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RESUMEN

La validación de los productos de precipitación en cuadrícula (GPP) aumenta la confianza de los usuarios 
y destaca las posibles mejoras de los algoritmos para manejar procesos complejos de formación de lluvia. 
Evaluamos la habilidad de tres GPP (CHIRPS-v2, CHELSA y TerraClimate) para estimar las observaciones 
de pluviómetros y comparamos las tendencias de precipitación derivadas de estos productos en las regiones 
del este y sur de África (ESA). Se usaron diagramas de Taylor y Eficiencia de Kling-Gupta (KGE) para eva-
luar la precisión. Se utilizaron las pruebas de Mann-Kendal modificada y el estimador de pendiente de Sen 
para determinar la importancia y la magnitud de las tendencias, respectivamente. Los tres GPP tuvieron un 
desempeño variado en rangos temporales y altitudinales. La habilidad de los tres GPP a escala mensual fue ene-
ralmente alta, pero mostró un rendimiento inferior en elevaciones superiores a 1500 m s. n. m., especialmente 
durante la temporada de Octubre-Noviembre-Diciembre (OND). Los tres GPP se desempeñaron igualmente 
bien entre el rango de elevación de 1001 a 1500 m s. n. m. CHELSA- v2.1 fue más preciso a 0-500 m s. n. m. 
pero tuvo la habilidad más baja en los rangos de elevación de 501 - 1000, y arriba de 1500 m s. n. m., lo que 
ocasionó una sobreestimación de las tendencias de precipitación anual y estacional sobre los terrenos monta-
ñosos y las grandes masas de agua continentales. Las tendencias de precipitación cuantificadas revelaron una 
alta variabilidad espacio-temporal. En general, las tendencias de precipitación y la habilidad, derivadas de los 
datos de CHIRPS-v2 y TC, mostraron una convergencia sustancial excepto en Tanzania. Nuestros resultados 
enfatizan la importancia de la validación de los conjuntos de datos climáticos para evitar la propagación de 
errores en diferentes modelos y aplicaciones. Así mismo demuestran que los datos de precipitación nuevos 
o de mayor resolución no siempre son los más precisos, ya que una actualización de los algoritmos puede 
introducir artefactos o sesgos.

ABSTRACT

Validation of gridded precipitation products (GPP) increases the users’ confidence and highlights possible 
improvements in the algorithms to handle complex rain-forming processes. We evaluated the skill of three 
GGPs (CHIRPS-v2, CHELSA, and TerraClimate) in estimating the rain gauge observations and compared 
the precipitation trends derived from these products across the East and Southern Africa (ESA) region. We 
used Taylor diagrams and Kling-Gupta Efficiency (KGE) to assess the accuracy. A modified Mann-Kendal test 
and a Sen’s slope estimator were utilized to determine the trends’ significance and magnitude, respectively. 
The three GPPs had varied performance over temporal and altitudinal ranges. The skill of the three GPPs, at 
a monthly scale, was generally high but showed lower performance at elevations over 1500 masl, especially 
during the October-November-December (OND) season. The three GPPs performed equally well between 
the 1001 – 1500 masl elevation range. CHELSA-v2.1 was most accurate at 0-500 masl but had the lowest 
skill in both 501 – 1000 and above 1500 masl elevations, which caused over-estimation of the annual and 
seasonal precipitation trends over mountainous terrain and large inland water bodies. The quantified precip-
itation trends revealed high spatial-temporal variability. Generally, the skill and precipitation trends derived 
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from CHIRPS-v2 and TC data showed substantial convergence except in Tanzania. Our results emphasize 
the importance of validating climate datasets to avoid error propagation in different models and applications. 
Moreover, we demonstrate that new or higher-resolution precipitation data are not always accurate since an 
algorithm update can introduce artifacts or biases.

Keywords: Climate change and variability, satellite time series, trend analysis, CHIRPS-v2, CHELSA, 
TerraClimate.

1.	 Introduction
Precipitation variability is the primary driver of 
agricultural production in the predominantly rain-
fed system in Sub-Sahara Africa (Adhikari et al., 
2015). Smallholder subsistence farmers practicing 
rain-fed agriculture in Sub-Sahara Africa (SSA) are 
the most vulnerable to the impacts of climate change 
and variability (Cairns et al., 2013). Over the recent 
decades, the precipitation patterns across Africa have 
experienced significant changes in the amount (Cat-
tani et al., 2018; Muthoni et al., 2019) and temporal 
shifts (Haghtalab et al., 2019; Atiah et al., 2021). In 
the East and Southern Africa (ESA) region, changes 
in precipitation amount have a direct impact on crop 
yields (Omoyo et al., 2015; Mkonda and He, 2018), 
the shift in crop suitability (Mumo et al., 2021) and 
the outbreak of crop pest and diseases (Kimunye et 
al., 2020; Niassy et al., 2021). Therefore, spatially 
explicit information on the magnitude of changes in 
precipitation over time and space is needed to support 
the design of appropriate adaptation measures. 

Monitoring the spatial and temporal changes of 
climatic variables across Africa is challenging due 
to the limited availability of reliable rain gauge data. 
Available rain gauge networks are sparse, and their 
records are characterized by many gaps (Contractor 
et al., 2020; Dinku, 2019). Recently, there has been 
increased availability of time series gridded precip-
itation products (GPP) from three broad categories: 
(1) rain gauge only (GO), recorded solely from rain 
gauge data (e.g., Contractor et al., 2020), (2) model 
reanalysis (MRA), based on a numerical weather 
prediction models or data assimilation (Karger et al., 
2017; Abatzoglou et al., 2018; Hersbach et al., 2020); 
(3) the satellite-based precipitation estimates (SPE); 
generated from satellites data only or blending of 
satellite, rain gauge and numerical weather models 
(e.g., Funk et al., 2015). The Rainfall Estimates on a 
Gridded Network (REGEN; Contractor et al., 2020) is 
an example of rain gauge-only gridded data. Existing 

MRA data includes the TerraClimate (Abatzoglou et 
al., 2018), CHELSA (Karger et al., 2017), and ERA-5 
(Hersbach et al., 2020). MRA precipitation data is 
produced by combining forecast model estimates 
with observations via data assimilation to generate 
optimized global estimates of climate data without 
spatial or temporal gaps (Gleixner et al., 2020). The 
blended SPEs mostly applied in Africa include the 
Climate Hazards Group InfraRed Precipitation with 
Station data version two (CHIRPS-v2; Funk et al., 
2015) and the Africa Rainfall Estimate Climatology  
(ARC-v2.0; Novella and Thiaw, 2013). The data from 
GPPs are applied across different sectors to resolve 
weather-related issues such as drought/flood moni-
toring, early warning systems, agro-advisory, water 
management, and climate change analysis. These 
data are also applied to formulate evidenced-based 
climate change adaptation strategies. The choice of a 
GPP significantly influences the accuracy in a specific 
application area (Bobrowski et al., 2021).

