
© 2024 Universidad Nacional Autónoma de México, Instituto de Ciencias de la Atmósfera y Cambio Climático.  
This is an open access article under the CC BY-NC License (http://creativecommons.org/licenses/by-nc/4.0/).

Atmósfera 38, 151-168 (2024)
https://doi.org/10.20937/ATM.53227

Satellite data geoprocessing to estimate PM2.5 
over the Megalopolis of Central Mexico

Marco Antonio MORA-RAMÍREZ1, Edgar MARTÍNEZ-LUNA1 and Xochitl CRUZ-NÚÑEZ2*

1 Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 
Puebla Pue. Av. 14 Sur Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, Puebla, México. P.O. Box 1067, 
C.P. 72001 México. 

2 Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Circuito de 
la Investigación Científica s/n, Ciudad Universitaria, 04510 Ciudad de México, México.

* Corresponding author: xochitl.cruz@atmosfera.unam.mx

Received: 2022 September 23 Accepted: 2023 March 14 

RESUMEN

En la Megalópolis del centro de México frecuentemente se registran niveles de partículas suspendidas finas 
(PM2.5) superiores a la Norma Oficial Mexicana, causando diversas enfermedades respiratorias, desde síntomas 
agudos hasta asma y cáncer de pulmón. Por ello, la medición de PM2.5 es fundamental como primer paso para 
advertir a la población de los niveles de riesgo por exposición a las partículas. Desafortunadamente, la región 
central de México no cuenta con suficientes sitios de monitoreo, limitando la disponibilidad de datos. Este 
estudio aborda este problema al usar datos satelitales para desarrollar un modelo de regresión lineal múltiple. 
Nuestro modelo usa el espesor óptico de aerosoles (AOD por sus siglas en inglés), la húmedad relativa (RH), 
la temperatura (T), la capa límite planetaria (PBLH), y el índice de Vegetación de Diferencia Normalizada 
(NDVI) como variantes independientes para estimar las concentraciones de PM2.5 en la región de estudio. 
Se encontró que la relación entre el AOD y las concentraciones de PM2.5 estaba fuertemente influenciada 
por la RH y la T. Sin embargo, este efecto se compensa con una baja PBLH (< 400 m) que permite que las 
mediciones de AOD y las concentraciones de PM2.5 sean de magnitud similar. Los resultados de esta investi-
gación tienen implicaciones importantes para estimar las concentraciones de PM2.5 con datos satelitales. Este 
estudio podría ayudar a mejorar el monitoreo de la calidad del aire en la Megalópolis del Centro de México 
al proveer mayor información temporal y espacial sobre la concentración de partículas en la atmósfera.

ABSTRACT

The Megalopolis of Central Mexico experiences high levels above the Official Mexican Standard (NOM) 
of PM2.5, leading to various respiratory diseases ranging from acute symptoms to chronic illnesses such as 
asthma and lung cancer. It is crucial to measure PM2.5 levels accurately to warn the public about the risks of 
exposure to particulate matter. Unfortunately, the Megalopolis of Central Mexico has a shortage of monitor-
ing sites, limiting data availability. This study addresses this issue using satellite data to develop a multiple 
linear regression model. Our model uses aerosol optical depth (AOD), relative humidity (RH), temperature 
(T), the planetary boundary layer height (PBLH), and the normalized difference vegetation index (NDVI) as 
independent variables to estimate PM2.5 concentrations in the region under study. The relationship between 
AOD and PM2.5 concentrations was found to be strongly influenced by RH and T. However, this effect is 
compensated for by a low PBLH (< 400 m), which enables AOD and PM2.5 measurements to be similar in 
magnitude. Our findings have important implications for estimating PM2.5 concentrations using satellite data. 
This study could help improve air quality monitoring in the Megalopolis of Central Mexico by providing 
more spatial and temporal data on particle concentrations in the atmosphere.
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1. Introduction
Air pollution is a significant global public health 
issue, responsible of 6.67 million deaths in 2019 
(HEI, 2022), particularly in urban areas where people 
are exposed to harmful pollutants (Liang and Gong, 
2020). Fine particulate matter, with an aerodynamic 
diameter of less than 2.5 μm (PM2.5), is identified as 
the primary pollutant causing numerous health prob-
lems, including lung cancer (Cohen and Pope, 1995), 
heart attacks (Lee et al., 2014), asthma (Tiotiu et al., 
2020), bronchitis (Zhang and Zhou, 2021), and more 
recently linked to a higher intensity of SARS-CoV-2 
infections (Czwojdzińska et al., 2021). Therefore, it 
is crucial to have complete and accurate systematic 
monitoring of ambient PM2.5 concentrations.

