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RESUMEN

La energía eólica es una importante fuente de energía renovable que se ha desarrollado considerablemente 
en los últimos años. Con el fin de obtener pronósticos de energía eólica de alta precisión con 24 horas de 
anticipación para usos operativos y comerciales, se necesita una combinación de modelos físicos y esta-
dísticos. En este artículo se propone y evalúa una metodología híbrida que emplea un modelo numérico 
(Weather Research and Forecasting) y un algoritmo de red neuronal (NN). La metodología se aplica a un 
parque eólico en el noroeste de México, una región con alto potencial eólico donde la compleja geografía 
agrega gran incertidumbre a los pronósticos de energía eólica. Los pronósticos de energía se evalúan usando 
la generación de energía real en el sitio de interés durante un año y se comparan con dos modelos de refe-
rencia: árboles de decisión (DT, por su sigla en inglés) y regresión de vectores de soporte (SVR). El método 
propuesto muestra un mejor desempeño respecto a los métodos de referencia, mostrando un error absoluto 
medio porcentual horario de 6.97%, lo que representa 6 y 13 puntos porcentuales menos de error en los pro-
nósticos de energía eólica que con los métodos DT y SVR, respectivamente. El pronóstico de energía eólica 
NN no es muy preciso cuando tiene un fuerte forzamiento sinóptico, por lo que en su lugar deben emplearse 
enfoques novedosos como los algoritmos jerárquicos. En general, el modelo propuesto tiene la capacidad 
de producir pronósticos de energía eólica de alta calidad para la mayoría de las condiciones climáticas que 
prevalecen en esta región, y de- muestra un buen desempeño respecto a modelos similares para pronósticos 
de energía eólica a mediano plazo. 

ABSTRACT

Wind energy is an important renewable source that has been considerably developed recently. In order to 
obtain successful 24-h lead-time wind power forecasts for operational and commercial uses, a combination 
of physical and statistical models is desirable. In this paper, a hybrid methodology that employs a numeri-
cal weather prediction model (Weather Research and Forecasting) and a neural network (NN) algorithm is 
proposed and assessed. The methodology is applied to a wind farm in northwestern Mexico, a region with 
high wind potential where complex geography adds large uncertainty to wind energy forecasts. The energy 
forecasts are then evaluated against actual on-site power generation over one year and compared with two 
reference models: decision trees (DT) and support vector regression (SVR). The proposed method exhibits 
a better performance with respect to the reference methods, showing an hourly normalized mean absolute 
percentage error of 6.97%, which represents 6 and 13 percentage points less error in wind power forecasts 
than with DT and SVR methods, respectively. Under strong synoptic forcing, the NN wind power forecast 
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is not very accurate, and novel approaches such as hierarchical algorithms should be employed instead. 
Overall, the proposed model is capable of producing high-quality wind power forecasts for most weather 
conditions prevailing in this region and demonstrates a good performance with respect to similar models for 
medium-term wind power forecasts.

Keywords: wind power forecast, neural network, multi-layer perceptron, numerical weather prediction, 
wind forecast, Mexico.

1.	 Introduction
In recent years, wind energy has become a renewable 
energy source increasingly developed worldwide, 
motivated by its cost-effectiveness and the need 
to explore new sources that limit greenhouse gas 
emissions. In Mexico, wind technologies have been 
gradually incorporated into the national energy 
generation system, achieving significant results in 
many regions of the country (Hernández-Gálvez et 
al., 2019). By the year 2021, the installed capacity 
for wind power generation was 7154 MW, which 
produce 21.14 TWh per year (AMEE, 2022). The 
increasing development of wind energy in Mexico 
has been driven by environmental and socioeconomic 
factors, such as the urgency to reduce emissions, the 
capacity to create new jobs, and the economic benefits 
for rural areas where the farms are located.

