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RESUMEN

El Sudeste de Brasil comprende una importante región geoeconómica y poblada de América del Sur. En 
consecuencia, es fundamental analizar y comprender los perfiles de precipitación en esta región. Entre las 
diferentes fuentes de datos y técnicas disponibles para realizar estos estudios, el uso de algoritmos de agrupa-
miento y la información del proyecto Global Precipitation Measurement (GPM) surge como una alternativa 
conveniente pero poco explotada. Precisamente, este estudio emplea los métodos K-Means, Hierarchical Ward 
y Self-Organizing Maps para agrupar los datos de precipitación em subregiones homogénea. Fueran utiliza-
dos los períodos anual y estacional registrados de 2001 a 2019 del proyecto GPM. Los métodos adoptados 
fueron comparados con el uso de medidas cuantitativas y el número de conglomerados definidos mediante 
una regla bien establecida. Los resultados demuestran que los períodos anuales y estacionales están organi-
zados de acuerdo con diferentes números de conglomerados. Además, los resultados permiten: identificar 
la presencia de una distribución espacialmente heterogénea en el área de estudio; concluir que el algoritmo 
K-Means es un método de agrupamiento adecuado en el contexto de esta investigación en comparación con 
los métodos de Hierarchical Ward y Self-Organizing Maps en términos de las medidas Calinski-Harabasz y 
Davies-Bouldin; y que la precipitación espacial se distribuye sobre el sureste de Brasil está representada por 
10 grupos en períodos anuales y de verano, 11 grupos en otoño y primavera y 9 grupos en período de invierno.

ABSTRACT

Southeastern Brazil comprises an important geoeconomic and populous region in South America. Conse-
quently, it is essential to analyze and understand the precipitation profiles in this region. Among different 
data sources and techniques available to perform such study, the use of clustering algorithms and information 
from the Global Precipitation Measurement (GPM) project emerges as a convenient, yet less exploited al-
ternative. This study employs the K-Means, the Hierarchical Ward, and the Self-Organizing Maps methods 
to cluster the annual and seasonal precipitation data from GPM project recorded from 2001 to 2019. The 
adopted methods are compared in terms of quantitative measures and the number of clusters defined through 
a well-established rule. The results demonstrate that the annual and seasonal periods are organized according 
to different number of clusters. Moreover, the results allow: identify the presence of a spatially heterogeneous 
distribution in the study area; to conclude that the K-Means algorithm is a suitable clustering method in the 
context of this investigation when compared to Ward’s Hierarchical and Self-Organizing Maps methods in 
terms of the Calinski-Harabasz and Davies-Bouldin measures; and that the spatial precipitation distribution 
over Southeastern Brazil is represented by 10 clusters in annual and summer periods, 11 clusters in autumn 
and spring and 9 clusters in winter period.
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1. Introduction
Each region of the globe has peculiar characteristics, 
such as latitude, altitude, distance from the oceans, 
and type of surface, which influence the weather and 
regional climate. South America presents different 
topography throughout its extensive territory and is 
surrounded by the Pacific and Atlantic Oceans. The 
combination of these two factors and the presence 
of several atmospheric systems lead to climate het-
erogeneity in the region, with eight different rainfall 
regimes (Reboita et al., 2010).  

Precipitation southeastern Brazil has marked sea-
sonality, with extensive rain during summer (rainy 
season) and scarcity over winter (dry season), and is 
modulated by the South American Monsoon System 
(SAMS) (Reboita et al., 2010; Marengo et al., 2010). 
The spatial distribution is also heterogeneous due to 
its location in a tropical/subtropical region (Nunes 
and Rampazo, 2017). The proximity to the South 
Atlantic Ocean favors the transport of moisture to 
southeastern Brazil (Gimeno et al., 2010; Drumond 
et al., 2008). In addition, Sea Surface Temperature 
(SST) anomalies in this Atlantic region may be 
responsible for precipitation variability and can be 
associated with extreme events (dry and wet) (Bom-
bardi and Carvalho, 2009; Bombardi et al., 2015; 
Pampuch et al., 2016).

