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RESUMEN

En este estudio se investigó la precisión del modelo basado en cópulas para simular la temperatura del punto 
de rocío en varios climas de Irán, utilizando para ello simulaciones basadas en las cópulas de vid C, D y R. 
Al examinar diversas cópulas de vid y sus secuencias de árboles, se realizó la selección de la mejor cópula y 
secuencia de árboles según los criterios AIC, BIC y logaritmo de la verosimilitud. Los resultados mostraron 
que entre las cópulas de vid C, D y R, las cópulas de vid C y D se ajustan bien a las temperaturas mínima y 
máxima del aire y la temperatura del punto de rocío. Los resultados de la simulación se analizaron utilizando 
la raíz del error cuadrático medio (RMSE, por su sigla en inglés), coeficiente de eficiencia de Nash-Sutcliffe 
(NSE) y diagramas de violín. Los resultados mostraron que el modelo basado en cópula tiene una alta preci-
sión en todas las estaciones. El RMSE mínimo (máximo) está relacionado con la estación Kerman (Ahvaz) 
con RMSE = 0.396 oC (0.617 oC). Además, el NSE mínimo (máximo) está relacionado con la estación Ahvaz 
(Urmia) con NSE = 0.925 (0.955). También, de acuerdo con la trama del violín, es posible ver la certeza 
aceptable del modelo basado en la cópula. Debido a la diversidad de las secuencias de árboles de las cópulas 
de vid y al uso de los estados rotacionales de las cópulas de vid internas, así como a la posibilidad de interferir 
con los parámetros efectivos en dimensiones altas, los resultados de la simulación son confiables y no tienen 
restricciones. Este modelo es el mejor para estimar la temperatura del punto de rocío debido a la cobertura 
total del rango de cambios en los datos.

ABSTRACT

In this study, the accuracy of the copula-based model in the simulation of the dew point temperature in various 
climates of Iran was investigated, using simulations based on vine copulas such as C-, D-, and R-vine copulas. 
By examining the various vine copulas and their tree sequences, the best copula and best tree sequence based 
on AIC, BIC, and log-likelihood were selected. The results show that based on the complete similarity in our 
case between C-, D- and R-vine copulas, the selected best C-vine copulas fit well the dependence between the 
minimum and maximum air temperatures and dew point temperature. The simulation results were analyzed 
using root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE) coefficient, and violin plots. The 
results show that the copula-based model has high accuracy at all stations. The min (max) RMSE is related 
to Kerman (Ahvaz) station with RMSE = 0.396 oC (0.617 oC). Also, the min (max) NSE is related to Ahvaz 
(Urmia) station with NSE = 0.925 (0.955). Also, according to the violin plot, it is possible to appreciate the 
acceptable certainty of the copula-based model. Due to the diversity of the tree sequences of vine copulas 
and the use of the rotated states of the internal vine copulas, as well as the possibility of interfering with the 
effective parameters in high dimensions, the simulation results are reliable and have no restrictions. This 
model can be used as the best model to estimate dew point temperature due to the full coverage of the range 
of changes in data.
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1. Introduction
Access to accurate dew point temperature (DPT) 
data is important in different fields such as climate, 
agriculture, and hydrology. DPT is the temperature 
where air reaches its lowest pressure point to satu-
rate. Radiation exchange between the atmosphere 
and the Earth’s surface, water vapor pressure, and 
turbulent heat are the main factors influencing the 
formation of dew (Nazeri-Tahroudi and Ramezani, 
2020). Shank et al. (2008) used artificial neural 
networks (ANN) to predict DPT for improvement 
in previous research, which included optimizing 
stop criteria and comparing seasonal models with 
year-round models by developing ANN to combine 
the results of seasonal models. They concluded that 
the methods used in their study had been effective in 
more accurately predicting the DPT during the year. 
Zounemat-Kermani (2012) evaluated the multiple 
linear regression and Levenberg-Marquardt (LM) 
models to estimate DPT in Ontario, Canada. By 
examining the mentioned models, they established 
that the LM model provides more accurate results 
than the other one. Nadig et al. (2013) used ANN 
models to predict air temperature and hourly DPT 
for 12 horizons. They improved the forecast ac-
curacy of ANN models by combining two climate 
variables into a single ANN model for each forecast 
horizon. Combined models generated air tempera-
ture reduction for 10 of the 12 forecast horizons 
with an average MAE reduction of 1.93%. The 
hybrid models showed a significant reduction in the 
prediction anomalies for each of the 12 predicted 
horizons with an average reduction of 34.1%. Shiri 
et al. (2014) evaluated the accuracy of the ANN and 
Gaussian process (GP) models for estimating DPT 
in Korea. The results indicated that the performance 
of the ANN model is worse than the GP model. 
Kim et al. (2014) estimated DPT data on a daily 
scale in California (USA) using two soft computing 
techniques. By using the conventional regression 
model, the results indicated that soft computing 
techniques were more flexible and accurate to esti-
mate daily DPT. Mohammadi et al. (2016) resorted 
to the ANFIS model to predict DPT data, using 
daily minimum air temperature, average air tem-
perature, maximum air temperature, atmospheric 
pressure, relative humidity, horizontal global solar 
radiation, water vapor pressure, and sunshine hour 