As the wind power capacity increases, accurate 
forecast systems are increasingly required to inte-
grate wind resources into the grid more efficiently 
and reliably (Kosovic et al., 2020), which reduces 
costs and allows operators to make better real-time 
and day-ahead decisions (Marjanovic et al., 2014). 
To this end, it is essential to have skillful short-term 
wind forecasts. However, the representation of the 
wind field by numerical weather prediction (NWP) 
models is challenging because they depend on mi-
croscale processes such as buoyancy and turbulent 
diffusion effects, which drive rapid changes in wind 
intensity (Flores et al., 2013; Prósper et al., 2019).

The problem of short to medium-term wind 
resources forecasting has been addressed earlier by 
means of physical, statistical, and hybrid models. 
Statistical methods usually employ historical wind 
power production data and meteorological variables, 
applying univariate models to predict future wind 
power values. Such methods can make use of either 
statistical or artificial intelligence models. Some 
examples of recent work can be found in Damousis 
et al. (2004), Fan et al. (2009), Chitsaz et al. (2015), 

Osório et al. (2015), Heinermann and Kramer (2016), 
Dowell and Pinson (2016), Azimi et al. (2016), Zhao 
et al. (2016), Yuan et al. (2017), Chang et al. (2017), 
Liu et al. (2017), Naik et al. (2018), Valldecabres et al. 
(2018), and Hao and Tian (2019). Physical approach-
es are mainly based on NWP model results to obtain 
an estimate of the local wind speed forecast (Cassola 
and Burlando, 2012). Some relevant examples are 
Pinson et al. (2009), Khalid and Savkin (2012), and 
Prósper et al. (2019). Hybrid methods that combine 
NWP and statistical approaches are also found in 
previous literature; in these cases, NWP forecasts 
are coupled with statistical methods to obtain a wind 
power prediction for a turbine or a farm. Such meth-
ods can include bias correction techniques, ensemble 
forecasting, or artificial intelligence techniques. 
Among the most relevant are Louka et al. (2008), 
Cassola and Burlando (2012), Che et al. (2016), Che 
and Xiao (2016), Li et al. (2016), Zhao et al. (2017), 
Andrade and Bessa (2017), and Gilbert et al. (2020). 
In general, statistical methods are adequate for very 
short (a few seconds to 30 min ahead) and short-term 
(30 min to 6 h ahead) forecasts, while NWP and 
hybrid methods can be employed for longer-term 
forecasts, from hours to days ahead (Sweeney et al., 
2020). Combined approaches are needed to obtain an 
advanced forecasting method with higher precision 
levels and longer forecast horizons, particularly for 
sites with complex terrain. In fact, hybrid methods 
generally outperform individual models (Tascikarao-
glu and Uzunoglu, 2014; Okumus and Dinler, 2016; 
Méndez-Gordillo et al., 2022). In particular, hybrid 
methods that use NWP tend to outperform statistical 
approaches after a lead time of 3-6 h, therefore, they 
are present in most operational and commercial uses 
(Giebel and Kariniotakis, 2017).

In Mexico, some progress has been made on 
wind speed and wind energy forecasting methods, 
the most relevant are summarized below. Cadenas 
and Rivera (2007) implemented two time-series 
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models to produce monthly wind speed forecasts 
for a wind farm in Oaxaca (southwestern Mexico). 
The same authors then applied an artificial neural 
network (Cadenas and Rivera, 2009) and a hybrid 
(autoregressive integrated moving average and 
ANN) method (Cadenas and Rivera, 2010) to hourly 
time series, obtaining accurate forecasts for short-
term wind speed. Rodríguez-García et al. (2008) 
presented a short-term forecast method based on 
several statistical approaches. Cadenas et al. (2010) 
employed a single exponential smoothing method to 
forecast wind speeds in Chetumal, in eastern Mexico. 
Ibargüengoytia et al. (2014) developed a dynamic 
Bayesian network model based on historical time 
series for wind velocity prediction at a wind farm in 
Oaxaca, Mexico, for a short-term forecast horizon 
of 5 h. Méndez-Gordillo et al. (2022) proposed a 
hybrid statistical technique that includes a separation 
of turbulent and non-turbulent flows to forecast wind 
speed one step ahead at two sites in the northern Gulf 
of Mexico. Also, Santamaría-Bonfil et al. (2016) em-
ployed a hybrid statistical approach based on support 
vector regression, obtaining accurate results for medi-
um to short-term wind speed and power forecasts in 
southwestern Mexico. None of these previous works 
have made use of the advantages of NWP to forecast 
wind-power-related variables, in order to expand the 
forecast horizon of wind energy.