The South Atlantic Convergence Zone (SACZ) is 
the main system responsible for high rainfall accumu-
lations during summer in the region (Nogués-Paegle 
and Mo, 1997; Carvalho et al., 2002; Seluchi and 
Chou, 2009). Cold fronts may advance over south-
eastern Brazil throughout the year and also play an 
essential role in accumulated precipitation (Seluchi 
and Chou, 2009; Pampuch et al., 2016; Ambrizzi et 
al., 2015). The position and persistence of the South 
Atlantic Subtropical High (SASH) may act as a 
blocking system that does not favor the occurrence of 
precipitation in the region ( Souza and Reboita, 2021).

The topography of southeastern Brazil is also a 
relevant element in the climate of the region (Nunes 
and Rampazo, 2017). The presence of elevated sur-
faces in the central regions constitute dividers for 
large rivers that drain towards the coast and to the 
southwest, in addition to the broad coastal plains, 
which form vast coastal lowlands areas.

Southeastern Brazil is a highly urbanized region 
that according to the Brazilian Institute of Geography 

and Statistics (IBGE) has a population of ~88 million, 
with businesses and technological development that 
contribute close to 53.1% to the national gross domes-
tic product (IBGE, 2021). Some of the water basins 
that serve this population include the São Francisco 
basin, which covers 7.52% of the country’s area; the 
Southeast Atlantic basin with 2.7%; the South Atlan-
tic basin, with an extension of 2.18%, supplies a small 
part of the state of São Paulo; and the Paraná basin, 
with 10.33% of the total area, based on information 
from the National Water Agency (ANA, 2014).

Meteorological studies to better understand the 
regional precipitation distribution are very relevant 
in various environmental contexts, such as for city 
management and administration. Understanding 
such patterns may support several applications like 
preventing landslides and erosion, controlling water 
levels in reservoirs, and agriculture planning. Among 
several data of information available to support such 
studies, the products derived from remote sensing 
are a viable for extensive spatio-temporal analysis of 
precipitation. As an example, projects developed by 
the National Aeronautics and Space Administration 
(NASA) provide data for different types of studies 
and research, such the Tropical Rainfall Measuring 
Mission (TRMM) (Gonçalves et al., 2017) and the 
Global Precipitation Measurement (GPM) (NASA, 
2015).

In particular, the GPM project aims to promote 
research and applications regarding the physical-me-
teorological processes of precipitation. Diverse stud-
ies based on data from the GPM project have shown 
its importance. Verma and Ghosh (2018) presented a 
study about the precipitation at the Gangotri glacier 
(Himalayas) and noted that, overall, for medium to 
heavy rainfall, the final run data products are close 
to the field data. According to Salles et al. (2019), 
considering a region of the central plateau of Brazil, 
satellite precipitation products based on GPM can 
guarantee the monitoring with precision, even better 
than the previous mission TRMM.

Gadelha et al. (2017) analyze data from 14 rainfall 
stations installed in the Gramame river basin (state 
of Paraíba, Brazil) and conclude that estimates from 
GPM are similar to in-situ measurements. Using 
clustering techniques, Freitas (2019) presents a 
comparison be  tween the precipitation data collected 
for a large portion of the automatic rainfall network 
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area, maintained by the Brazilian National Center for 
Monitoring and Alerting of Natural Disasters (CE-
MADEN), with the estimated precipitation provided 
by the Project GPM and concludes that the measure-
ments from such project are reliable. Nonetheless, 
Freitas (2019) highlights that, for more complex 
studies, it is necessary to observe the occurrence of 
under/overestimations and analyze other climatic fac-
tors that may influence the final measurements, like 
the local topography, climate, atmospheric systems, 
temperatures, and airspeed.

Some studies have already used clustering tech-
niques in Brazilian climate studies. Malfatti et al. 
(2018), employed clustering techniques to identify 
homogeneous regions of precipitation along the ba-
sin of the Paraná River. Uda et al. (2015) identified 
distinct precipitation profiles in the Iguaçu River 
basin. Comunello et al. (2013) outlined homoge-
neous rainfall environments in the state of Mato 
Grosso do Sul.