at two stations in Iran. They reported that the use of 
two series of water vapor pressure and daily mini-
mum temperature increases the prediction accuracy 
of DPT. Baghban et al. (2016) used two statistical 
learning models, namely the least square support 
vector machine and the ANFIS model to predict 
DPT. A genetic algorithm was applied to optimize 
the parameters of the models. In this regard, a set 
of available data including 1300 data points were 
collected from the dew point of humid air in the 
temperature range between 0-50 °C. They stated 
that the present tools could be of great practical 
value to engineers and researchers, as precision 
instruments for simulating DPT. Mehdizadeh et al. 
(2017) used gene expression programming to esti-
mate the daily FPT in two stations in northwestern 
Iran. They used different combinations of inputs. 
Their results showed that actual vapor pressure (ea) 
is the most effective parameter in dew point tem-
perature estimation. Nazeri-Tahroudi and Ramezani 
(2020) simulated DPT in various climates of Iran 
using support vector regression (SVR) and the ant 
colony optimization algorithm. To implement the 
optimized SVR model, different patterns including 
1, 2, 3 and 7 inputs were used. Finally, the Pattern 
III (with two inputs including maximum and mini-
mum air temperatures) was selected as the best one. 
Mehdizadeh et al. (2022) used nature-inspired opti-
mization algorithms to estimate daily DPT at Rasht 
and Urmia stations, Iran. Optimization algorithms 
including the bee dragonfly algorithm and colony 
optimization were used in combination with the 
ANFIS model. The results showed that combining 
the dragonfly algorithm with ANFIS provided the 
most accurate results for both selected stations. 
Dong et al. (2022) simulated DPT using the opti-
mized grasshopper algorithm (hybrid extreme gra-
dient boosting with the grasshopper optimization 
algorithm [GOA-XGBoost]). The results showed 
that the GOA-XGBoost model had the best per-
formance when compared to the random forest and 
XGBoost models. On a daily time scale, the random 
forest model overestimated results in the validation 
step. They also suggested that in future studies, 
the GOA-XGBoost model with ea as input should 
be examined. Zhang et al. (2022) used the ANFIS 
method as a data-based technique to estimate the 
DPT. The results showed that this method is able 
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to identify the data pattern with high accuracy. In 
addition, this study fully compares ANFIS with two 
layer neural network models at different scales in 
which the ANFIS model provided high accuracy. 