The Megalopolis of Central Mexico (MCM), with 
approximately 32 million inhabitants, comprises 
five states surrounding Mexico City. Each state in 
the MCM has its ground-based monitoring network. 
However, only Mexico City has provided ground-
based measurements systematically over the past 
15 years (Aldape and Flores, 2011; RAMA, 1996). 
Nevertheless, even with a more robust monitoring 
station network in the MCM, the number of mon-
itoring sites may be insufficient to obtain extended 
coverage of aerosol distribution, including its sources 
and sinks, as indicated by the Ministry of Environ-
mental Sustainability and Territorial Planning of 
the State of Puebla (SSAOT, 2012). In this context, 
satellite-retrieved data have proven to be a valuable 
complement to ground-based monitoring networks 
(Ebell et al., 2013).

The aerosol optical depth (AOD) is defined as 
the integral of aerosols’ extinction coefficient in 
the vertical (Gao et al., 2021). It is an excellent 
proxy to characterize the degree of turbidity in the 
atmosphere and thus directly related to the amount 
of aerosol particles in the atmosphere (Kong et al., 
2016). AOD can be obtained through remote sensing 
from the surface (Holben et al., 1998) or satellites, 
which provide comprehensive spatial and temporal 
coverage to generate information beyond the domain 
of in-situ surface monitoring stations.

In several instances, satellite-retrieved AOD has 
been correlated with PM2.5 concentrations on the 
ground with varying levels of precision (Kim et al., 
2016; Kong et al., 2016; Li et al., 2015; Schaap et 
al., 2009; van Donkelaar et al., 2006). Additional 

parameters such as temperature, relative humidity, 
wind speed, and other pollutants have been included 
in other studies to improve the quality of the calcu-
lated PM2.5 data (Xu and Zhang, 2020; Zhao et al., 
2018), indicating that models can compensate for the 
PM2.5 space-time gaps left by monitoring stations and 
enhance the predictive power (Al-Saadi et al., 2005). 
These studies present advantages and disadvantages 
related to the meteorological conditions, chemical 
composition, and vertical distribution of aerosols 
considered when deriving PM2.5 concentrations from 
satellite-retrieved AOD (Zheng et al., 2017).

In addition to the mentioned methods and fea-
tures, AOD measurements have complications; 
satellite measurements of AOD strongly depend on 
the cloudiness factor (Clark, 1983). Furthermore, 
the availability of satellite data may be compromised 
by overpass times in some cases (Bojanowski et 
al., 2014). AOD satellite data for this application is 
commonly obtained from the Moderate Resolution 
Imaging Spectroradiometer (MODIS), an instru-
ment onboard Aqua and Terra satellites (Ghotbi et 
al., 2016). The retrieved data are processed with 
specific algorithms based on the surface reflectance 
properties of the study area (Hsu et al., 2004; Levy 
et al., 2013).

This study utilizes daily AOD observations from 
MODIS instruments on Aqua and Terra, processed 
with three different algorithms (Dark Target, Deep 
Blue, and combined DT and DB), in combination 
with meteorological parameters to generate a mul-
tiple linear regression model for estimating PM2.5 
concentrations in the MCC. Various atmospheric 
parameter correlations are analyzed to build insights 
into a statistical model for calculating PM2.5 concen-
trations from satellite data. The study found that the 
correlation between AOD and PM2.5 strongly depends 
on relative humidity (RH), planetary boundary layer 
height (PBLH), and temperature. Interestingly, the 
results also reveal that correlations vary spatially 
due to gradients in terrain elevation, which is a novel 
finding for the study region.