Clustering techniques may be distinguished ac-
cording to their approaches. Search for hierarchical 
structures, minimizing a cost function, or modeling 
neural networks are three typical clustering approach-
es. Ward’s hierarchical method (WH) (Murtagh and 
Legendre, 2014), K-Means (KM) algorithm (Ko-
dinariya and Makwana, 2013) and the Kohonen’s 
Self-Organizing Map (SOM) (Miljković, 2017) 
cover some of the approaches. The analysis of remote 
sensing data usually demands computational and 
statistical techniques. When the purpose is to iden-
tify the spatial precipitation patterns through remote 
sensing products, the clustering method becomes a 
convenient alternative. This kind of technique per-
forms a partition (i.e., a subset configuration) on the 
dataset according to the similarity found among its 
elements. The spatial representation of these subsets 
may reveal relevant behaviors to understand and 
characterize precipitation regimes.

KM, WH, and SOM algorithms appear in different 
studies involving precipitation analysis in Brazil. 
Dourado et al. (2013) adopted the KM algorithm 
to analyze the homogeneous regions in the state of 
Bahia, Brazil, from 1981 to 2010. Lohmann et al. 
(2018) used the SOM method as a tool to identify 
rainfall patterns for the city of Curitiba, state of 
Paraná, Brazil, to analyze the causes of flooding. 
Moreover, analyses based on clustering methods and 

precipitation data derived from the TRMM project 
have been carried for different regions of the world, 
such as Indonesia (Kuswanto et al., 2019) and Bra-
zil (Santos et al., 2019). Pereira et al. (2013) used 
TRMM data to show consistency when analyzing 
the spatial distribution of precipitation in Brazil, with 
seasonal variation very similar to that in meteorolog-
ical stations. On the other hand, investigations that 
contemplate clustering methods and GPM data are 
scarce compared to TRMM.

This study aims to assess the application of 
clustering methods on data from the GPM project to 
identify homogeneous regions in southeastern Brazil 
concerning the annual and seasonal precipitation 
from 2001 to 2019. The WH, KM, and SOM methods 
are analyzed, and the quality of results are submitted 
to quantitative measures for further comparison and 
discussions. This paper is organized as follows: Sec-
tion 2 presents relevant details about the study area 
and the GPM data as well as a formal discussion about 
clustering methods, accuracy measures for clustering 
assessment, and the study design; Section 3 presents 
the results and their respective discussions. Section 
4 summarizes the findings of this paper.

2. Materials and Methods
2.1 Study Area and Data
The study focuses on southeastern Brazil, located at 
latitude (25º 18’ 35”S, 14º 13’ 58”S) and longitude 
(53º 05’ 15”W, 39º 41’ 18”W). The area covers the 
states of São Paulo (SP), Rio de Janeiro (RJ), Minas 
Gerais (MG) and Espírito Santo (ES). Figure 1 shows 
the location and topography of the study area.

Precipitation data for this area were provided by 
the GPM project from 2001 to 2019. This product 
estimates daily precipitation at a spatial resolution of 
0.1º × 0.1º (Gadelha, 2018). Evaluation of the GPM 
product over Brazil was done by Rozante et al. (2018) 
in comparison with rain gauge data. They show that 
the behavior of maximum precipitation in summer 
and minimum in winter is well estimated although 
there is the usual overestimation in summer. 

We calculate annual and seasonal accumulated 
precipitation. The seasons are considered as: summer 
(December-February; DJF); autumn (March-May; 
MAM); winter (June-August; JJA); and spring (Sep-
tember-November; SON).