Recent validation studies in the ESA region 
demonstrated that the monthly to annual aggregates 
of the SPE data have adequate skill to estimate rain 
gauge observations (Dinku et al., 2018; Muthoni et 
al., 2019; Muthoni, 2020) and, therefore, can com-
plement the rain gauge data in data-scarce regions. 
However, the GPPs has their strength and weakness 
at different temporal scales and biophysical condi-
tions. The main challenge is their ability to represent 
rain gauge observations over areas with complex 
meteorological patterns, such as mountainous terrain, 
inland water bodies, and coastlines (Dinku et al., 
2007; Kimani et al., 2017). In mountainous terrain, 
different GPPs can yield significant differences in 
precipitation estimates over short distances (Henn et 
al., 2018). Rigorous evaluation and intercomparison 
of the GPPs are needed to assess their reliability under 
varied environmental contexts. 

Previous evaluation of MRA precipitation datasets 
over the ESA region showed that the accuracy of 
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ERA-5 (25 Km) and ERA-Land (9 Km) had substan-
tial spatial variation (Gleixner et al., 2020). These 
MRAs captured the precipitation seasonality well but 
exhibited low temporal and spatial correlation with 
rain gauge observations over the ESA region (Lemma 
et al., 2019; Gleixner et al., 2020). Although ERA-5 
(25 Km) has shown tremendous improvements in 
capturing rainfall in East Africa compared to ERA-
Land (9 km), both have a low spatial resolution. In 
contrast, the gridded SPEs that incorporate satellite 
and rain gauge data in their retrieval algorithm, such 
as CHIRPS-v2, are extensively evaluated over the 
ESA region. Reports show that CHIRPS-v2 has a 
better skill for reproducing observed rainfall (Dinku 
et al., 2018; Muthoni et al., 2019). However, com-
paring the SPE and MRA precipitation products has 
received less attention. Muthoni (2020) showed that 
CHIRPS-v2 performed better than TerraClimate 
rainfall in West Africa. Gleixner et al. (2020) and 
Lemma et al. (2019) showed that the CHIRPS-v2 
product represented rainfall trends in East Africa 
better than the coarser spatial resolution ERA-Interim 
and ERA-5 datasets. Recent advances have produced 
newer MRA precipitation data with a higher spatial 
resolution (1 – 4 Km), such as CHELSA (1 Km) 
and TerraClimate (4 Km). Although the skill of the 
two MRA datasets is evaluated globally, an in-depth 
verification in regions with a critical need for reliable 
GPPs, like ESA, is lacking. Finer resolution or newer 
versions of climate data may improve the accuracy, 
e.g., ERA-5 improved skill for capturing precipitation 
in Africa compared to its predecessor, the ERA-in-
terim (Gleixner et al., 2020). Nonetheless, this is not 
always the case since updates of the algorithms can 
introduce other artifacts or biases (Awange et al., 
2019; Bobrowski et al., 2021). Therefore, there is 
a need to ascertain if the two newly available MRA 
datasets with a finer spatial resolution are more reli-
able than the legacy CHIRPS-v2 product. 

Analysis of long-term precipitation trends is 
critical for unraveling the temporal progression of 
climatology to inform climate adaptation policies. 
Due to the paucity of rain gauge observation net-
works, the GPPs provide the only plausible data for 
monitoring the long-term trends of precipitation for 
locations without rain gauge stations. Nevertheless, 
examining the congruence of precipitation trends 
generated from GPPs that emphasize different aspects 

of the rainfall regime is essential. Gridded time series 
data have been applied to monitor rainfall trends in 
the ESA region. However, the suitability of MRA data 
for identifying long-term trends is debatable (Bengts-
son et al., 2004; Thorne and Vose, 2010; Dee et al., 
2011). This setback is because observational datasets 
applied in the assimilation system are temporary and 
spatially inhomogeneous, which can cause jumps in 
the data that affect the retrieval of long-term trends. 
The ERA-interim and ERA-5 data in the ESA region 
showed inconsistent precipitation trends compared 
to CHIRPS-v2 (Gleixner et al., 2020). The assimi-
lation systems of the atmosphere circulation models 
are continuously improved; therefore, the newly 
produced MRA data may improve the monitoring 
of long-term trends.

This paper assessed the skill of the CHIRPS-v2, 
and two MRA products, i.e., TerraClimate (TC) and 
CHELSA-v2.1, in reproducing the rain gauge obser-
vations at different temporal and altitudinal ranges 
over the ESA region. The study further investigates 
whether the higher resolution from CHELSA-v2.1 
data (1km) improves the estimation of long-term pre-
cipitation trends compared to the coarser resolution 
of TC (4 km) and CHIRPS-v2 (5 Km). Moreover, the 
ability of the MRA dataset to capture long-term an-
nual and seasonal precipitation trends was compared 
against satellite-based CHIRPS-v2 data. 