2. Data and Methods 
A diverse set of data for 2012 is used in this paper 
collected from various sources, including ground-
based monitoring stations, reanalysis models, remote 
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sensors on the surface, and onboard satellites for the 
area of study shown in Figure 1. The central region 
of Mexico (–100ºW to –97ºW and 18ºN to 20ºN), 
enclosed by the blue rectangle in the inset over which 
satellite remote sensing data are examined, is made 
up of six states: Mexico City, State of Mexico, Mo-
relos, Tlaxcala, Hidalgo, and Puebla. The red areas in 
Figure 1 represent the urban settlements. The center 
of the MCM is highly populated, subject to intense 
anthropogenic activity, and linked to industrial activi-
ties in the north. Generally, biogenic emissions occur 
over the west and south associated with wildfires and 
emissions from Popocatepetl Volcano, respectively 
(Mora et al., 2017). The data sets are summarized in 
the subsequent subsection.

2.1 Data validation
2.1.1 Remotely sensed data 
Satellite data from the GES-DISC (Goddard Earth 
Sciences Data and Information Services Center) 
Interactive Online Visualization ANd aNalysis In-
frastructure website (GIOVANNI, 2023) were used 
to obtain aerosol optical depth (AOD) and other 
parameters. To ensure data quality, any data sets 

with a cloud fraction (CF) greater than 70% were 
excluded (Myhre et al., 2007). Table I overviews 
the data sets’ parameters, instruments, and spatial 
and temporal resolutions. AOD daily data were re-
trieved from both MODIS Aqua (MY) and MODIS 
Terra (MO) satellites (Sayer et al., 2014) using three 
algorithms [Deep Blue (DB), Dark Target (DT), and 
Combined Dark Target and Deep Blue (DTDB)] 
designed to capture specific features applicable in 
the study region’s spatial domain. Ground-based re-
motely sensed AOD measurements from the Aerosol 
Robotic Network (AERONET; Holben et al., 1998) 
were used to select the appropriate satellite AOD 
product. The AOD-AERONET level 3.0 product 
(AERONET 2021; Smirnov et al., 2000) located at 
the Universidad Nacional Autonomá de México (Na-
tional Autonomous University of Mexico) (19.3ºN, 
–99.18ºW) was used. 

The AOD-AERONET measurements were taken 
at 340 nm, 380 nm, 440 nm, 500 nm, 675 nm, 870 nm, 
and 1020 nm, and interpolation over the wavelength 
was performed to obtain the corresponding aerosol 
band AOD-AERONET at 550 nm, the same as AOD 
from MODIS. Several studies have shown good 
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Fig. 1. The blue rectangle in the inset encloses the region (–100ºW to –97ºW, 
18ºN to 20ºN) with six states of the Megalopolis of Central Mexico. The 
red-colored areas correspond to populated urban centers, and the yellow 
markers represent the ground-based monitoring stations in the Megalopolis 
with a sufficiency of data (>70%). 
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agreement between satellite and land-retrieved AOD 
measurements (Bhaskaran et al., 2011; Tripathi et 
al., 2005). However, Tripathi et al. (2005) found that 
MODIS overestimates AOD during the Monsoon 
period, characterized by seasonal wind produced by 
the displacement of the equatorial belt, resulting in 
dust transport from other regions. In contrast, MODIS 
underestimates the AOD observed by AERONET 
during cold season. 

Statistical analysis was performed to examine 
the data variance and frequency distribution and to 
determine whether the climatic seasons of the year 
for the study region influence AOD satellite measure-
ments with MODIS. We assumed that the planetary 
boundary layer height (PBLH) is a determinant pa-
rameter to explain differences between MODIS and 
AERONET AOD retrieved. Due to the study region 
having different elevations, the correlation of aerosol 
particles with AOD varies spatially. PBLH and a proxy 
of PM2.5 mass concentration were retrieved from the 
Modern-Era Retrospective analysis for Research and 
Applications, version 2 (MERRA-2) model (Gelaro et 
al., 2017). The proxy, SatPM2.5, includes the surface 
mass concentrations of black carbon, organic carbon, 
sulfate ion, dust, and sea salt with diameters less than 
2.5 μm for calculating SatPM2.5 (Buchard et al., 2016).