In this study, a combined framework for medi-
um-term wind energy forecasts (24-h ahead) is de-
veloped and evaluated, integrating NWP and machine 
learning. The forecast system is implemented in a 
total of 41 wind farms throughout Mexico. However, 
since most of the farms have privacy regulations for 
the data generated at the farm, we show in this paper 
the results for only one wind farm located on the 
peninsula of Baja California. Our main objective is to 
assess the functionality of the proposed methodology 
and to evaluate its performance under strong synoptic 
forcing conditions. This framework is ideally useful 
for several applications, from electricity companies 
to wind farm developers, and it is also relevant to 
scientific applications regarding the use of combined 
methods for wind energy forecasting. To our knowl-
edge, a hybrid approach to wind power forecasting 
like the one proposed in the present manuscript has 
not been applied before to wind farms in Mexico, 
a region where wind power prediction becomes 

difficult because of the complex topography and 
dynamic aspects of the weather patterns.

2.	 Methods
2.1 Measurement site and data processing
This study is based on data measured and collected 
at La Rumorosa wind power plant, located in the 
municipality of Tecate in the state of Baja California, 
northwestern Mexico. Figure 1 shows the location 
of the plant and the topography of the region. La 
Rumorosa is located at the northern end of the 
Baja California peninsula, at an altitude of around 
1350 masl. The power plant has a total of five wind 
turbines (Fig. S1b in the supplementary material) 
with a nominal power output of 2000 kW (CEEBC, 
2022), which gives a combined maximum production 
capacity of 10 000 kW. The turbines are located at a 
distance of nearly 200 m from each other; thus, the 
total extension of the park is less than 1 km. They 
are oriented in a north-northwest to south-southwest 
direction, and the predominant wind direction (com-
ing from the west-southwest) is nearly perpendicular 
to the turbine distribution.

The La Rumorosa wind farm is made up of five 
Gamesa G87/2000 wind turbines with a rotor diam-
eter of 87 m and a hub height of 78 m above surface 
level. Figure S2 in the supplementary material shows 
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Fig. 1. Location of the La Rumorosa wind farm in north-
western Mexico and topography of nearby areas. 
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the power curve of the Gamesa turbine, which starts 
producing electric power at a wind speed of 3 m s−1, 
reaching its nominal power at 14 m s−1. The survival 
wind speed is 25 m s−1, which is the cutoff wind speed 
for power production.

Data from the La Rumorosa wind farm consists of 
10-min wind power time series for each wind turbine, 
and wind speed and direction measured by anemom-
eters at each turbine for 2015, 2016, and 2017. All 
datasets are processed to obtain hourly averaged 
values. A turbine nacelle-averaged wind hourly data 
for the entire site is constructed by averaging data 
from the five turbines. The nacelle-averaged values 
can be considered representative of the whole plant 
because the turbines are arranged along a line and 
the wake effects are negligible. Statistical analysis 
of the time series of wind speed and direction for 
all the turbines showed that they are comparable, 
exhibiting a high correspondence among them. This 
is evident by correlations above 0.97 for wind speed 
and above 0.85 for wind direction (Figs. S3 and S4 
in the supplementary material). For constructing the 
wind power time series for the site, the values in all 
turbines are added, obtaining a total power generation 
for the farm.