Various studies in the field of simulation and 
modeling of different meteorological and hydrolog-
ical parameters show that the copula function has 
recently been considered by several researchers. 
Copula-based simulation has the best acceptable 
certainty due to the involvement of proportional 
data distribution in modeling and simulation as well 
as the use of conditional density of copula functions 
(de Michele and Salvadori, 2003; Salvadori and de 
Michele, 2004, 2007, 2010; de Michele et al., 2005; 
Salvadori et al., 2007, 2011; Tahroudi et al, 2020a,b; 
Khashei-Siuki et al., 2021). Copula functions in-
crease the accuracy of simulations and improve their 
certainly by considering the marginal distribution of 
data in simulations. In addition, by increasing the 
dimension of simulations using the vine copulas, 
the effect of various parameters can be involved in 
the simulations (Nazeri-Tahroudi et al., 2022). Vine 
copulas with a wide variety of tree sequences allow 
the selection of different structures that improve the 
results. Khashei-Siuki et al. (2021) used vine cop-
ulas to simulate the potential of evapotranspiration 
at Birjand meteorological station, Iran. The results 
of the simulation of the potential evapotranspiration 
given by precipitation, air temperature and relative 
humidity using vine copulas showed a Nash-Sutcliffe 
efficiency (NSE) coefficient of 92%. The efficiency 
of the C-vine copula in the analysis of dependence 
and the results of the potential evapotranspiration 
simulation indicate the ability of vines in multivariate 
analysis.

Given the above, it will be difficult to provide a 
model for all regions of Iran due to different climates. 
Therefore, different models should be examined and 
validated in different climates, which is negligible in 
the case of copula-based models for this limitation. 
Due to the use of marginal distribution appropriate 
to the input data in copula-based models, the data 
conditions regardless of the required correlation 
will not interfere in the simulations. Therefore, in 
this study, by examining different vine copulas (C-, 
D- and R-vine), the performance of the copula-based 
model to predict DPT using minimum and maximum 
air temperatures (according to the Pattern III with 

two inputs in the study of the Nazeri-Tahroudi and 
Ramezani [2020]) in five different climates of Iran 
was studied and compared.

2. Materials and methods
2.1 Study area
Iran is located in Asia between 25º-40º N and 
44º-64º E, comprising an area of more than 
1648 000 km2 (Khalili et al., 2016). The climate of 
Iran includes the four seasons of the year in most 
parts. Minimum and maximum air temperature data 
for the period 1951-2014 were used in Urmia, Ah-
vaz, Babolsar, Kerman, Gorgan and Rasht stations 
(located in different climates of Iran), according 
to the optimized support vector regression (SVR) 
model in pattern III of the Nazeri-Tahroudi and 
Ramezani (2020) study with the two mentioned 
inputs. The studied climates were selected based 
on this study. Using actual and saturation vapor 
pressure, and average, minimum and maximum air 
temperature, as well as the FAO Penman-Monteith 
method, DPT values of the studied stations were 
calculated (Nazeri-Tahroudi and Ramezani, 2020). 
Finally, the DPT data extracted from the FAO 
Penman-Monteith method are simulated with the 
studied stations’ minimum and maximum air tem-
peratures using a copula-based model and three-di-
mensional analysis. Figure 1 shows the study area 
and the location of the studied stations. The char-
acteristics of the studied meteorological stations 
are also presented in Table I (Nazeri-Tahroudi and 
Ramezani, 2020). Figure 2 shows the studied data 
in the selected stations.

2.2 R-vine Structure
R-vine copula is a general form of vine copulas, more 
flexible due to its high range of tree sequences and 
structures. This type of copula has a high flexibility, 
being able to select different structures with different 
tree sequences in each level (Morales-Nápoles, 2010; 
Nazeri Tahroudi et al., 2021).

According to Dißmann et al. (2013):
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where e = a, b, xDe = De, and xDe = xi ǀ i  De.
The log-likelihood function of the R-vine with 

parameter θRV and E1, E2,..., Ed–1 is calculated based 
on Eq. (2):
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where ui = (ui,1,..., ui,d)'  [0,1]d, 1,...N · cj(e),k(e)ǀD(e) 
equal to the bivariate copula density with edge e and 
parameter θj(e),k(e)ǀD(e).