2.1.2 Data integration
After selecting the appropriate satellite AOD product 
(SatAOD) using the process described in the previous 
subsection, it is necessary to synchronize the data 

sets of SatAOD, NDVI, PBLH, T, RH, and SatPM2. 
These data sets come from different instruments and 
satellites and have varying spatial resolutions. There-
fore, a spatial synchronization process is required to 
compare and use them in a multiple linear regression 
model. This is achieved through the Inverse Distance 
Weighting interpolation (IDW) technique using 
R-code (Gimond, 2022) to interpolate and refine 
the grids in a mesh (Pebesma, 2004). It should be 
noted that this technique estimates the new points 
by taking the average of the nearest neighbors, and 
contamination at the edge of the spatial domain may 
occur. Therefore, to avoid this issue, a slightly larger 
spatial domain (at least two grid cells) than the one 
shown in the inset in Figure 1 is considered. 

The refined raster layers obtained (5.5 km × 
5.5 km) are clipped according to the extent shown in 
Figure 1, and verification is done to ensure that the 
data distribution has not been altered. It is also es-
sential to consider the scale, as previous research has 
shown that the scale is crucial in the bias of regression 
model outputs (Paciorek, 2010). Additionally, studies 
have reported that the correlation between AOD and 
PM2.5 decreases when the AOD resolution is reduced 
(Chudnovsky et al., 2013). Finally, the monthly mean 
average of variables is calculated to complete the data 
integration process.

2.2 Data correlation 
To ensure that the model has desirable features such 
as low or no correlation among independent variables 

Table I. Summary of the complete Data Set Used for this study in the spatial domain (-100º to -97ºW, 
18º to 20ºN), where D and M mean daily and monthly resolutions, respectively. 

Variable Product name Satellite/Instrument Time res. Spatial res.

AOD-DT MYD08_D3_v6 MODIS-Aqua D 1º × 1º
AOD-DT MOD08_D3 v6.1 MODIS-Terra D 1º × 1º
AOD-DB MOD08_D3 v6.1 MODIS-Terra D 1º × 1º
AOD-DB MYD08_D3 v6.1 MODIS-Aqua D 1º × 1º
AOD-DTDB MOD08_D3 v6.1 MODIS-Terra D 1º × 1º
AOD-DTDB MYD08_D3 v6.1 MODIS-Aqua D 1º × 1º
A-AOD ----- AERONET D columnar
CF MOD08_D3_v7 MODIS-Terra D 1º × 1º
PBLH (m) M2TMNXFLX MERRA-2 Model M 0.5º × 0.625º
NDVI MOD13C2 v006 MODIS-Terra M 0.05 º
RH (%) AIRS3STD v006 AIRS D 1º × 1º
T (ºC) AIRS3STD v006 AIRS D 1º × 1º
SatPM2.5 M2TMNXAER v5.12.4 MERRA-2 Model M 0.5º × 0.625º
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but significant influence on the dependent variable 
(PM2.5), it is crucial to investigate the possible cor-
relation between the independent and dependent vari-
ables before using variable data to build the model. 
This investigation can be carried out using the Raster 
package in R (Raster Package, 2023).

Local correlation is recorded for the central grid, 
and the operation is repeated throughout the entire 
domain in the raster. To use the function in two ras-
ters simultaneously, an intermediate step involves 
defining a third raster that records the positions of the 
values of each grid, listing them from 1 to the total 
number of grids. The focal function then extracts 
the positions for which values from the two rasters 
are obtained.

This technique helps to investigate the spatial cor-
relation between the independent variables (NDVI, T, 
RH, PBLH, AOD) and the dependent variable (PM2.5) 
on a monthly or quarterly season basis (MAM, JJA, 
SON, and DJF). It allows for identifying differences 
in areas of the study region due to various factors 
such as human activity, meteorology, soil types, and 
characteristics of each sub-region.

Finally, the correlation between the two variables 
in each grid is shown on a map, highlighting regions 
where the correlation between the variables is neg-
ative (–1), null, or positive (+1). This map can help 
to refine the model further, ensuring that it meets the 
desirable features required for accurate predictions 
of PM2.5 levels.