2.2 Numerical simulations
Numerical simulations were performed to obtain 
modeled meteorological data for the period 2015-
2017 at the site of interest, using the Weather Re-
search and Forecasting (WRF) model. WRF is a 
NWP model supporting atmospheric research and 
weather forecasting. The Advanced Research WRF 
(ARW) core uses a non-hydrostatic approximation, 
with a horizontal staggered Arakawa C grid and ter-
rain-following vertical coordinates near the surface. 
The WRF model has a range of physical options to 
parameterize and represent microphysical processes, 
cumulus convection, surface layer, boundary layer, 
and radiation (Skamarock et al., 2008). This research 
employs the ARW core, with four one-way nested 
domains (Fig. 2), centered on La Rumorosa site. The 
horizontal spacing from the outermost (Domain 1: 
D01) to the innermost (Domain 4: D04) domains are 
75, 15, 3, and 1 km, respectively. The corresponding 
number of grid points are 56 × 56, 81 × 81, 96 × 96, 
and 178 × 163. The innermost domain is employed 
to extract a time series of meteorological variables 

corresponding to the site of interest. Finally, the 
NCEP-FNL Operational Global Analysis (NCAR, 
2000) at 1º horizontal resolution is used as input 
for initial and boundary conditions, and the set of 
parameterizations are listed in Table I.

Simulations are restarted every 30 h, taking the 
first 6 h as spin-up and keeping a complete diurnal 
cycle of 24-hourly values. In this way, the entire 
dataset of WRF simulations for 2015-2017 is built, 
containing the following variables: horizontal com-
ponents of wind (u, v), temperature, and relative 
humidity, interpolated to rotor height.
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Fig. 2. Configuration of four nested domains for WRF 
simulations. Horizontal resolutions for D01, D02, D03, 
and D04 are 75, 15, 3, and 1 km, respectively. 

Table I. WRF parameterizations used in the present work.

Physic option Scheme used

Radiation-shortwave Dudhia
Radiation-longwave RRTM
Microphysics Lin (Purdue)
Cumulus Kain-Fritsch
Boundary layer YSU
Surface layer MM5 similarity
Land surface Noah Land Surface Model
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2.3 Three-dimensional variational data assimila-
tion for bias correction

In the present work, the output of WRF is 
post-processed to correct the biases that are intrinsi-
cally present in NWP models. The three-dimension-
al variational data assimilation (3DVAR) method 
is used for this purpose. Despite the fact that the 
3DVAR method is designed for data assimilation, 
here it is used to reduce the bias of the WRF model. 
The 3DVAR aims to obtain an optimal estimate of 
the actual atmospheric state through iterative mini-
mization of the following cost function:

J(u) =
1
2 (u − ub)

T B−1(u − ub) +

1
2

(w − Hu)T R−1(w − Hu)
	 (1)

The solution of this equation represents a statisti-
cally optimal analysis of u given the two sources of 
information from the background ub and the actual 
measurement w. The first term, scaled by the error 
covariance B, aims to incorporate the departure of 
the analysis from the background. The second term, 
scaled by the error covariance R, considers the de-
parture of the actual measurement w and Hu, which 
is the observation operator that maps the variables 
from model space to observation space. The second 
term aims to incorporate the prior information, scaled 
by the inverse of the covariance matrix (Lewis et al., 
2006; Ahmed et al., 2020).

The minimizer of the cost function (Eq. 1) is 

ua = ub + Kdob	 (2)

where dob = w − Hub is the innovation, K = BHTΓ−1 
is the Kalman Gain, and Γ = HBHT + R is the total 
error covariance (Kabir et al., 2019). In this paper, 
we have focused on the bias correction of WRF wind 
speed only. The observed variable is thus the wind 
speed. The observational error covariance matrix 
R and the background covariance matrix B were 
estimated from three years of measurements and the 
WRF model output, respectively.