368 B. Guerreiro Miranda et al

2.2 Clustering Methods
Clustering methods play an important role in ex-
ploratory data analysis, especially in cases where 
there is little if any knowledge about the data (Jain 
and Dubes, 1988). Formally, a clustering compre-
hends the modelling and application of  a function 
F: X → Y on a set of observations I  X. Through 
such function each observation x  I is assigned to 
a specific cluster Gy by means of an indicator y  Y 
= {1,2,…,k}. An observation x = [x1, x2,…, xn], as 
element of the attribute space X, is usually referred 
to as attribute vector. The components xi, i = 1,…,n, 
are measures regarding a specific feature. Once Gj 
⊆ I, j = 1,…,k; composes a partition of I, then k

j=1 
Gj = I and h

j=1 Gi = Ø.
The clustering methods in the literature comprise 

different approaches to modeling F. Identifying hier-
archical relationships, minimizing cluster variability, 
and performing modeling based on neural networks 
are some examples of approaches.

Hierarchical methods exploit the relationship 
structure drawn by the dissimilarity values found 
between the elements in a dataset. The Ward’s Hier-
archical (WH) method (Murtagh and Legendre, 2014) 
is one of the hierarchical methods, that is defined by 
the following dissimilarity measure between clusters:

D(G j  ∪  G k,  G l) =

#G j  +  #G l

#G j  +  #G k  + #G l
D(G j,  G l)

+ 
#G k  +  #G l

#G j  +  #G k  + #G l
D(G k,  G l)

−  
#G l

#G j  +  #G k  + #G l
D(G j,  G k)

 (1)

where D(·,·) represents a recursively computed dis-
similarity measure over the clusters. This measure 
corresponds to the Euclidean distance when applied 
to compare clusters composed by a single element 
each.

After computing the dissimilarities between clus-
ters throughout D(·,·), a hierarchical organization 
naturally arises. In turn, it is possible to establish 
a threshold τ that determines k clusters such that 
D (Gj, Gl) > τ for j ≠ l and j = 1,…,k.

Methods based on minimizing objective cost 
function define a partition on the dataset such that 
the variabilities within and between clusters are both 
minimized and maximized, respectively. Among dif-
ferent methods proposed in the literature following 
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this approach, the K-Means (KM) (Kodinariya and 
Makwana, 2013) algorithm is highlighted for its 
simplicity, effectiveness, and robustness. According 
to this algorithm, the within/between cluster vari-
abilities minimization/maximization are achieved 
by solving (Webb and Copsey, 2011):

min
µ j

1
m

k

∑
j=1

∑
xi∈ j

xi − µj
2

j=1,…,k G
 (2)

where μj is the centroid of the cluster Gj, for j = 1,…,k.
The optimization problem expressed by Equation 

2 is solved iteratively through the following steps: (i) 
each observation xi  I, for i = 1,…, m, is assigned to 
the cluster Gj, with j = 1,…, k, based on the smallest 
dissimilarity to the centroid μj, determined in terms of 
the smallest Euclidean distance between xi and μj; (ii) 
after assigning each element to a cluster, the respec-
tive centroid is updated according to the mean vector 
computed concerning the elements allocated to this 
cluster. This process is repeated until a convergence 
in the centroids updating is achieved.

Unlike the previous methods, the Self-Organiz-
ing Maps (SOM) comprise a data clustering model 
based on neural network concepts. Formally, a 
matrix L1 × L2 of weight vectors wij = [wij1, wij2,…, 
wijn] denotes a map of neurons. Under these con-
ditions, an observation x  I is submitted to the 
neuron map, which promotes an adjustment on the 
weights according to:

wij : =  wij +  ηV ((i,  j),  (u ,  v); σ)(x – wij (3)

where η  + represents a learning rate in the neural 
network. Timely, V (a, b; σ) = exp (–ǁa–bǁ2 / (2σ2) 
model the neighborhood relations on the map of 
neurons, where a, b  2 represents a spatial coor-
dinate and σ  *

+ is a parameter that controls the 
neighborhood range. Further details and discussions 
about the SOM method are found in Haykin (2009).

2.2.1 Clustering Assessment
The use of measures for the assessment of the cluster-
ing results is essential to provide a quantitative notion 
about the quality of the partition obtained and allow 
comparisons between different results and methods. 
The Calinski-Harabasz (CH) and Davies-Bouldin 

(DB) (Debbarma et al., 2019) indices are examples 
of measures helpful for this purpose.