2.3 C- and D-vine structures
The drawable vine (D-vine) and canonical vine 
(C-vine) are two common structures of vines (Li et 
al., 2021). It is necessary to mention that the tree se-
quence of the vine copula in three dimensions is the 
same in C-, D-, and R-vine. An example of D-vine 
(right) and C-vine (left) are presented in Fig. 3 in 
three dimensions, according to which only the order 
of the nodes is different.

The main difference between C- and D-vine 
copulas is their tree sequence and the choice of roots 
and nodes in more than three dimensions. The C-vine 
copula has a star shape in the tree sequence, while the 
D-vine copula has a straight structure (Li et al., 2021). 
Similarly, in tree T2 of the C-vine copula (Fig. 3, left), 
e = 2,3|1 is the edge; 1,3 and 1,2 are called node and 
root, respectively, while for the D-vine copula (Fig. 3, 
right), e = 3,2|1 is the edge, and 3,1 and 1,2 are 
called the node and root, respectively. Based on Aas 
and Berg (2009), the multivariate density of C-vine 

Table I. Annual statistics of stations used in the study.

ClimateTmax
(ºc)

Tavg
(ºc)

Tmin
(ºc)

Station

Moderately dry23.7411.280.01Urmia
Dry37.9126.1013.41Ahvaz
Wet26.8516.808.71Babolsar
Dry29.8917.030.55Kerman

Mediterranean31.4917.757.56Gorgan
Extremely wet23.9716.226.04Rasht

Source: (Nazeri-Tahroudi and Ramezani, 2020).
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Fig. 1. Location map of the selected stations in Iran (source: Naze-
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and D-vine copulas are similar to Eqs. (3) and (5), 
respectively:
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where ci,i+jǀ1:(i–1) is the density of the bivariate copula 
with the parameter θi,i+jǀ1:(i–1) (ik, im means: ik,..., im). 
The performance of the log-likelihood function for 
the C-vine copula with the parameter θCV is:
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where Fjǀi1:im = F(uk,j ǀ uk,i1,..., uk, im).
The density of a D-vine copula is as follows:
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where the output has more than d-1 tree and the 
pair-variables are determined by the input in each 
tree. The common definition of both C- and D-vine 
structures in three dimensions is:
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2.4 Simulation based on vine copulas
Simulations based on R-vine copulas were presented 
originally in Bedford and Cooke (2001). Kurowicka 
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Fig. 2. Initial changes of the studied series at selected 
stations. (a) Minimum air temperature, (b) maximum air 
temperature, (c) dew point temperature
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and Cooke (2005), Aas et al. (2009), and Czado, 
2019 developed sampling algorithms for the C-vine 
and D-vine copulas. The following steps were 
presented to achieve a sample u1, . . . , ud from a d 
variate copula:
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Determining the Cj|j–1,...,1, j = 1…,d conditional 
functions is needed to construct the pair-copula. For 
the desired conditional distribution function, this 
gives an iterative expression using the h-functions, 
which can be easily inverted recursively (Czado, 
2019). To determine the conditional distribution 
functions Cj|j–1,...,1, j = 1…,d that are required for 
the pair copula structure, the equation for the con-
ditional distribution function is used together with 
the h-function. For the bivariate copula Cij (ui, ui; θij 
with parameter θi j, h, functions are defined as follows 
(Aas et al., 2009): 

( ) ( )i\ j i j ij ij i j ij
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The above equations can be calculated using 
BiCop() function in R (Aas et al., 2009; Bevacqua 
et al., 2017). 