2.3 A Model to estimate PM2.5 concentration 
In summary, the study incorporates six AOD 
products derived from Aqua and Terra satellites, 
processed with three different algorithms, to find 
the most suitable AOD variable that explains Sat-
PM2.5 concentrations. The data are integrated and 
synchronized spatially and temporally before using 
them in a linear regression model that includes sat-
ellite-retrieved variables (SatAOD, NDVI, PBLH, 
RH, and T) in each grid and month of the simulation 
domain. Before model construction, spatial and 
temporal correlation analyses are conducted among 
the variables. The proposed linear regression model 
is expressed as follows:
 TeoPM2.5s,t = α0,t + α1,tSatAODst +
α2,tNDVIst + α3,tPBLHst + α4,tRHst + α5,tTst

 (1)

The multiple linear regression model’s parameters 
(α0, α1, …, α5) are adjusted to obtain the best fit with 
the observed data at monitoring sites (TeoPM2.5). The 
process begins by considering all variables as pre-
dictors and selecting the best ones using the Akaike 
Information Criterion (AIC). AIC is a metric used to 
compare the fit of multiple regression models, with a 
smaller AIC indicating a better fit (Sakamoto et al., 
1986). The AIC penalizes models with excessive in-
dependent variables based on their ability to explain 
the dependent variable. It yields the lowest score for a 
model with minimal loss of information or the highest 
predictive power while minimizing the number of 
predictor variables. Various R-Studio libraries (stats 
v3.6.2, olsrr 0.5.3) are utilized to perform the analy-
sis. The “confinity” function in R (stats v3.6.2, n.d.) 
estimates the confidence intervals for the parameters 
in the fitted regression model.

2.3.1 PM2.5 Ground-based measurements 
To validate the performance of the regression model, 
ground-based PM2.5 concentrations for the study 
region were obtained from multiple sources, includ-
ing the National Air Quality Information System 
(SINAICA, 2021) and the Mexico City’s automatic 
air quality monitoring network (Red Automática de 
Monitoreo Atmosférico, or RAMA) (RAMA-CDMX, 
2021; RAMA-EdoMex, 2021). 13 monitoring stations 
with a sufficiency rate > 70% located in Mexico City 
and the State of Mexico were selected. Hourly PM2.5 
concentration data from these stations were carefully 
verified, and suspected outliers were removed. These 
ground-based PM2.5 data were then compared with 
the PM2.5 values estimated by the regression model 
(TeoPM2.5) to assess the model’s efficiency.

3. Results 
3.1 Satellite AOD validation
The correlation analysis between the six AOD prod-
ucts and SatPM2.5 revealed a high R2 value ranging 
between 0.73 and 0.76, except for AOD from MODIS 
Aqua DTDB, which had an R2 of 0.59. Among the 
six products, AOD from MODIS Terra DT showed 
the highest correlation (R2=0.76), indicating its suit-
ability for the linear regression model. In addition, 
the AOD grids (3×3) generated by each algorithm 
and platform were compared with the AERONET 
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network’s point data to gain further insights into 
AOD selection. Figure 2 shows the monthly correla-
tion results of AOD from MODIS-Terra (MO) and 
MODIS-Aqua (MY) for each algorithm: DT, DB, 
DTDB, and AOD from AERONET.

Although the Aqua and Terra algorithms used for 
processing satellite data are similar, there is a better 
correlation coefficient with Aqua than with Terra. The 
dry-hot season, from March to May, is characterized 
by higher AOD values, especially in May, as seen 
in Figure 3.

In May, the AOD data from MODIS Terra 
and Aqua satellites, as well as the rescaled (0.25) 
AOD-AERONET data, showed unexpectedly high 

values compared to the expected trend. This indi-
cates that the satellite data may capture particles in 
the upper atmosphere that cannot be detected with 
the same precision by AERONET measurements 
from the surface. The DB product used for pro-
cessing satellite data does not differentiate between 
fine and coarse mode aerosols, which could explain 
the lack of differentiation between dry-hot season 
(MAM) and cold quarter (DJF). However, the 
presence of coarse particles from wildfires during 
the dry-hot season (MAM) suggests otherwise. In 
October, there were discrepancies between the 
MODIS and AERONET data trends, with (0.25) 
AOD-AERONET slightly below the expected trend 
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and AOD MODIS data above it. This could be 
attributed to the challenges of remote sensing mea-
surements during the rainy season (June-August).