The quantification performed by the CH measure 
is based on the variability values from the clusters that 
define the dataset partition. Assuming that a dataset 
I is partitioned according to the clusters G1,…, Gk, 
the measure CH is expressed by:

CH =
Tr(VE)
Tr(VI)

# − k
k − 1

I
 (4)

given:

VI =
1
m

c

∑
j=1

m

∑
i=1

δ(xi, j)(xi, µj)T(xi, µj)G  (5)

VE =
c

∑
j=1

# j

m
(µ − µj)T(µ − µj)

G
 (6)

where µ = 1
m ∑

xi∈ I

x i is the mean vector observed over all 
the data in I ;  µ j = 1

# j ∑xi ∈ j
xjG G  is the mean vector ob-

served on the cluster Gj; and δ(xi, j) = {
1;   i f  xi ∈   j
0;   i f  xi ∉   j

G G
G

 
is a membership function.

The values of CH are in [0, ∞], where higher 
values imply better clustering results. On the other 
hand, the CH values tend to decrease as the number 
of clusters increases. Also, it is worth noting that there 
is no “acceptable” cut-off value for such measure. 
Nevertheless, the comparisons should involve results 
with an equivalent number of clusters and prioritize 
results with higher CH.

In contrast, the DB index provides an assessment 
that does not depends on the number of clusters. This 
measure has been useful in studies related to the anal-
ysis of meteorological data (Raju and Kumar, 2007; 
Pansera et al., 2013) and it is given by:

DB =
1
k

k

∑
i=1 j = 1,…, k

j ≠ i

Si + Sj
µi − µj

max  (7)

where Sl = 1
#G l ∑

xi ∈G l

xi − µl  expresses the mean distance 
between each element of the cluster to its centroid. 
The DB values are in [0, ∞ ] and smaller values imply 
better clustering results.

2.2.2 Optimum Number of Clusters
Defining the suitable number of subsets to perform 
the clustering process may not be a simple task. 
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Distinct approaches in the literature may support this 
decision. Some examples include the use of Informa-
tion Criteria concept (Akogul and Erisoglu, 2016), 
minimizing the error based on Information - Theoret-
ic Standards (Sugar and James, 2003) or even using 
a heuristic approach based on the explained variance 
as a function of the number of clusters, also known as 
Elbow’s Method (Ketchen and Shook, 1996). 

Elbow’s Method assumes that the increase in the 
number of clusters implies a reduction of the accu-
mulated variance inside the clusters. On the other 
hand, the indiscriminate increase in the number of 
clusters may not imply significant gains in reducing 
such variance (Han et al., 2012). This approach has 
been used in studies related to the determination 
of homogeneous precipitation regions in different 
regions of the world, such as Malaysia (Ahmad et 
al., 2013), India (Akhisha et al., 2018) and Ethiopia 
(Zhang et al., 2016).

Formally, for a given dataset I partitioned in clus-
ters Gj, for j = 1,…, k, the summation of the deviations 
from the members of each cluster to its centroid may 
be expressed by:

Q(k) =
k

∑
j=1

1
#Gj ∑

xi∈Gj

xi − µj  (8)

Consequently, when admitting different values for 
k  {k1, k2,…, kh}, with k1 < k2 < kh, it is observed 
that the value of k that simultaneously provides 
the smaller within-clusters variability and larger 
separability between clusters is determined by the 
greatest distance between the point (k,Q(k)) and the 
line-segment with extremes at the points (k1, Q (k1)) 
and (kh, Q(kh)). Such distance is expressed by:

L(k ; k1, kh) =

(Q(kh) − (Q(k1))k − (kh − k1)
Q(k) + khQ(k1) − k1Q(kh)

(kh, Q(kh)) − (k1Q(k1))

 (9)

Finally, k =
k1, …,  kh

arg max L (k; k1, kh) stands for the opti-
mal number of clusters.