2.	 Materials and Methods
2.1 Study Area
The study area covers approximately 2 million Km2 
encompassing seven countries in the East and South-
ern Africa (ESA) region, i.e., Tanzania, Kenya, Ugan-
da, Rwanda, Burundi, Zambia, and Malawi (Fig. 1). 
The study area traverses a complex agro-ecological 
gradient characterized by high variability in topogra-
phy, precipitation, temperature, and vegetation cover. 
The climate variability is primarily influenced by the 
seasonal movement of the intertropical convergence 
zone (ITCZ) and the warming of the Indian Ocean 
(Diem et al., 2014). Zambia, Malawi, and West - 
Central – Southern Tanzania experience unimodal 
precipitation, while northern Tanzania, Kenya, Ugan-
da, Rwanda, and Burundi experience bimodal rainfall 
seasons (Seregina et al., 2019). Annual rainfall ranges 
between 250 – 2500 mm, while average temperature 
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Fig. 1. Study area covering seven countries in the East and Southern African (ESA) region overlaid on the average 
annual rainfall (a) and a 30 m digital elevation model (DEM) from Shuttle Radar Topography Mission (SRTM) (METI 
and NASA, 2011). The location of rain gauge stations used to evaluate the accuracy of gridded climatic layers is shown.
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ranges between 15ºC – 40ºC. Savannah vegetation 
dominates the region, although tropical rainforest 
extends to some parts of Uganda and Rwanda. North 
– Eastern part of Kenya experiences arid conditions, 
while Central Tanzania is semi-arid. 

2.2 Rain gauge observation and satellite data
Data from 82- rain gauge stations (Table SI) dis-
tributed across the ESA region (Fig. 1) with records 
from 1981 to 2018 was collated from national 
meteorological services and private institutions, 
supplemented with data from the global summary of 
the month (GSOM; Lawrimore et al., 2016). Most 
of the stations were ingested in the algorithms for 
retrieving the three GPPs either for bias correction, 
downscaling, or interpolation. Therefore, re-using 
them to evaluate the accuracy of the GPPs is not in-
dependent. However, we recognize the scarcity and 
the very restrictive accessibility of data from the few 
existing stations in Africa (Dinku, 2019). The data 
from the synoptic and global transmission system 
(GTS) stations are mostly ingested in the original 
algorithms for retrieving the GPPs. The independent 
datasets are mainly from stations maintained by 
volunteers, and therefore their data quality may be 
low compared to those maintained by professional 
meteorologists (Dinku et al., 2018). Considering the 
above limitations, we undertook two evaluations: (a) 
with all datasets (including the non-independent) and 
(b) with only the independent stations to assess the 
reliability of existing independent stations. Although 
using only the independent stations is a good practice, 
the spatial coverage of the eligible rain gauge stations 
was inevitably reduced to 18, all located above 500 m 
above sea level. 

Moreover, stations with low-quality data or less 
than 60 monthly observations were dropped. A total 
of 40779 monthly observations were collated and 

applied for validating the GPPs. Table SI shows the 
information on the rain gauge station data used for 
validation. 

The GPPs data was downloaded from the Climate 
Hazards Group Infrared Precipitation with Stations 
version two database (CHIRPS-v2; Funk et al., 
2015), and the two MRA datasets acquired from the 
climatologies at high-resolution for the earth’s land 
surface areas version 2.1 (CHELSA-v2.1; Karger et 
al., 2017) and the TerraClimate (TC; Abatzoglou et 
al., 2018) databases (Table I). The CHIRPS-v2 covers 
between 50º S – 50ºN and 180º E – 108ºW with 0.05º 
resolution (~5.5km) from 1981 to the near present 
(Funk et al., 2015). The CHIRPS-v2 data was created 
by blending the monthly precipitation climatology, 
the quasi-global geostationary thermal infrared (IR) 
satellite observations from two NOAA Climate 
Prediction Centre (CPC), the Tropical Rainfall Mea-
suring Mission (TRMM) 3B42 product from NASA, 
the atmospheric model rainfall fields from the NOAA 
Climate Forecast System version 2 (CFSv2) and in 
situ precipitation observations (Funk et al., 2015). 

The TC database provides monthly climatic data 
from 1981 to the near present with a 4 Km spatial 
resolution at the equator (Table I). The TC datasets 
were produced using a climatically aided interpola-
tion combining high spatial resolution climatological 
normals from the WorldClim datasets (Fick and Hi-
jmans, 2017) with coarser resolution but time-varying 
data from Climate Research Unit time series data 
version 4.0 (CRU Ts4.0) and the Japanese 55 – year 
Reanalysis (JRA55). The procedure applies inter-
polated time-varying anomalies from CRU Ts4.0/
JRA55 to the high-spatial-resolution climatology of 
WorldClim to create a fine-grained dataset that covers 
a broader temporal record. CHELSA-v2.1 database 
provides downscaled model output precipitation es-
timates of the ERA-Interim climatic reanalysis at a 

Table I. Characteristics of the three gridded precipitation products (GPPs).

Data
Resolution

Source
Coverage Spatial Temporal

CHELSA-v2.1 Global ~1km 1979– 2018 (Karger et al., 2017)
CHIRPS-v2.0 Quasi-global (50º N–S) ~5km 1981-Present (Funk et al., 2015)
TerraClimate Global ~ 4km 1958– Present (Abatzoglou et al., 2018)



486 F. K. Muthoni et al.

very high resolution of 30 arc seconds (approximately 
1 Km at the equator) with global coverage (Karger et 
al., 2017). The precipitation algorithm incorporates 
orographic predictors, including wind fields, valley 
exposition, and boundary layer height, with some bias 
correction. CHELSA provides monthly precipitation 
data from 1981 to the near present. 

2.3 Validation of Gridded Data
A point-to-pixel approach was applied to compare 
the values of the three GPPs and the rain gauge 
observations. The values of the GPPs were extract-
ed at the original resolution of each product. Two 
approaches were employed to assess the skill. First, 
the Taylor diagram was used to evaluate the cor-
relation, the standard deviation, and the bias of the 
satellite products compared to the rain gauge data. 
Taylor diagrams provide a brief statistical summary 
of how well the patterns match each other in terms of 
their correlation (r), the centered root-mean-square 
difference (cRMSE), and the standard deviation 
(Taylor, 2001). Secondly, the skill of the three GPPs 
was further assessed using a modified Kling-Gupta 
Efficiency (KGE; Kling et al., 2012). The KGE was 
decomposed into three elements: the r representing 
Person’s coefficient of correlation; the β that assesses 
the bias of the data and γ assesses dispersion of the 
time series data. The KGE analysis was accomplished 
using the ‘HydroGOF’ R package (Zambrano-Bigia-
rini, 2020). The r value assesses the linear correlation 
between variables over time (temporal agreement). 
The β value estimates the ratio between the mean of 
simulated and observed variables. Therefore β > 1 
indicates an overestimation bias while β < 1 signifies 
underestimation bias compared to the reference rain 
gauge data. The γ values show the variability ratio 
computed using the standard deviation or the coef-
ficient of variation between simulated and observed 
variables (variance). 