To refine the grids of the mesh, various inter-
polation algorithms were applied using the “gstat” 
package in R (Gimond, 2022). The Inverse Distance 
Weighting (IDW) method was chosen to estimate 
new points, considering the nearest neighbors’ 
average value (nmax = 5). This method assigns 
greater weight to the closest points, thus providing 

a more precise estimate. Figure 4 illustrates the data 
integration step, displaying the PM2.5 data obtained 
from remote sensing (Sat-PM2.5) before and after the 
mesh refinement for January 2012. The gray-colored 
plots reveal that the spatial distribution remained 
unchanged after synchronization. To avoid data 
contamination at the region’s edge, the refined mesh 
(Figure 4b) was cropped according to the spatial 
domain extent, which was larger than the region of 
interest in this study.

3.2 Correlation among variables
To ensure accurate predictions, a linear regression mod-
el must have independent variables that are not highly 
correlated with each other but rather have some cor-
relation with the dependent variable (PM2.5). Figure 5 
shows the correlation among satellite-retrieved 
variables during the March-May 2012 quarter. During 
the dry-hot season, from March to May, the dependence 
of AOD on temperature increases, with values of +0.4, 
+0.5, and +0.7, respectively. Poor green vegetation 
profiles and wildfires, including those set for agricul-
tural purposes in the Megalopolis of Central Mexico, 
can contribute to the resuspension of particles and the 
resulting increase in AOD. Likewise, during the dry-
hot season, the PBLH has a negative correlation with 
PM2.5 that decreases from –0.4 (march), –0.3 (april) 
to –0.2 (may). This means as temperature increas-
es, the height of PBLH also increases, leading to a 
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decrease in the correlation between PBLH and PM2.5. 
Similarly, the correlation between PBLH and AOD 
during the dry-hot season (MAM) ranges between 
–0.4 to –0.6, suggesting that aerosols’ cooling effects 
in the lower PBLH can suppress the development of 
PBLH, as reported by Zhang et al. (2022).

Figures 6 and 7 illustrate the monthly spatial cor-
relation between Sat-PM2.5 and AOD and Sat-PM2.5 
and PBLH5, respectively, within the study region 
outlined by a black rectangle. The warm colors (red) 
indicate a positive correlation (+1), while the cool 
colors (blue) indicate a negative correlation (–1). 
During the dry-cold season Sat-PM2.5 and AOD, 
from Figure 6, exhibit a high positive correlation in 
the east, north, and northeast regions of the spatial 
domain. But, the center, south, and southwest areas 
present a high negative correlation. The difference 
in the correlation between these two regions is likely 
explained by the significant elevation gradient, which 
implies substantial differences in vegetation, soil 
type, and meteorology.

The spatial correlation of Sat-PM2.5 and PBLH 
presented in Figure 7, shows negative values during 
the cold season (DJF), coinciding with the lowest 
values of the PBLH and high episodes of particle 
matter, which are observed systematically in México 
City during the winter. In the following months, the 
negative spatial correlation is observed up to March, 
but in April and May, the spatial correlation changes 
to positive, which certainly means that if PBLH in-
creases, then PM2.5 also does. This outcome under-
scores the significance of emissions transport from 
areas outside the megalopolis. It helps to clarify the 
persistently high ozone levels or particles observed 
systematically despite the local mitigation strategies 
employed in Mexico City during the dry hot season 
(MAM).

3.3 Ground-based PM2.5 Analysis
Figure 8 presents the boxplots of annual PM2.5 con-
centrations measured at selected monitoring sites in 
Mexico City during 2012. The boxplot displays the 
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median, first, and third quartile values, while the sus-
pected outliers are indicated with red circles. These 
outliers are data points that lie beyond 1.5 times the 
interquartile range (IQR) from the upper and lower 
quartiles. After removing the outliers, the lower and 
upper fences of the box represent the minimum and 
maximum values, respectively.

