.651), 
humid subhumid (0.651-0.751), humid (0.751-1.251), 
very humid (1.251-2.5) and per humid (> 2.5).

3.5 Setting scenarios in the near and distant future
Climate change scenarios are representations of 
future climate, based on an internally coherent set 
of climatologic relationships, which are constructed 
to investigate the potential consequences of climate 
change. Scenarios were constructed by superimpos-
ing layers of annual mean temperature and precip-
itation; and then databases were generated for the 
potential evapotranspiration and the AI. The centroids 
were obtained with automatic tracing of isotherms 
and isohyets; finally, global climate models were 
used to project data for near future (2015-2039) 
and far future (2075-2099), considering two values 
(4.5 and 8.5) of the Representative Concentration 
Pathway (RCP).

4. Results and discussion
4.1 Global Moran Index and Getis Ord G
The z-score of the Moran Global Index and G Index 
of Getis Ord, constructed with a weighting matrix 
under the K-nearest neighbor’s method, were 3.7797 
and 5.5738 respectively; in both cases there is less 
than 1% probability that the pattern is the result of a 
coincidence, so there is indeed a spatial autocorrela-
tion grouped in clusters for the case of the calculated 
mean annual temperature.

4.2 Predicted temperature
Fries, et al. (2012) indicate that it is necessary to 
consider the altitudinal gradient to obtain a correct 
temperature layer once the interpolation has been 
carried out, so the fitted linear regression model was:

  
Predicted temperature =
24.987 − 0.0042 × Elevation;  R2 = 0.8101  (9)

The residuals were distributed randomly and with 
a presumably normal histogram, so we can conclude 

that the model complies with the assumptions of nor-
mality and homoscedasticity. Once the linear regres-
sion model was fitted, the equation proposed by Fries, 
et al. (2012) was used to predict the temperature:

 TDet = Tmonth + (Γ × (ZDet − Zest)) (10)

where, Tmonth corresponds to the mean annual tem-
perature in º C; Γ corresponds to the altitudinal 
gradient calculated in the regression model (β̂ = Γ 
= –0.0042); TDet corresponds to a reference altitude 
(in this case 2000 meters above the sea level, used 
in the kriging methodology); and Zest corresponds to 
the elevation of each weather station in meters above 
the sea level. 

4.3 Data normality
The Kriging procedure uses transformations in case 
data do not comply with the normality assumption, 
but it is difficult to use transformed values since it 
will later be necessary to work with the precipita-
tion variable. A Shapiro-Wilk test was performed 
to verify data normality, with the hypothesis H0: 
The population is normally distributed vs. H1: 
The population is not normally distributed. A test 
value W = 0.97707 was obtained, with a p-value 
< 1 × 10–5, so setting the significance of the test 
at α = 0.05, we conclude that the population does 
not come from a normal distribution and a type of 
transformation is required. To correct the problem 
of normality, a subdivision of the study region was 
proposed, considering the physiographic provinc-
es proposed by CONABIO, (CONABIO 2001) as 
shown in Figure 2. 

The physiographic provinces reduce extreme 
values and have homogeneous distributions. The 
Shapiro-Wilk goodness of fit test is shown in Table I, 
indicating that none of the sub-regions has normality 
problems. Once the assumptions were corroborated, 
the variograms of each physiographic province were 
obtained, as well as the adjustment of different mod-
els depending on the dispersion of Gamma values, 
as shown in Table II.

4.4. Model validation
Model validation through different error indicators 
was carried out by two methodologies: Cross-valida-
tion and validation. Table III presents the summary of 
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cross-validation, obtained through a random sample 
made up of 80% of the data, the variable temperature 
was estimated and validated with the stations not 
included in the sample. In general, values for mean, 
root mean square, standardized mean, root mean 
square standardized, and average standard error are 
small and some of them close to zero, therefore it 
can be concluded that the adjusted model seems to 
be correct.

For the validation methodology, the data were 
divided into 2 subsets: a training set and a test set, 
the subsets are large enough to be representative and 
to generate statistically significant results. Again 
the estimations for average error, root mean square, 
and average standard error are close to zero, which 
indicates a good fit (Table IV). Once the validation 
of the models is completed, the temperatures are 
interpolated and the altitude gradient is adjusted.

4.5 Isotherms
Sub-region R1, mainly presents temperatures be-
tween 14 ºC and 19 ºC, with some surfaces between 

8 ºC and 10 ºC in the elevated regions, as well as 
temperatures of 22 ºC to 24 ºC in the northwest. For 
sub-region R2, there are low average temperatures 
throughout the summit of the western Sierra Madre 
with temperatures ranging between 8 ºC and 10 ºC, 
with the highest temperatures also occurring towards 
the east of the mountain, ranging between 24 and 
26 º C. In sub-region R3, the highest temperatures 
are obtained in the southeast, coinciding with the 
warmest region of the state of San Luis Potosí, with 
average temperatures of 25 ºC to 26 ºC, as well as 
the coldest in the center with isotherms of 9 ºC to 
10 º C. In sub-region R4, temperatures are generally 
observed ranging between 16 ºC and 18 ºC with the 
warmest surfaces to the east with temperatures rang-
ing between 20 ºC and 23 º C (Fig. 3).