2.3 Experiment Design
Figure 2 depicts the experiment design of this study. 
Firstly, data from the GPM project, expressed in 
terms of monthly accumulated precipitation, were 
obtained and limited to the period of interest (2001 
to 2019) and study area (Figure 1). Considering this 
precipitation time series and admitting a significance 
of 1%, the Mann-Kendall (MK) (Kendall and Gib-
bons, 1990) and Kwiatkowski-Phillips-Schmidt-Shin 
(KPSS) (Kwiatkowski et al., 1992) tests were applied 
to reveal the existence of temporal trend in the data. 
The precipitation values of each instant in the time 
series stand for the average value observed in the 
study area in each season.

Subsequently, the precipitation values were orga-
nized into five distinct periods of analysis: annual, 
which comprises the accumulated precipitation in 
each year; and seasonal, containing the accumulat-
ed precipitation in the seasons of each year in the 
study period. Specifically, the seasons are: summer 
(December-February; DJF); autumn (March-May; 
MAM); winter (June-August; JJA); and spring (Sep-
tember-November; SON).

The KM, WH, and SOM methods (Section 2.2) 
where applied to the annual and seasonal periods 

GPM dataset

Southeast/Brazil

Period 2001~2019

Precipiation profiles

Annual

Seasonal
(DJF, MAM, JJA and SON)

Temporal trend analysis
(MK and KPSS tests)

Clustering analysis

Several number of clusters

Use of Ward, KM and SOM

Assessment by searching for
maximum CH and minimum DB

Number of clusters

Use Elbow's Method

Discussions and conclusions

Analyze the cluster structures

Discuss and validate the results according
 to local characteristics

Fig. 2. Experiment design workflow.
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considering the number of clusters varying from 2 
to 50. The clustering results (a total of 3 × 49 = 147) 
are submitted to the CH and DB measures (Section 
2.2.1), to determine the most suitable method to 
identify the precipitation patterns over the study area. 
An analysis of the optimal number of clusters is then 
performed using Elbow’s Method (Section 2.2.2). 
Once the most appropriate method is chosen as well 
as the optimum number of clusters, the results are 
discussed considering the topographical and climatic 
characteristics of the study area.

All the data processing was implemented using 
the Python 3.8 programming language (van Rossum 
and Drake, 2011) and the Numpy (Van Der Walt et 
al., 2011), Scikit Learn (Pedregosa et al., 2011) and 
GDAL (GDAL/OGR, 2021) libraries.

3. Results and Discussion
Figure 3 shows the time series of the spatial average 
precipitation in the study area over the analyzed 
period, where it is possible to observe a stationary 
profile. Moreover, both MK (p-value = 0.556) and 
KPSS (p-value = 0.1) confirm that the precipitation 
profile has not increased or decreased over the time.

The results demonstrate large spatial variability 
for the region, as shown in Figure 4. Considering 
the annual period (Fig. 4(a)), the GPM data shows 
accumulated precipitation from 800 mm (north of 
MG state) to 2000 mm (coast of SP state). This spatial 
pattern agrees with results by Neto (2011), Pampuch 
et al. (2016), Vasconcellos and Reboita (2021) and 
Silva et al. (2021).

Considering the seasonal periods (Figs. 4(b) to 
4(e)), the patterns agree with  precipitation patterns 
already documented in previous studies (Nunes and 
Rampazo, 2017; Huffman et al., 2007; Vasconcellos 
and Reboita, 2021);  in summary the highest accumu-
lated precipitation is in summer and it is lowest in win-
ter, with autumn and winter being transition seasons.

In the summer, the highest rainfall values occur 
on the coast of SP and in the central portion of the 
southeast sector (about 900 mm) due to the SACZ 
activity and breeze effects (Vasconcellos and Reboita, 
2021). The smallest values are recorded in northern 
MG state (with 250 mm). The wet summer in the re-
gion is characteristic of the SAMS, expressed at upper 
levels by an anticyclonic circulation over Bolivia and 
a trough near the coast of northeastern Brazil. High 
pressure systems and an anticyclonic circulations 
over the sub-tropical Pacific and Atlantic oceans, 
a low pressure over northern Argentina (Chaco), 
SACZ, and the South American Low-Level Jet east of 
the Andes are observed at low levels (Marengo et al., 
2010). All these circulation patterns are responsible 
for more than 60% of the precipitation that occurs in 
this season (Vasconcellos and Reboita, 2021).