Figure 9 shows the hourly, daily, and monthly 
average concentrations of PM2.5 in Mexico City. 
Figure 9a shows that the hourly analysis by day of 
the week reveals two peaks, one before noon (11 
a.m.) and another in the late afternoon (7 p.m.), 
consistent throughout the week. However, two 
monitoring sites in the northern part of the city, 
XAL and SAG, exhibit earlier peak concentrations 
(around 40 minutes earlier) than other sites, with 
XAL having the highest PM2.5 levels. Figure 9b 
(lower-left corner) summarizes the hourly averages 
by day of the week and shows two distinct peaks 
in PM2.5 concentrations throughout the day. Figure 
9d (lower-right corner) shows the averages by day 
of the week, demonstrating that PM2.5 accumulates 
during the week, with the highest levels observed 
on Friday or Saturday. After reductions in emissions 
from vehicles and industries during the weekend, 
the lowest levels are observed on Monday. The 
monthly averages in Figure 9c (lower-middle part) 
exhibit two peaks, one in May and another during 

the cold season (DEF). The latter corresponds to 
the maximum PM2.5 levels Fontes et al. (2017) ob-
served, as thermal inversion traps pollutants. For a 
detailed discussion of the observed peaks and the 
main sources of PM2.5, see Mora et al. (2017).

Figure 10 highlights specific characteristics of 
the quarterly hourly averages of PM2.5 data. The 
highest concentrations of particles are observed 
during the dry-hot season (March to May) and the 
cold quarter (DEF). Precipitation during the rainy 
season (June-August) contributes to removing 
PM2.5. However, two peaks are still observed yearly 
in PM2.5 levels despite the removal effect. The first 
peak occurs during the dry-hot season (MAM) when 
intense wildfires and maximum PBLH (as shown in 
Figure 11b) facilitate the exchange of air masses from 
other territories. In contrast, another peak is observed 
during the cold season (DEF), and the height of the 
PBLH reaches a minimum, indicating that the study 
area is relatively isolated from the neighboring 
regions. This isolation results in lower dilution of 
pollutants and an increase in PM2.5.

In Figure 11, monthly means of remotely sensed 
data, including PBLH, RH, T, AOD, and NDVI, 
are presented with the corresponding ground-based 
PM2.5 measurments. Notably, PM2.5 concentrations 
from MERRA-2 and ground-based sites exhibit the 
same qualitative trend. However, PM2.5 levels from 
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Fig. 8. Annual PM2.5 concentrations on ground-based monitoring sites 
in Mexico City. The red circles represent the extreme values (suspected 
outliers).
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ground-based sites show a different trend than AOD 
during the cold season (DJF).

3.4 Linear regression model fit
Table II presents the monthly correlation coefficients 
for each variable from the multiple linear regression 
model (TEO PM2.5). The alpha parameters have 
standard errors ranging from 1e-13 to 1e-11 and 
p-values less than 1e-16, indicating high statistical 
significance.

Using the multiple linear regression model coef-
ficients, PM2.5 levels were estimated for each grid 
in the study area. The model, which incorporated 
all variables as predictors, exhibited a high R2 value 
of 0.7501, indicating that it can account for 75.01% 
of the observed variability in life expectancy. The 
p-value of the model was significant (3.787e-10), 
further supporting its validity. The spatial distribu-
tion of calculated PM2.5 concentrations is displayed 
in Figure 12. Monthly trends in the estimated PM2.5 
values show good agreement with those obtained 
from the MERRA-2 model. Comparison of the 
estimated monthly PM2.5 concentrations with cor-
responding monitoring sites in Mexico City result-
ed in a 0.6-0.8 RMSE and a standard deviation of 
0.01-0.5 µg. 

The most significant discrepancies between esti-
mated and observed PM2.5 concentrations occurred 
during the rainy season (June to August) when 
aerosol retrievals from satellites were challenging. 
Conversely, the dry-hot season (MAM) provided the 

most favorable conditions for estimating PM2.5 con-
centrations with the model. Estimated PM2.5 values 
in Puebla exhibited lower confidence (0.4-0.6 RMSE) 
than those in Mexico City.