The study area exhibits complex and heteroge-
neous topography that may affect the accuracy of the 
GPPs generated from different rain-forming systems 
(Kimani et al., 2017). Therefore, we assessed the skill 
of the GPPs at monthly and seasonal temporal scales, 
i.e., January, February, and March (JFM), April, May, 
and June (AMJ), July, August, and September (JAS), 
and October, November, and December (OND). We 
evaluated the monthly and seasonally aggregated 

data over four altitudinal ranges (0 - 500, 501 – 1000, 
1001 – 1500, >1500 meters (m) above sea level (a.s.l). 
We retrieved elevation data from the Shuttle Radar 
Topography Mission (SRTM) digital elevation model 
(DEM) with a 30-meter spatial resolution (METI and 
NASA, 2011). 

The KGE and its three components were also 
compared for all months (monthly data), separated 
by four seasons (JFM, AMJ, JAS, OND, and altitu-
dinal ranges using the ‘raincloud’ plots (Allen et al., 
2021). The raincloud plot revealed the variability of 
KGE and its three decomposition values for the three 
SPE products over different temporal and altitudinal 
ranges. The raincloud plots provided a multi-platform 
tool for robust data visualization that simultaneously 
presented a combination of the (jittered) raw data 
points, violin/boxplot, and density plots. The rain-
cloud plots enable a comprehensive visualization of 
variability in the dataset by providing an overview 
of raw data, probability distribution, and statistical 
inference immediately via medians and confidence 
intervals. They provide users with information on 
both individual observations and general patterns.

2.4 Trend Analysis
The monthly dataset from the three GPPs was 
aggregated into four seasons (JFM, AMJ, JAS, 
and OND) and 38 annual time series. A modified 
Mann-Kendall statistic (Hamed and Ramachandra 
Rao, 1998) was used to test the significance (p < 
0.1) of linear trends in every pixel of the seasonal 
and annual gridded time series data. A modified 
Mann-Kendall statistic was selected because it ac-
counts for serial autocorrelation in the time series 
data. The magnitude of the trend was quantified 
using Theil-Sen’s median slope estimator (Sen, 
1968). Trend analysis was accomplished using the 
‘eco.theilsen’ function from the ‘EcoGenetics’ R 
package (Roser et al., 2017). The trend analysis for 
each input seasonal and annual time series produced 
gridded maps representing Theil-Sen’s slope and 
Mann-Kendall significance test. A similar approach 
was used to calculate the annual and seasonal pre-
cipitation trends from two-rain gauge stations with 
no data gap, i.e., Morogoro Maji in Tanzania and 
Msekera in Zambia. This enabled a comparison of 
trends derived from the rain gauge stations and the 
three GPPs at annual and seasonal scales. 
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3.	 Results
3.1 Validation of gridded data with rain gauge sta-
tion
All the three GPPs showed high skill in estimating the 
monthly rain gauge observations (r > 0.85, cRMSE 
< 0.6) except at elevations above 1500 masl where 
accuracy was lower (r < 0.8, cRMSE > 0.6; Fig. 2a). 
CHELSA-v2.1 data had the highest skill at 0 – 500 
masl altitudinal range (r = 0.94, cRMSE = 0.38) but 
the lowest at an altitude above 1500 masl (r = 0.73, 
cRMSE = 0.76; Fig. 2a). At seasonal scale, the three 

GPPs had a higher skill compared to the monthly 
scale (r > 0.95, cRMSE < 0.38), but still the accu-
racy was lowest for the altitude above 1500 masl 
(Fig. 2c). Both monthly and seasonally aggregated 
precipitation data showed that the three GPPs had 
the lowest skill of estimating precipitation at moun-
tainous terrain above 1500 masl (Fig. 2 - 3). When 
the monthly precipitation was validated per seasonal 
blocks, all GPPs showed exceptionally lower skill 
during OND season for the altitudes above 1500 masl 
(0.6< r <0.65; Fig. 3).

Fig.  2. The skill of monthly (a, b) and seasonally aggregated (c, d) gridded precipitation 
products with the left and right columns representing the validation with all and with only 
the independent rain gauge stations. The legend labels represent a combination of the gridded 
precipitation products from TerraClimate, CHELSA-v2.1, and CHIRPS-v2 databases at four 
altitudinal ranges (masl) in the East and Southern Africa (ESA) region. 
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The skill of the three GPPs reduced when validat-
ed with the independent stations for both monthly (r 
> 0.7, cRMSE < 0.6; Fig. 2b) and seasonal scales (r > 
0.75, cRMSE > 0.4; Fig. 2d), but the CHELSA-v2.1 
generally showed the lowest accuracy above 1500 
masl. 

Raincloud plots revealed the variability of KGE 
and its three decomposition values for the three GPPs 
at different temporal (monthly and seasonal) and 

altitudinal scales when observations from all stations 
(Fig. 4) and only 18 independent rain gauge stations 
(Fig. 5) are used. The raincloud plots for evaluation 
with all 82 rain gauge stations showed the median 
KGE for the three products was above 0.8 except 
for 501-1000 masl and above 1500 masl altitude. 
The KGE was remarkably lower during the JAS and 
OND seasons at 501-1000 masl and above 1500 masl 
altitudes (Fig. 4a). Considering the KGE and its 