2.5. Evaluation criteria
The Bayesian information criterion (BIC), root mean 
square error (RMSE), Akaike information criterion 
(AIC) and log likelihood commonly applied to select 
the best copula (Nash and Sutcliff, 1970; Harville, 
1974; Zhang and Singh, 2006; Ma and Sun, 2011; 
Khozeymehnezhad and Nazeri-Tahroudi, 2020; 
Nazeri Tahroudi et al., 2021; Raji et al., 2022). 
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where p̅i and pi are equal to the simulated and ob-
served values, respectively. N is the number of data, 
m is the number of parameters and L is the maximum 
value of the probability function for the model. pave  
is the mean of observed values. The calculations were 
done in the R environment using packages Vine-
Copula and CDVineCopulaConditional (Brechmann 
and Schepsmeier, 2013; Bevacqua et al., 2017). The 
flowchart of the proposed methodology is presented 
in Figure 4.

3. Results and discussion 
The first step is to examine the correlation of the 
studied variables using Kendall’s tau, which is the 
basis of copula research. As mentioned, the correla-
tion between minimum and maximum air tempera-
tures of the studied stations, was investigated using 
Kendall’s tau. The results (Table II) in the study area 
show that there is an acceptable correlation between 
minimum and maximum air temperatures, and dew 
point temperature at all stations. Therefore, the main 
and initial condition of simulation and study of copula 
functions is satisfied.

3.1 Investigation of tree sequences of the studied 
variables
In this study, common marginal distributions in 
hydrology and water resources were used to check 
the marginal distributions according to the studied 
data. The best marginal distributions were selected 

Preparation of studied data (Tmin, Tmax, DPT) in monthly scale

Estimation of Kendall’s tau and marginal distributions

Choosing the best tree sequences of vine copulas

Estimation of conditional density of copula functions and
copula-based simulation

Fig. 4. Flowchart of the proposed methodology.
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using two statistics RMSE and NSE and presented 
in Table III. According to Table III, GEV is the best 
distribution on the studied data.

In this study, after confirming the correlation 
between the studied variables and selecting the best 
marginal distribution based on Table III, the vine 
copulas and their tree sequences were investigated. 
In this regard, the types of copula functions related 
to this family, including C-, D- and R-vine copulas, 
and their independent and dependent states, were 
investigated. Table IV presents the results of the 
best tree sequences of the mentioned copulas. It 
should be noted that AIC, BIC and log-likelihood 
statistics were used to select the best tree sequence 
and the best copula. Since the tree sequence of the 
vine copula in three dimensions is the same in C-, 
D-, and R- vine, in this study, C-vine was chosen as 
the best vine copula. By examining vine copulas in 
the multivariate simulation of dew point temperature 
given by Tmin and Tmax, the best tree sequence of 
C-vine was introduced as Table IV, where it can be 
seen that the selected tree sequences were well able 
to maintain correlation to the last tree. Also, rotated 
copulas were used to cover the correlation in all di-
rections. Rotated copulas examine the correlation in 
different directions such as 90, 180 and 270 degrees. 
In the first and second trees, at most of the studied 
stations, the Frank copula was selected as the best 
copula function.

3.2 Copula-based simulation 
Finally, by confirming the tree sequence of the studied 
vine copulas, the copula-based simulation of dew 
point temperature given by the minimum and max-
imum air temperatures was obtained at all studied 

stations. Figure 5 shows the simulation results of 
DPT at the Urmia station.

Figure 6 shows RMSE and NSE resulting from 
the simulation of DPT using the copula-based model. 
The lowest RMSE (0.396 oC ) is related to Kerman 
station and the highest (0.617 oC) that is related to 
Ahvaz station. The NSE of the copula-based model in 
the simulation of DPT at all studied stations is higher 
than 90%, being the lowest (highest) related to Ahvaz 
station (Urmia station) with NSE of 925% (955%). In 
the optimized SVR model obtained from the study of 
the Nazeri-Tahroudi and Ramezani (2020), Pattern I 
(with seven inputs) and Pattern III (with two inputs) 
were introduced as the best models. Based on the 
number of inputs used in Pattern I, these researchers 
introduced Pattern III with two inputs (minimum 
and maximum air temperatures) as the best model 
(recommended as more user-friendly); however, 
Pattern I has yielded better results. The results of 
the copula-based model showed that compared to 

Table III. Best marginal distributions of the studied data.