Figure 13 depicts the monthly PM2.5 concentra-
tions calculated for each grid cell (TEO PM2.5) com-
pared to the corresponding ground-based monitoring 
sites, Xalostoc (XAL) in Mexico City and Ninfas 
(NIN) in Puebla, for the base year 2012. In general, 
the modeled PM2.5 concentrations show a similar 
trend to the ground-based monitoring sites in both 
cities, with peaks occurring during the dry-hot sea-
son (MAM) and winter. However, the model results 
overestimate the ground-based PM2.5 concentrations 
during the dry-hot season (MAM) and in August.

4. Conclusions 
The study utilized spatially and temporally synchro-
nized satellite data to investigate the relationship 
between several variables and environmental PM2.5 
concentrations. It was discovered that the correlation 
between AOD and PM2.5 is influenced by RH, PBLH, 
and T. Based on AERONET calibration, using the 
AOD DB product for studying PM2.5 in the Mega-
lopolis of Central Mexico is recommended. PBLH 
is a crucial parameter in explaining the differences 
between MODIS and AERONET AOD retrieval. 
The spatial correlation analysis revealed a signifi-
cant change in the relationship between PBLH and 
AOD towards the end of the dry-hot season (MAM), 

Table II. Multiple linear model (TeoPM2.5) correlation coefficients.

α0 α1
AOD

α2
NDVI

α3
PBHL

α4
RH

α
T

January 2.86e-10 2.00e-09 –8.21e-11 –1.90e-13 5.65e-12 –1.49e-11
February 1.18e-10 5.20e-10 1.05e-10 –1.33e-13 7.48e-12 –1.30e-11
March 7.56e-10 1.81e-09 1.78e-11 1.08e-14 9.09e-13 –1.68e-11
April 2.27e-10 1.33e-09 2.85e-10 3.59e-13 1.06e-11 –5.26e-12
May 8.84e-10 –1.81e-10 1.09e-11 1.44e-14 –2.26e-12 3.31e-12
June 2.23e-09 4.82e-09 –1.99e-09 –8.71e-13 –1.83e-11 3.56e-11
July 2.54e-09 2.23e-08 –8.42e-09 –3.57e-12 1.16e-10 6.92e-11
August 7.08e-09 6.02e-09 –2.03e-09 –5.19e-12 –2.01e-11 6.03e-11
September 7.97e-10 1.57e-09 –1.12e-09 –4.23e-13 6.36e-12 4.24e-12
October 2.19e-10 1.33e-10 –3.73e-11 4.07e-14 –4.24e-12 9.32e-12
November –2.12e-10 8.34e-10 –7.57e-11 1.67e-13 1.00e-11 –1.40e-11
December 1.14e-09 3.10e-09 –1.81e-10 –8.18e-13 1.20e-12 –1.76e-11



Fig. 13. Monthly mean PM2.5 concentrations in 2012 from 
multiple linear regression model (TeoPM2.5, estimated; 
red-dotted line) and ground-based monitoring measure-
ments in (a) Xalostoc (XAL) in Mexico City (19.526ºN, 
–99.082ºW) and Ninfas (NIN) in Puebla (19.043ºN, 
–98.214ºW). The inset (b) summarizes the correlation 
between estimated PM2.5 concentrations (TeoPM2.5) and 
all the monitoring sites in Mexico City, the State of Mex-
ico, and Puebla. 
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highlighting the importance of emissions transport 
from regions beyond the MCM. This information pro-
vides insights into potential mechanisms that could 
explain persistently high ozone levels or particulate 
concentrations despite local mitigation strategies 
during the dry-hot season (MAM).

The study developed a multiple linear regression 
model to estimate environmental PM2.5 levels. The 
research hypothesis that AOD data (MODIS) can 
estimate PM2.5 concentrations in the megalopolis of 
Mexico was confirmed. However, caution must be 
exercised in interpreting the model results since the 
analysis previous to the model revealed significant 
changes in the correlations of AOD, T, RH, and 
PBLH during each of the four climatic seasons. The 
model produced satisfactory results during the dry-
hot season (MAM) but failed during the rainy season 
(June-August). Finally, the concentrations of PM2.5 
in the study area are influenced by fire emissions, 
and incorporating fire data as an additional variable 
could enhance the model’s performance during this 
time of year (Jaffe et al., 2008; Vega et al., 2021).
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