Fig. 3. The skill of gridded precipitation estimates (GPE) from CHELSA-v2.1, CHIRPS-v2, 
and TerraClimate databases at four altitudinal levels (0-500, 501-1000, 1001-1500, and 
above 1500 m) during JFM (a), AMJ (b), JAS (c) and OND (d) seasons. The legend labels 
represent a combination of one satellite product and the altitudinal range in masl. All rain 
gauge stations are used.
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three decomposition values, the three GPPs showed 
relatively similar skill at 1001 – 1500 masl altitudinal 
range (Fig. 4a - d. Focusing on the individual KGE 
components, the temporal agreement (r) for all three 
GPPs was the lowest at the altitudinal range above 
1500 masl (0.72 > r < 0.76) but distinctively much 
lower during the OND season (Fig. 4b), signifying 
higher temporal mismatch compared to the observa-
tion rain gauge. This indicates that lower temporal 
agreement during the OND season at elevations 
above 1500 masl (Fig. 4b) had the strongest influence 
on overall KGE (Fig. 4a). The CHELSA-v2.1 data 
showed the highest median over-estimation bias at 

the 501 – 1000 (β= 1.24); Fig. 4c) and at >1500 masl 
altitudinal ranges (β= 1.125); Fig. 4c), and this bias 
was highest during the JAS season. At altitude > 
1500 masl, the individual KGE accuracy measures 
showed that CHELSA-v2.1 had the lowest median 
temporal agreement (r = 0.72; Fig. 4b), highest 
overestimation bias (β = 1.125; Fig. 4c) though it 
estimated the dispersion more accurately (α = 0.92; 
Fig. 4d) compared to the other two products. 

None of the 18 independent stations were located 
below 500 masl of altitude (Table SI), so the per-
formance at that range could not be independently 
verified. The KGE values derived from the evaluation 

Fig. 4. Raincloud plots showing the Kling-Gupta Efficiency (KGE) values and its three de-
composition values (correlation (r), bias (β), and dispersion (γ), which reflect the skill of the 
monthly gridded datasets from CHELSA, CHIRPS-v2 and TerraClimate (TC) to estimate 
all the rain gauge observations at four altitudinal levels (0 - 500, 501-1000, 1001-1500, and 
above 1500 masl). The satellites and seasons are labeled with different colors and shapes, 
respectively.
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with the independent stations only (Fig 5) were con-
sistently lower than when using all the rain gauge sta-
tions (Fig 4). The skill of the three GPPs, revealed by 
KGE and its decomposition values, was consistently 
the lowest on the 501-1000 masl altitudinal interval. 
The three GPPs showed relatively similar temporal 
agreement (Fig 5b) across the altitudinal ranges. Like 
results with all the stations, the independent observa-
tions showed that the CHELSA-v2.1 had the highest 
over-estimation bias at 501-1000 masl and >1500 
masl altitudinal ranges (Fig 5c). Still, CHELSEA-v2 
outperformed the other two products in replicating the 
dispersion of rainfall over space and time (Fig 5d). 

3.2 Annual precipitation trends
The CHELSA-v2.1 dataset overestimated the 
annual and seasonal precipitation trends over 
mountainous terrain over 1500 m.a.s.l and large 
inland waterbodies, e.g., Lake Victoria and Malawi 
(Fig. 6a, Fig. S1). Even at lower altitudes, the 
precipitation trends estimated from CHELSA-v2.1 
were the highest compared with the CHIRPS-V2 
and TC data. The precipitation trends derived from 
CHELSA-v2.1 data are overestimated. All three 
GPP products showed a significant increase in annu-
al precipitation across southern and western Zam-
bia, with differing magnitude (1 – 14 mm year-1) 

Fig. 5. Raincloud plots showing the Kling-Gupta Efficiency (KGE) values and its three 
decomposition values (correlation (r), bias (β), and dispersion (γ), which reflects the skill of 
the monthly gridded datasets from CHELSA, CHIRPS-v2 and TerraClimate (TC) to estimate 
observations from 18 independent rain gauge stations at four altitudinal levels (0 - 500, 501-
1000, 1001-1500, and above 1500 masl). The satellites and seasons are labeled with different 
colors and shapes, respectively. 
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and extent (Fig. 6). The CHIRPS-v2 and TC 
dataset revealed a significant annual precipitation 
increase in transboundary Lake Victoria North 
basin in Western Kenya and Eastern Uganda. 
Still, TC data showed a larger area with a sig-
nificant wetting that extended further to Central 
Uganda and North-western Kenya. Generally, the 
trends derived from CHIRPS-v2 and TC showed 
substantial convergence except in Tanzania 
(Fig. 6b-c). In Tanzania, CHIRPS-v2 showed a sig-
nificant wetting trend covering parts of Dodoma, 
Iringa, Singinda, Kagera, Mara, and Arusha regions 
(Fig. 6b). However, the TC revealed a drying trend 
across Tanzania that was significant in a portion of 
Tabora, Katavi, Morogoro, Lindi, Ruvuma, Pwani 
and Tanga regions (Fig. 6c). 

CHIRPS-v2 and TC datasets showed a drying 
trend in southern Lamu and Garissa counties along 
the Kenyan coast (Fig. 6b - c). CHIRPS-v2 revealed 
a drying trend over south-eastern Kenya (Kitui, 
Makueni, Machakos, Tharaka-Nithi counties), but 
the TC data returned contrasting results in that area 
(Fig. 6b-c). CHIRPS-v2 data showed a high magni-
tude drying trend (14 – 20 mm year–1) over Mount 
Kilimanjaro in Tanzania (Fig. 6b) that could be linked 
to systematic biases over the mountainous terrain, 
presented in Figures 2 – 4.

3.3 Seasonal precipitation trends
Seasonal analysis revealed that all the SPEs recorded 
a significant wetting trend (2 – 8 mm Season-1 year-1) 
in southwestern Zambia during the JFM (Fig. 7a, e, i) 
and OND seasons (Fig. 7d, h, l). Similarly, during the 
OND season, all the SPE products showed a low-mag-
nitude wetting trend with a differing spatial extent in 
Kenya (Fig. 7d, h, l). But still, CHELSA data returned 
unrealistic high trends (Fig. 7d). A drying trend dom-
inated in the AMJ and JAS seasons across the region 
but with varying spatial extent (Fig. 7b, c, f, g, j). The 
CHIRPS-v2 data showed a drying trend covering 
almost the entire ESA region during the JAS season 
(Fig. 7g). TC data captured a peak drying trend (0 – 6 
mm Season-1 year-1) during the AMJ season along the 
southern Lake Victoria basin in Tanzania, Rwanda, and 
Burundi and along the east African coastline (Fig. 7j). 