The transition between summer and winter 
(Fig. 4(c)) has characteristics of both seasons and 
shows precipitation values from 200 to 600 mm. This 
season is characterized by a reduction in solar heating 
and convection, weakening of the trade winds and 
actuation of the SASH (Vasconcellos and Reboita, 
2021). Thus, it is possible to notice a reduction in 
rainfall compared to the previous season (summer), 
but not intense as in the winter.
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Fig. 3. The precipitation time series observed in the study area over analyzed period.
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It is evident from the GPM data that the lowest 
precipitation values (about 0 and 300 mm) are ob-
served in June, July and August. Neto (2011) showed 
that in the period 1961–2011 less than 5% of the 
accumulated annual precipitation occurred in winter. 
In this situation, the SASH is displaced westward, 

affecting southeastern Brazil and preventing the 
equatorward advance of frontal systems (Vasconcel-
los and Reboita, 2021; Silva et al., 2014).

The spring season shares similarities with autumn 
and shows a rainfall increase compared to winter. 
This increase in precipitation occurs due to the 
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increase in heating and the establishment of the 
SAMS atmospheric systems (Marengo et al., 2010; 
Vasconcellos and Reboita, 2021). The average pre-
cipitation ranges from 200 to 400 mm.

The performance of the KM, WH, and SOM 
methods for clustering precipitation data with a 

different number of clusters (2 to 50) was then as-
sessed through the CH and DB measures (see experi-
ment design in Fig. 2) and distinct periods of analysis 
(i.e., annual and seasonal). Figure 5 depicts this as-
sessment, where the KM method shows better results 
compared to the WH and SOM methods, as it often 
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displays high CH and low DB values independently 
of the number of clusters. The dashed lines indicate 
the central tendency in which each method, regarding 
the CH and DB measures, behaves as a function of the 
number of clusters. Based on this tendency profile, 
the KM method always provides higher CH values 
and lower DB values, implying a better performance 
than the WH and SOM methods regardless of the 
period considered (annual or seasonal).

Once the KM method is identified as the most suit-
able to cluster precipitation data, the optimal number 
of clusters was analyzed using the Elbow’s Method. 
Figure 6 illustrates the relation between log Q(k) to 
k from 2 to 50. The values for k that maximize L(k; 
2, 50) for each period are highlighted as symbols in 
Figure 6, indicating 10 clusters for the annual and 
DJF periods, 11 clusters for the MAM and SON 
periods and 9 clusters for JJA.

Based on the optimal number of clusters for each 
period, Figure 7 maps the regions with distinct pre-
cipitation patterns over the study area. Figures 8 to 12 
shows the annual/seasonal averages extracted from 
each region, allowing to infer the rainfall regimes of 
the considered periods and respective partitioning.

The annual period, clustered into 10 regions, re-
inforces the consistency of the results, which agree 
with homogeneous precipitation regions compared 
to climatology (Figure 4). The highest accumulated 
precipitation (1600 mm) is found on the coast of SP 
(region 9), decreasing to the north towards region 1, 
where the smallest precipitation amount is observed 
(740 mm). The annual variability is similar in all 

regions. Note that a decrease in precipitation in all 
regions occurred in 2014, associated with the well-
known drought event observed that year in the study 
region (Coelho et al., 2016; Otto et al., 2015; Nobre 
et al., 2016).

Precipitation during summer (DJF) clustered into 
10 regions, indicates the highest rainfall, about 750 
mm (region 6) in the northern portions of SP and 
the southwest of MG states. Precipitation decreases 
in the center of SP and reaches the lowest values in 
the north of MG, about 400 mm (region 1). Summer 
corresponds to the largest seasonal precipitation accu-
mulated in all regions, due to the SAMS as mentioned 
above. Nevertheless, summer precipitation indicates 
a remarkable interannual variability between clusters.