NSERMSEMarginal 
distribution

ParameterStation

0.956.47GEVTminAhvaz
0.965.66GEVTmax
0.965.51NormalDPT

0.975.21GEVTminBabolsar
0.984.27GEVTmax
0.966.11NormalDPT

0.965.63RayleighTminGorgan
0.993.38GEVTmax
0.965.75GEVDPT

0.975.22GEVTminKerman
0.974.79GEVTmax
0.993.52GEVDPT

0.965.42RayleighTminRasht
0.956.49RayleighTmax
0.975.15NormalDPT

0.974.94NormalTminUrmia
0.984.29GEVTmax
0.993.24GEVDPT

RMSE: root mean square error; NSE: Nash-Sutcliffe 
efficiency; GEV: generalized extreme value; DPT: dew-
point temperature.

Table II. Results of the correlation between minimum 
(Tmin) and maximum (Tmax) air temperature, and dew point 
temperature (DPT) using Kendall’s tau.

Station Tmin-Tmax Tmin- DPT Tmax- DPT

Ahvaz 0.874 0.823 0.803
Babolsar 0.742 0.839 0.680
Gorgan 0.715 0.839 0.643
Kerman 0.836 0.806 0.770
Rasht 0.845 0.789 0.789
Urmia 0.874 0.871 0.797
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Pattern I and Pattern III (based on the optimized 
SVR model), the copula-based model has a higher 
accuracy according to the RMSE. The percentage 
of improvement of the RMSE in the copula-based 
model compared the Pattern I and Pattern III in the 
study of Nazeri-Tahroudi and Ramezani (2020) is 
presented in Table V.

In Table V it can be seen that the copula-based 
model provides more RMSE than Pattern I at two 
stations (Gorgan and Ahvaz stations). However, 
compared to the proposed method of Nazeri-Tahroudi 
and Ramezani (2020), the results show that the cop-
ula-based model is more accurate at all stations and 
has improved the average accuracy by about 38%. 
In addition to the RMSE, the NSE of the model was 
evaluated and the percentage improvement of the 

NSE of the copula-based model compared to patterns 
I and III is presented in Table VI.

Using the results of Table VI, it can be seen that 
similarly to RMSE, NSE of the copula-based model 
in the simulation of DPT compared to the Pattern I 
at Urmia, Kerman, Babolsar and Rasht stations in-
creased by 0.95, 1.27, 0.107 and 2.71%, respectively. 
This increase in NSE values is also present in the 
simulation of DPT using the copula-based model 
compared to Pattern III at all stations. On average, 
the copula-based model was able to increase the 
NSE of the copula-based model by 6% at all studied 
stations. In order to evaluate the certainty of the 
studied models, the violin plot is also presented in 
Figure 7, according to which there is a good agree-
ment between the observed and simulated DPT by 

Table IV. Results of the best tree sequences of vine copulas at the studied stations.

TauParameterCopulaFamilyEdgeTreeStation
0.8727.90Frank copula51,21Ahvaz
0.8119.30Frank copula53,1
0.101.20Joe 180163,2:12

C–vine          log likelihood: 1495                       AIC: –2984               BIC: –2971

0.7312.98Frank copula51,21Babolsar
0.8321.77Frank copula53,1

–0.07–0.11Gaussian copula13,2:12
C–vine           log likelihood: 1563                       AIC: –3120               BIC: –3106

0.662.92Gumbel 180141,21Gorgan
0.8321.77Frank copula53,1

–0.12–0.19Student t23,2:12
C–vine           log likelihood: 1768                       AIC: –3430               BIC: –3326

0.8321.26Frank copula10.2311,21Kerman
0.8018.15Frank copula53,1
0.101.20Joe 180163,2:12

C–vine           log likelihood: 1773                       AIC: –3540               BIC: –3256