3.4 Comparing precipitation trends derived from 
the rain gauge stations and gridded products
Comparing the precipitation trends derived from 
the rain gauge stations and GPPs revealed diverse 
performance over space (stations) and time (seasons; 
Table II). At Morogoro Maji station, all the GPPs 
overestimated the annual drying trend compared 
to the trend derived from the rain gauge stations 
(Table II). At Msekera station, all the GPPs returned 

Fig. 6. The annual precipitation trends (mm year-1) over 38 years (1981 – 2018) derived from (a) CHELSA-v2.1, (b) 
CHIRPS-v2, and (c) TerraClimate (TC) products over Eastern and Southern Africa (ESA) region. The hatched lines 
represent areas with significant trends. The black-shaded areas over the trends derived from the CHELSA dataset (a) 
mask out areas with unrealistic values, presented separately in Fig. S1.
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a positive annual trend of different magnitudes. In 
both stations during the AMJ season, all the GPPs 
generally showed the opposite direction of the trend 
compared to the one from the rain gauge stations. 
During OND season in both stations, CHELSA-v2.1 
returned inconsistent trends compared to the rain 
gauge trend, but the other two GPPs showed sub-
stantial agreement.

4.	 Discussion
4.1 Validation of gridded precipitation products
Validation results revealed that the three GPPs had 
varied performance over temporal and altitudinal 
ranges. The three monthly GPPs data skill was 
generally high but performed less at elevations over 
1500 masl, especially during the OND season. At 
mountainous terrain above 1500 masl, CHELSA-v2.1 

Table II. Comparison of annual and seasonal precipitation trends derived from rain gauge 
stations and the gridded precipitation product.

Station Season Rain Gauge CHELSA-v2.1 CHIRPS-v2 TC

Morogoro Maji Annual –0.100 –1.952 –1.830 –3.317
JFM 1.771 2.350 0.737 0.052
AMJ 0.092 –2.249 –0.733 –1.501
JAS –0.013 0.075 –0.186
OND –2.188 0.604 –1.863 –1.355

Msekera Annual 5.589 8.672 2.465 1.065
JFM 6.875 4.423 0.729 0.646
AMJ 0.243 –0.103 –0.075 0.207
JAS 0.000 –0.003 –0.004
OND 0.840 5.505 0.583 0.029

Fig. 7. Seasonal precipitation trends (mm Season-1 year-1) for 38 years (1981 – 2018) derived from CHELSA-v2.1 
(a-d), CHIRPS-v2 (e - h) and TerraClimate (TC; i - l) products over Eastern and Southern Africa (ESA) region. The 
hatched lines represent areas with significant trends.
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had lower performance than the other two products 
but outperformed others at 0-500 masl elevation. The 
KGE results showed that at altitudes over 1500 masl, 
CHELSA-v2.1 had the lowest temporal agreement 
with the rain gauge (r), which could result from 
temporal changes in the density of observation data. 
At mountainous terrain above 1500 masl, the GPPs 
could have failed to capture the orographic rain-form-
ing process due to poor calibration since precipitation 
gauge networks are sparser in high elevations with 
limited accessibility (Lundquist et al., 2019). This 
phenomenon significantly affected CHELSA-v2.1 
data, suggesting that its reanalysis model failed to 
capture orographic processes and air masses move-
ments over mountainous terrain and inland lakes. 
Even when the CHELSA-v2.1 dataset was expected 
to perform better over mountainous landscapes since 
the precipitation algorithm incorporated orographic 
predictors such as wind fields, valley exposition, and 
boundary layer height with subsequent bias correc-
tion (Karger et al., 2017). Similarly, Bobrowski et al. 
(2021) reported that CHELSA-v2.1 data presented 
distorted precipitation amounts over the Himalayas 
mountains in Nepal, possibly due to interpolation of 
station biases in areas with low density of stations in 
windward or leeward side (Bobrowski et al., 2021). 
Kimani et al. (2017) reported underestimation bias 
from CHIRPS-v2 at high elevations in East Africa, 
especially during the OND season, attributed to chal-
lenges in capturing orographic precipitation due to 
poor rain gauge distribution. Estimating orographic 
rainfall is a substantial challenge for many satellite 
products (Diem et al., 2014). Therefore, adding more 
station data can improve the rainfall estimates in high 
elevations. 

Although the station data are not a direct input 
to the downscaling model for generating the TC 
product, the product is derived from the WorldClim 
data (Fick and Hijmans, 2017) that was generated by 
interpolating the station data. The biases of the TC 
data at elevations above 1500 masl could be error 
propagation from input data to the retrieval algorithm. 
Our results emphasize the importance of validating 
climate datasets to avoid error propagation in differ-
ent models and applications. Our results reveal that 
the three algorithms, particularly the CHELSA-v2.1, 
need further calibration over the ESA region’s moun-
tainous and inland water bodies. The  CHELSA-v2.1 

data could be improved by replacing ERA-Interim 
with ERA-5 in the downscaling algorithm, as the 
former has shown a substantial reduction of precipi-
tation bias in the ESA region (Gleixner et al., 2020). 

The independent evaluation showed slightly lower 
accuracy than all stations, including those ingested 
in the original algorithm. Interestingly, both the 
non-independent and the independent assessments 
consistently revealed that CHELSA-v2.1 had the 
highest over-estimation bias but outperformed the 
other two GPPs in capturing the dispersion of rainfall. 
The lower skill in the independent evaluation could 
be linked to several factors. First, biases were signifi-
cantly reduced at the locations where data from the 
non-independent stations were ingested in the retriev-
al algorithms of the GPPs, resulting in an improved 
agreement between observations and the GPPs. 
Also, it could result from little or low data quality 
in the independent stations. As noted by Dinku et al. 
(2018), most of the independent rain gauge stations 
are maintained by volunteers; therefore, their quality 
may not be as good as those collected by professional 
meteorologists. The evaluation with independent rain 
gauge stations is inconclusive, given the few stations. 
Further independent assessment is recommended 
once more observation datasets are available. 