Precipitation during autumn (MAM), clustered 
into 11 regions, clearly separate regions with high 
(450 mm) and low (190 mm) accumulated precipi-
tation, corresponding to the coast of SP (region 10) 
and north of MG (region 1), respectively. There is a 
reduction in accumulated precipitation compared to 
summer. Considering the annual variability in MAM, 
the pattern is similar for all regions, except in 2011 in 
region 7, where the largest accumulated precipitation 
of the entire series was recorded in this season. 

Precipitation during winter (JJA), clustered into 9 
regions, shows that the north of MG state comprises 
a vast region, while the SP state is divided into sev-
eral regions. The largest precipitation is observed in 
region 9 (255 mm) and the smallest in region 1 (20 
mm). The large amounts of precipitation in the south 
and southeast portions are associated with cold fronts 
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that may reach the region and the SASH area. Winter 
is the season with both less accumulated precipitation 
and similar annual variability in all clusters. 

Precipitation during the spring (SON) season, 
clustered into 11 regions, mark separations at the 
north of MG, the central portion of SP, and the coastal 

zone of RJ. The difference in accumulated rainfall 
between regions is not as evident as in other seasons, 
and the values range from 280 mm and 400 mm. The 
accumulated precipitation increases during spring as 
the atmospheric systems characteristic of the SAMS 
become established. The annual variability in spring 
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Fig. 8. Precipitation profiles for the identified regions regarding the Annual period
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Fig. 9. Precipitation profiles for the identified regions regarding the DJF period.
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is similar for all clusters except in 2015, where the 
dry period does not occur with the same intensity in 
all regions.

4. Conclusions
This study presents an analysis of the distribution of 
precipitation patterns in southeastern Brazil using 
different clustering methods applied to data from 
the GPM project.

The results obtained indicate that the GPM data 
reveal a precipitation distribution consistent with the 
seasonal characteristics already discussed by Neto 
(2011), Pampuch et al. (2016), Vasconcellos and 

Reboita (2021) and Silva et al. (2021), as Figure 4 
demonstrates: (i) an increase in precipitation in DJF; 
(ii) a gradual decrease in precipitation in MAM; (iii) 
the lowest precipitation values occur in JJA; and (iv) 
in SON a gradual increase in SON.

The annual analysis indicates that the coastal 
regions of São Paulo and Rio de Janeiro concentrate 
the highest precipitation in the study area. The pre-
cipitation volume decreases significantly towards the 
north and northeast regions.

According to the CH and DB measures applied to 
analyze the performance of the different clustering 
methods, the KM algorithm was the most suitable 
for identifying the regions of distinct precipitation 
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Fig. 12. Precipitation profiles for the identified regions regarding the SON period.
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patterns. The Elbow’s Method was then applied 
to determine the optimum number of regions that 
partitions the study area in each period (i.e., annual 
and seasonals).

Based on these analyses the following can be 
inferred:

• Seasonality – seasonal and annual distributions 
have different impacts on the analysis of rainfall 
patterns in the study area, as they can be influ-
enced by various factors such as convergence 
zones, droughts, longer duration of the rainy 
season, fires and others. The highest precipitation 
is observed in summer and spring and the lowest 
in winter.

• Clustering method – the KM algorithm is identi-
fied as a suitable clustering method in the domain 
considered, becoming more refined through the 
Elbow’s Method. A remarkable similarity is found 
in the precipitation regime, both for the annual 
and the seasonal periods. 

Finally, no prior studies have used this combined 
methodology for the southeastern region of Brazil, 
since Pampuch et al. (2016) used Ward’s Hierarchi-
cal clustering and Singular Value Decomposition, 
and Machado (2014) used K Means. Consequently, 
analyses with similar methodology should be carried 
out in future studies to identify subgroups within the 
presented clustering and obtain more information 
about the precipitation regime in southeastern Brazil.
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