4.6 Precipitation
The total annual precipitation was obtained using 
map algebra

 PPannual =
12

∑
i=1

PPi, (11)

where i corresponds to the i-month evaluated. The 
result, reclassified to every 100 mm of rainfall, is 
presented in Figure 4. Twenty-one classes of precip-
itation were obtained, the most intense colors of blue 
being the regions with the highest rainfall. 

The precipitation is distributed as expected, the 
most humid regions are those corresponding to the 
windward part of the western Sierra Madre and the 
southern part of the state of San Luis Potosí. On the 
other hand, the regions with less precipitation cor-
respond to the leeward part of both the western and 
eastern Sierra Madre, coinciding with the theory of 
Gómez et al. (2008).

4.7 Aridity index of base scenario
Monthly databases of climatic variables were gener-
ated for each CIA. Centroids of each polygon were 
obtained using geometric methods. The aridity index 
was calculated with estimations of annual mean 
temperature (Tmed), potential evapotranspiration 
(E), and precipitation (P). The baseline scenario was 
built with climate data from the 1970-2000 period. 
The data for the period 2000-2020 were not used 
because it shows a considerable decrease in quality 
in most of the stations considered. The calculated 
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Fig 2. Physiographic sub regions and distribution of me-
teorological stations.

Table I. Results of the Shapiro Wilk goodness of fit test.

Sub
Region

Shapiro Wilk’s
W value

P-value for
normality test

R1 0.9893 0.3298
R2 0.9832 0.1325
R3 0.9836 0.2689
R4 0.9824 0.1659
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Table II. Summary of adjustment of variograms, models marked in bold have the best fit and were 
selected.

Physiographic
Region

Model SSR Variogram and Fitted Model Variogram attributes

R1
Center
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Circular

63.21
60.62
60.16
60.44
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Table III. Summary of the cross-validation indicators, where R1, R2, R3 and R4 represent the previously defined 
sub regions.

Topic R1 R2 R3 R4

Sample 117 142 173 98
Mean –0.0008 –0.0157 0.0366 0.0245
Root Mean Square (RMS) 0.905 1.5362 0.0258 1.2813
Standardized mean –0.0010 –0.0082 0.0209 0.0174
RMS Standardized 1.0858 1.0823 0.9856 0.8987
Average Standard Error 0.8319 1.3954 1.1772 1.4239
Regression function –0.006*x + 17.17 –0.52 * x + 8.70 0.30 * x + 11.51 0.54 * x + 7.43
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aridity baseline scenario is presented in Figure 5. The 
percentages for each classification were as follows: 
hyper-arid (0%), arid (1%), semi-arid (54%), dry 
sub-humid (15%), humid sub-humid (9%), humid 
(15%), very humid (6%) and per humid (0%). The 
baseline scenario for region 2 presents a predom-

inance of a semi-arid climate with more than half 
of the surface region (in km2), the percentages of 
Per-humid and Hyper-arid climates are close to 0%. 
The highest concentration of humid regions is con-
centrated in the western highlands, more specifically 
in the windward region, and the driest regions are in 
the north-central region.

4.8 Global climate models
Table V and Figure 6 show the estimates of four glob-
al climate models considering two Representative 
Concentration Pathway (RCP) and two horizons (H1: 
2015-2039 and H2: 2075-2099), in general, there is 
a transition from left to right, from humid classes to 
arid classes, the most optimistic scenario is CRN-
MCM5 where the “hyperarid” class is not reached 
and in the worst scenario, the closest horizon only 
occupies 6245.40 km2 of the “arid” class. The most 
pessimistic models are MPI-ESP and GFDL-CH3, 
since in both cases the “hyperarid” class is reached 
with 5639.26 km2 (0.9%) and 5621.52 km2 (0.9%) 
respectively. The class “perhumid” represented by 
just 1 km2 only exists in the base scenario and is 
extinguished in the rest of the scenarios. A model 
that is neither very pessimistic nor very extreme is 
HADGEM 2.0, which predicts an “arid” surface of 
349325.99 km2 (53.8%) without reaching the “hy-
perarid” class. 

In summary, the results indicate that all the assump-
tions of the Kriging model were fulfilled and, therefore, 
the best unbiased linear estimator was developed. The 

Table IV. Summary of the values of the errors obtained 
in the validation.

Topic R1 R2 R3 R4

Average error 0.075 –0.333 –0.173 0.614
Root mean square 0.829 1.420 1.193 1.420
Average standard error 0.089 –0.240 –0.194 0.429
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Fig. 5. Aridity Base Scenario of region II (1970-2000).
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validation model showed that estimates were correct. A 
base aridity index and projections from global climate 
models were obtained for near and far futures. Such 
projections are useful to make decisions in the present 
and change the projected trend. All the global climate 
models predict an increase in aridity for the far future, 
and RCP = 8.5, so we should take action to avoid large 
RCP levels. The information generated in this study 
has technical foundations.