The paucity of rain gauge data in Africa can be 
addressed by increased investments in automatic 
weather stations like the initiative promoted by the 
Trans-African Hydro-Meteorological Observatory 
(TAHMO; van de Giesen et al., 2014) that plan to 
install over 20000 stations across sub-Sahara Africa. 
Moreover, the Enhancing National Climate Services 
(ENACTS; Dinku, 2019) initiative has dedicated 
efforts to creating capacity and tools for data quality 
control. 

4.2 Trend Analysis of Climatic Variables
The CHELSA-v2.1 dataset showed unrealistic trends 
in mountainous terrain located over 1500 masl and 
large inland waterbodies due to the overestimation 
biases observed in the KGE accuracy assessment. 
Therefore, annual precipitation trends derived from 
CHELSA-v2.1 data are unreliable and should be in-
terpreted cautiously. Generally, the skill and the pre-
cipitation trends derived from the CHIRPS-v2 and TC 
datasets in the ESA region closely matched (except 
in Tanzania), revealing the potential of the statistical 
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downscaling method in estimating precipitation over 
areas with low density of rain gauge stations like the 
ESA region. However, in West Africa, the monthly 
CHIRPS-v2 was more accurate than TC (Muthoni, 
2020). Therefore, the skill of the GPPs varies over 
space and time. 

The coarser resolution ERA-Interim and ERA-5 
reportedly produced inconsistent precipitation 
trends in East Africa compared to CHIRPS-v2 data 
(Gleixner et al., 2020). This led to the conclusion 
that reanalysis data is unsuitable for trend analysis. 
The reanalysis data inherits characteristics of the 
parent dataset, i.e., ERA-Interim and CRUTs4.0 
for CHELSA-v2.1 and TC, respectively. Therefore 
they may not capture the temporal variability in 
orographic precipitation ratios and inversions at 
finer scales than their parent datasets (Abatzoglou 
et al., 2018). This limitation can partly explain the 
difference between the trends derived from the 
rain gauge stations and GPPs over space and time. 
However, in a recent evaluation of the three GPPs 
over mountainous terrain in Java, the TC emerged 
as the most accurate and reliable in representing the 
temporal dynamics of the precipitation compared 
to the CHIRPS-v2 and CHELSA-v2.1 (Dumont et 
al., 2022). Similarly, our results suggest remark-
able improvements in TC’s statistical downscal-
ing. Nonetheless, the trends generated by TC and 
CHIRPS-v2 over Tanzania showed substantial 
differences. TC data showed a drying trend over 
Tanzania that was significant in small portions, but 
CHIRPS-v2 showed a low magnitude but statis-
tically significant wetting trend over the Kagera, 
Mara, Arusha, Shinyanga, Dodoma, Singinda, and 
Iringa regions of Tanzania. The opposite direction 
of the trends between the two products in Tanzania 
warrants further explanation. 

Generally, CHIRPS-V2 produced low-magnitude 
trends compared to the MRA products. This could 
be linked to the CHIRP climatology, which has low 
bias. The CHIRP data set is calculated as a percent 
anomaly multiplied by the climatological mean. 
When this mean is low, the precipitation estimated 
by the CHIRPS-v2 algorithm will almost always be 
low (Harrison et al., 2019). This bias correction is 
known to reduce the rainfall variance in the CHIRPS, 
especially in drier locations, and this may explain 
the low magnitude trends from CHIRPS-v2 than in 

the other two products. Considering this aspect, the 
trends estimated from CHIRPS-V2, especially in 
drylands, could be regarded as conservative. 

Our results show a convergence of evidence sug-
gesting wetting trends over Southern and Western 
Zambia for annual and seasonal precipitation. These 
wetting trends occur largely in rangelands with annu-
al rainfall ranging between 500 – 1000 mm (Fig 1a). 
Muthoni et al. (2019) also observed a similar an-
nual precipitation trend in the same area using the 
CHIRPS-v2 dataset. The significant wetting in Zam-
bia was observed during OND and JFM seasons that 
coincide with the growing season, suggesting reduced 
soil moisture stress in the area that can boast crop 
yields. The wetting trends in Western and Southern 
regions of Zambia occur in rangelands with annual 
rainfall ranging between 500 – 1000 mm (Fig 1a); 
therefore, the wetting trends can reduce moisture 
stress. However, a large part of the Lake Victoria 
north basin experiences annual average rainfall over 
1500 mm (Fig 1a); hence, further increase in moisture 
can exacerbate flooding.

5.	 Conclusions
Our analysis evaluated the skill of three gridded 
precipitation products (GPP) with varying spatial 
resolution in estimating the rain gauge station 
network observations and compared the long-term 
precipitation trends derived from these products. 
Validation results revealed that the three GPPs had 
varied performance over temporal and altitudinal 
ranges. CHELSA-v2.1 had a lower skill than the 
other two products. Our results demonstrate that 
estimating orographic rainfall remains challenging 
for the GPPs. The importance of validating climate 
datasets is emphasized to avoid error propagation in 
different models and applications. Our results further 
demonstrate that new or higher-resolution precipi-
tation data is not always the most accurate since an 
algorithm update can introduce artifacts or biases. 
Results elucidate the strengths and shortcomings of 
the three gridded precipitation products over time and 
space to guide their application in different contexts 
and sectors. There is a convergence of evidence on 
decreasing moisture stress in Zambia that can boost 
crop productivity in the predominantly rainfed farm-
ing system.
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SUPPLEMENTARY MATERIAL

Table SI. List of rain gauge stations and data gaps. The bolded rows represent the independent stations not ingested 
in initial algorithms for gridded products.