0.8423.10Frank copula52,11Rasht
0.767.16Joe copula 63,2

–0.13–0.20Student t23,1:22
C–vine           log likelihood: 1933                       AIC: –3857               BIC: –3839

0.8627.59Frank copula51,21Urmia
0.8627.35Frank copula53,1

–0.17–1.20Gumbel 270343,2:12
C–vine           log likelihood: 2234                       AIC: –4461               BIC:– 4447

1: Tmin,; 2: Tmax; 3: DPT; BIC Bayesian information criterion; AIC: Akaike information criterion.
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the copula-based model at all stations. Also, the re-
sults show acceptable accuracy and certainty of the 
copula-based model in simulation of DPT. 

A comparison is made between the results of the 
different models and the number of inputs in Table VII. 
At Kerman station, the results showed that the copu-
la-based model was able to provide better results than 
the adaptive neuro fuzzy inference system (ANFIS) 
mentioned in Mohammadi et al. (2016). According to 
Table VII, results show that the copula-based model 
has more accuracy than other studied models. In the 
violin plots in Figure 7, the white circle is the average 
of the data, the black rectangle represents the major 
changes in the data. The upper and lower limits of the 
black rectangle indicate the third and first quartiles, 
respectively.

4. Conclusion
One of the problems in estimating DPT is the number 
of parameters required. Therefore, using a model that 
can adequately estimate DPT with fewer parameters 
is important. Recently, with the development of strong 
processors, there are numerous methods and different 
software for estimating non-existent data, forecasting 
and data generation. With the development of copu-
la-based models and their multivariate modeling and 
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Fig. 6. Results of the Nash-Sutcliffe efficiency (NSE) and 
root mean square error (RMSE) of the copula-based model 
in simulation of the dew point temperature.
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simulation, simulation of meteorological and hydrolog-
ical parameters has also been developed. The type of 
input data and the number of these inputs to the models 
are different. In addition to the above, a data selection 
must be made before simulation and modeling to select 
appropriate inputs with acceptable correlation as inputs. 
The meteorological data from different climates of Iran 
used in the study of Nazeri-Tahroudi and Ramezani 
(2020), were used to estimate the dew point tempera-
ture. Based on de martonne classification, Kerman 
and Ahvaz meteorological stations with dry climate, 
Babolsar station with wet climate, Gorgan station with 
Mediterranean climate, Rasht station with extremely 

wet climate and Urmia station with moderately dry cli-
mate were selected. In order to simulate the dew point 
temperature of the studied stations, after confirming 
the correlation between the variables by the Kendall’s 
tau, different vine copulas were examined. Based on 
AIC, BIC, Loglike criteria and the complete similarity 
between C-, D-, and R-vine copulas, the results showed 
that C-vine copulas with selected tree sequences fit well 
with the studied data. The results of the simulations 
were analyzed using RMSE, NSE and violin plot. The 
simulation results of the dew point temperature given 
by the minimum and maximum air temperatures using 
the copula-based model showed that the accuracy of 

Table V. Percentage improvement of the RMSE (ºC) of the copula-based model compared to Pattern I and Pattern 
III in the study of the Nazeri-Tahroudi and Ramezani (2020).

Station Optimized
SVR

(Pattern I)

Optimized
SVR

(Pattern III)

Copula-based
model

Percentage improvement 
of the RMSE of the 
copula-based model 

compared to Pattern I

Percentage 
improvement of the 

RMSE of the copula-
based model compared 

to Pattern III

Urmia 0.485 0.838 0.421 13.196 49.761
Kerman 0.495 2.412 0.396 20.000 83.582
Gorgan 0.428 0.611 0.496 –15.888 18.822
Babolsar 0.497 0.69 0.495 0.402 28.261
Rasht 0.594 0.801 0.422 28.956 47.316
Ahvaz 0.435 0.642 0.617 –41.839 3.894

SVR: support vector regression; RMSE: root mean square error.

Table VI. Percentage improvement of the copula-based model NSE compared to patterns I and III in the study of the 
Nazeri-Tahroudi and Ramezani (2020).