For future research, the study can be extended to 
develop projections for all regions of Mexico. Having 
reliable information helps us make the best decisions 
and, in terms of climate, it allows us to reduce climate 
change effects.

5. Final remarks
The availability of climate information in Mexico is 
severely affected by different factors, such as me-
teorological stations with no maintenance and less 
than 70% of the data. The aridity in regions where 
land has severe degradation problems can lead to a 
loss of productive capacity practically irreversible. 
The use of geostatistical interpolation methodologies 
for unsampled points is very useful to model the 
behavior of different climatic variables. Temperature 
and precipitation detailed maps were obtained for 
economic region II of Mexico. Different scenarios 
were predicted with global climate models. Results 
show adverse scenarios: in the best prediction, aridity 

Table V. Results of estimates in percentage for different horizons in eight climate classes. Four models are presented.

Classification

Model RCP H Per
humid

Very
wed

Wed Sub
humid 
Wed

Sub
humid 
Dry

Semi
arid

Arid Hyper
arid

base scenario - 0 0.0% 6.3% 14.6% 9.5% 15.1% 53.5% 1.0% 0.0%

HADGEM 
2.0

4.5 1 0.0% 4.8% 14.1% 2.0% 13.5% 64.7% 1.0% 0.0%
2 0.0% 2.8% 15.6% 2.3% 5.1% 73.1% 1.0% 0.0%

8.5 1 0.0% 7.6% 12.9% 3.4% 13.7% 61.5% 1.0% 0.0%
2 0.0% 1.9% 7.0% 1.0% 2.1% 34.3% 53.8% 0.0%

CRNMCM5 4.5 1 0.0% 9.9% 12.6% 6.4% 9.1% 61.1% 0.9% 0.0%
2 0.0% 3.6% 16.4% 1.1% 11.3% 66.7% 1.0% 0.0%

8.5 1 0.0% 9.6% 11.4% 4.6% 12.6% 60.9% 0.9% 0.0%
2 0.0% 2.8% 7.3% 10.5% 8.8% 69.6% 1.0% 0.0%

GFDL-CH3 4.5 1 0.0% 8.8% 15.4% 5.6% 8.3% 61.1% 0.9% 0.0%
2 0.0% 8.6% 15.3% 5.0% 9.1% 61.2% 0.9% 0.0%

8.5 1 0.0% 3.0% 15.4% 1.1% 5.8% 72.9% 1.7% 0.0%
2 0.0% 2.8% 5.6% 8.8% 6.6% 20.9% 54.4% 0.9%

MPI-ESP 4.5 1 0.0% 7.3% 12.9% 2.6% 9.7% 66.5% 1.0% 0.0%
2 0.0% 3.5% 7.0% 10.4% 9.9% 68.3% 1.0% 0.0%

8.5 1 0.0% 3.6% 16.8% 2.4% 9.1% 67.2% 0.9% 0.0%
2 0.0% 1.9% 7.9% 0.3% 10.5% 24.4% 54.2% 0.9%

H: Horizons, 0: 1970-2000; 1: 2015-2039; 2: 2075-2099.
RCP: Representative Concentration Pathway.
HADGEM2.0: Met Office Hadley Centre (MOHC) (United Kingdom model).
CRHMCM5: Centre National de Recherches Météorologiques (French model).
GFDL-CH3: Geophysical Fluid Dynamics Laboratory (USA model).
MPI-ESP: Max Planck Institute for Meteorology (Germany model).
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will strongly weaken the humid ecosystems, and in 
the worst scenario hyper-arid climates will appear, 
practically inhospitable for many of the species with 
limited environmental resilience that today inhabit 
these regions. It is urgent to carry out specialized 
studies of territorial order, natural resources man-

Fig. 6. Mapping of aridity evolution scenarios for models: a) HADGEM2.0; b) MIP-ESP; c) CRNMCM5; d) GF-
DL-CM3; I: RCP=4.5, Horizon 2015-2039; II: RCP=4.5, Horizon 2075-2099; III: RCP=8.5, Horizon 2015-2039; IV: 
RCP=8.5, Horizon 2075-2099.

a) I a) II a) III a) IV

b) I b) II b) III b) IV

c) I c) II c) III c) IV

d) I d) II d) III d) IV

Legend
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agement, regeneration, and adaptation work for the 
regions where ecosystems are most vulnerable. Some 
proposals that can be highlighted are: well-managed 
reforestation plans, constant cooperation with mul-
tilateral organizations, transition towards clean and 
renewable energies, reducing emissions into the at-
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mosphere, and reducing the potential of the highest 
Representative Concentration Pathways.

Although Mexico does not have an atmospheric 
circulation model, some efforts have been made to 
represent the country’s environmental conditions, 
and this study, supported by geostatistics, is one 
of them.
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