ID Country Station Lat Long Altitude Start End Counts 
(Months)

Data
Gap (%)

1

Kenya

Alupe 0.470 34.120 1179 1981 2004 288 36.8
2 Bomet –0.780 35.330 1926 1981 2000 240 47.4
3 Bungoma Water Service 0.580 34.570 1409 1981 2004 288 36.8
4 Butere 0.280 34.500 1294 1981 1991 132 71.1
5 Crescent Island Naivasha –0.775 36.407 1895 1981 2010 360 21.1
6 Garissa –0.467 39.633 136 1981 2003 188 58.8
7 Gilgil Kwetu farm –0.344 36.303 2376 1981 2010 357 21.7
8 Homabay –0.530 34.470 1195 1981 2004 288 36.8
9 Jomo Kenyatta Inter. Airport –1.317 36.917 1622 1981 2018 209 54.2
10 KARI Naivasha –0.690 36.402 1904 1981 2010 360 21.1
11 Kijabe Naivasha –0.817 36.267 1883 1983 2010 336 26.3
12 Kitale 1.016 35.000 1882 1981 2018 117 74.3
13 Mandera 3.933 41.867 223 1981 1998 203 55.5
14 Mombasa –4.033 39.617 56 1981 2008 215 52.9
15 Tinderet Tea 0.020 35.350 1775 1981 2004 288 36.8
16

Malawi

Bolero –10.967 33.733 1107 1981 1990 110 75.9
17 Bvumbwe –15.917 35.067 1147 1981 1990 112 75.4
18 Chichiri –15.783 35.033 1099 1981 1990 109 76.1
19 Chileka –15.683 34.967 762 1981 2017 118 74.1
20 Chinguluwe –13.690 34.240 647 2008 2018 82 82
21 Chipeni –13.791 34.056 1077 2005 2018 91 80
22 Chitedze –13.983 33.633 1152 1981 1990 113 75.2
23 Chitipa –9.700 33.267 1279 1981 1990 108 76.3
24 Dedza –14.317 34.267 1687 1981 1990 112 75.4
25 Herbert –14.886 35.036 642 2007 2018 83 81.8
26 Karonga –9.950 33.883 539 1981 1990 111 75.7
27 Lemu –14.785 35.024 669 2006 2018 97 78.7
28 Linga –12.800 34.200 531 2008 2018 79 82.7
29 Makanga –16.517 35.150 47 1981 1990 100 78.1
30 Makoka –15.517 35.217 1027 1981 1990 110 75.9
31 Malula –14.958 34.985 610 2005 2018 105 77
32 Mangochi –14.433 35.250 474 1981 1990 111 75.7
33 Matandika –15.167 35.257 684 2006 2018 98 78.5
34 Mimosa –16.082 35.583 617 1981 1990 96 78.9
35 Mwansambo –13.278 34.111 653 2008 2018 83 81.8
36 Mzimba –11.883 33.617 1329 1981 1990 112 75.4
37 Mzuzu –11.450 34.017 1256 1981 1990 112 75.4
38 Nkhata Bay –11.600 34.300 497 1981 1990 111 75.7
39 Nkhota Kota –12.917 34.267 483 1981 1990 111 75.7
40 Salima –13.750 34.583 508 1981 1990 111 75.7
41 Thyolo –16.149 35.217 631 1981 1990 109 76.1
42 Zidyana –13.231 34.214 567 2008 2018 81 82.2
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Table SI. List of rain gauge stations and data gaps. The bolded rows represent the independent stations not ingested 
in initial algorithms for gridded products.

ID Country Station Lat Long Altitude Start End Counts 
(Months)

Data
Gap (%)

43

Tanzania

Arusha –3.333 36.633 1467 1981 1989 108 76.3
44 Bukoba –1.333 31.817 1142 1981 2012 380 16.7
45 Dar es salaam Airport –6.867 39.200 55 1981 2017 60 86.8
46 Iringa –7.633 35.767 1364 1981 1990 111 75.7
47 Kilimanjaro Airport –3.417 37.067 898 1981 1990 110 75.9
48 Morogoro Maji –6.818 37.660 512 1981 2018 456 0
49 Moshi –3.350 37.333 856 1981 1989 108 76.3
50 Mtwara –10.267 40.183 20 1981 2017 116 74.6
51 Musoma –1.500 33.800 1147 1981 2014 408 10.5
52 Mwanza –2.467 32.917 1150 1981 2015 420 7.9
53 Same –4.083 37.717 899 1981 1990 109 76.1
54 Shinyanga Maji –3.668 33.319 1190 1981 2010 354 22.4
55 Shinyanga Met –3.661 33.413 1137 1985 2012 327 28.3
56 Tabora Airport –5.083 32.833 1178 1981 2014 119 73.9
57 Tengeru –3.383 36.867 1133 2005 2018 161 64.7

58

Zambia

Chipata –13.550 32.583 999 1981 1990 120 73.7
59 Choma –16.833 27.067 1272 1981 1990 119 73.9
60 Kabompo –13.600 24.200 1099 1981 1990 112 75.4
61 Kafue Polder –15.767 27.917 977 1981 1990 120 73.7
62 Kaoma –14.800 24.800 1162 1981 1990 119 73.9
63 Kasama –10.217 31.133 1396 1981 1990 120 73.7
64 Kasempa –13.533 25.850 1181 1981 1990 120 73.7
65 Livingstone –17.817 25.817 995 1981 1990 120 73.7
66 Lundazi –12.283 33.200 1149 1981 1990 118 74.1
67 Malende –16.240 27.430 1104 2005 2018 106 76.8
68 Misamfu –10.100 31.250 1372 1981 2018 311 31.8
69 Mongu –15.250 23.150 1053 1981 1990 120 73.7
70 Mount Makulu –15.550 28.250 1227 1981 1990 120 73.7
71 Msekera –13.650 32.570 1026 1981 2018 453 0
72 Mwinilunga –11.750 24.433 1321 1981 1990 120 73.7
73 Ndola –13.000 28.650 1263 1981 1990 120 73.7
74 Serenje –13.233 30.217 1406 1981 1990 113 75.2
75 Sesheke –17.467 24.300 958 1982 1990 107 76.5
76 Solwezi –12.183 26.383 1373 1981 1990 120 73.7
77 Zambezi –13.533 23.117 1076 1981 1990 118 74.1

78
Uganda

Jinja 0.450 33.183 1123 1981 1986 60 86.8
79 Luweero 1.067 32.467 1073 1981 2016 396 13.2
80 Tororo 0.683 34.167 1176 1981 1986 60 86.8

81 Burundi Bujumbura –3.317 29.317 778 1981 1989 108 76.3
82 Muyinga –2.833 30.333 1681 1981 1989 106 76.8
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Fig. S1. A zoom-in of the precipitation trends estimated from CHELSA-v2.1 shows an overestimation over the ESA 
region’s mountainous and inland water bodies.