Station Optimized
SVR

(Pattern I)

Optimized
SVR

(Pattern III)

Copula-based
model

Percentage improvement
of the NSE of the

copula-based model 
compared to the Pattern I

Percentage improvement of 
the NSE of the copula-based 

model compared to the 
Pattern III

Urmia 0.946 0.888 0.955 0.951 7.545
Kerman 0.942 0.795 0.954 1.271 20.000
Gorgan 0.948 0.926 0.936 –1.26 1.080
Babolsar 0.932 0.912 0.933 0.107 2.303
Rasht 0.921 0.905 0.946 2.714 4.530
Ahvaz 0.947 0.923 0.925 –3.285 0.217

SVR: support vector regression; NSE: Nash-Sutcliffe efficiency.
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the copula-based model was higher than the Pattern 
I and Pattern III in the study of Nazeri-Tahroudi and 
Ramezani (2020). The certainty of the proposed model 
was also confirmed through violin plots. Since the pro-
posed model is based on the tree sequence according to 
the studied data, there is no geographical and climatic 
limitation regarding its implementation.
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Fig. 7. Violin plots of the studied models in the simulation of dew point temperature at bthe following 
stations: (a) Ahvaz, (b) Babolsar, (c) Gorgan, (d) Kerman, (e) Rasht, and (f) Urmia.
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Table VII. Comparison between the results of the present study and previous studies.

RMSE (o C)RegionNumber of inputsStudied modelReference

0.833Iran (Kerman)2ANFISMohammadi et al. (2016)
0.544Iran (Tabas)2ANFISMohammadi et al. (2016)
3.22USA (six stations)2Regression basedHubbard et al. (2003)
0.931Canada (Geraldton)4MLRZounemat-Kermani (2012)
0.904Canada (Geraldton)4ANNZounemat-Kermani (2012)
1.20USA (U.C. Riverside)2GRNNKim et al. (2014)
1.84USA (Durham)2GRNNKim et al. (2014)
1.29USA (U.C. Riverside)2MLPKim et al. (2014)
1.89USA (Durham)2MLPKim et al. (2014)

0.485Iran (Urmia)

7Optimized SVR
(Pattern I)

Nazeri-Tahroudi and
Ramezani (2020)

0.495Iran (Kerman)
0.428Iran (Gorgan)
0.497Iran (Bobolsar)
0.594Iran (Rashat)
0.435Iran (Ahvaz)

0.805Iran (Urmia)

3Optimized SVR
(Pattern II)

Nazeri-Tahroudi and
Ramezani (2020)

2.971Iran (Kerman)
0.682Iran (Gorgan)
0.696Iran (Bobolsar)
0.878Iran (Rashat)
0.660Iran (Ahvaz)

0.838Iran (Urmia)

2Optimized SVR
(Pattern III)

Nazeri-Tahroudi and
Ramezani (2020)

2.412Iran (Kerman)
0.611Iran (Gorgan)
0.690Iran (Bobolsar)
0.801Iran (Rashat)
0.642Iran (Ahvaz)

1.362Iran (Urmia)

1Optimized SVR
(Pattern IV)

Nazeri-Tahroudi and
Ramezani (2020)

2.734Iran (Kerman)
1.394Iran (Gorgan)
1.268Iran (Bobolsar)
0.757Iran (Rashat)
1.369Iran (Ahvaz)

0.421Iran (Urmia)

3
(Tmin, Tmax, DPT)Copula-based modelPresent study

0.396Iran (Kerman)
0.496Iran (Gorgan)
0.495Iran (Bobolsar)
0.422Iran (Rashat)
0.617Iran (Ahvaz)

RMSE: root mean square error; ANFIS: adaptive neuro fuzzy inference system; MLR: multiple linear regression; 
ANN: artificial neural networks; SVR: support vector regression; MLP: multilayer perceptron; GRNN: generalized 
regression neural network.
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