2.4 Neural network model
Artificial neural networks (NNs) have been proven 
to be efficient techniques for forecasting wind power 
due to their capabilities, such as self-learning, easy 

implementation, and establishing non-linear relation-
ships between input and output datasets with a high 
degree of accuracy (Tascikaraoglu and Uzunoglu, 
2014). In this work, a multi-layer perceptron (MLP) is 
used to model the relationship between WRF output 
and wind power generation. An MLP is a supervised 
learning algorithm that consists of multiple layers of 
neurons, including an input, an output, and several in-
termediate or hidden layers. The input layer receives 
the inputs (i.e., the features) and the output layer 
produces the output (i.e., the prediction). Each node 
in the intermediate layers applies a weighted sum 
of inputs, adds a bias term, and applies a non-linear 
activation function, passing the output of this process 
to the following layers. In the last layer, an output 
is produced, which is then compared to the target 
values (i.e., the energy generation). The MLP adjusts 
the weights and biases of each node to minimize the 
error between the predicted output and the targets. 
The number of hidden layers, neurons, iterations, and 
the activation function are parameters that need to 
be selected prior to running the model. In this work, 
they were selected after a cross-validated search over 
a grid of specified parameter values.

The training dataset for the NN model consists 
of two arrays: the input data array X, which contains 
the features or atmospheric variables from WRF, 
and the target array y, which contains the real power 
generation measured at the wind farm. X has a size 
of nobs × nfeatures, where nobs is the number of 
observations and nfeatures represents the variables 
to feed the algorithm, and y has a size of nobs. In this 
research, the years 2015 and 2016 are used to train 
the model (then nobs = 17544), while the year 2017 
is used to test and validate the results.

The features used to train the NN model are u, 
v, temperature, relative humidity, and the number 
of wind turbines in operation at a given time. The 
latter is essential because the total production of 
energy depends on it. The meteorological variables 
introduced to the algorithm allow the NN to include 
information not only of the wind speed and direction, 
but of the characteristics of the boundary layer such 
as density and moisture, which can affect turbulent 
processes, heat and momentum fluxes, and lastly 
the local circulation and the energy generation. 
Also, previous works support that wind power can 
be strongly related to meteorological variables such 
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as atmospheric pressure in summer and humidity in 
winter (Mori and Umezawa, 2009; Foley et el., 2012). 
The NN model is fed with meteorological variables 
simulated by WRF, which are interpolated to the site 
of La Rumorosa.

The NN model is implemented using the Python 
machine-learning package Scikit-learn (Pedregosa et 
al., 2011), which is an open-source set of libraries for 
data analysis. The data pre-processing, analysis, and vi-
sualization are also performed with open-source Python 
libraries. Training times in an 8 × Intel Core i7-8550U 
CPU @ 1.80 GHz computer did not exceed 15 min.

2.5 Benchmark models
Decision trees (DT) and support vector regression 
(SVR), two of the most widely used artificial intel-
ligence methods, are implemented to compare them 
against the NN performance. These techniques are 
briefly explained below.

DT is a machine learning method for regression 
and classification tasks that aims to create a model 
that predicts the value of a target variable by learning 
simple decision rules inferred from the data features. 
The model is obtained by recursively partitioning 
the data space and fitting a simple prediction model 
within each partition, resulting in a multistage or 
hierarchical decision scheme or a tree-like structure 
(Wei-Yin, 2011). Initially, all the training samples 
are used to determine the structure of the tree. The 
algorithm then breaks the data using every possible 
binary split and selects the split that partitions the 
data into two parts such that it minimizes the sum of 
the squared deviations from the mean in the separate 
parts. The splitting process is then applied to each of 
the new branches. The process continues until each 
node reaches a user-specified minimum node size 
(i.e., the number of training samples at the node) 
and becomes a terminal node (Xu et al., 2005). More 
details on regression trees algorithms can be found 
in Xu et al. (2005) and Wei-Yin (2011).

Support vector machines (SVM) are a set of 
supervised learning methods used for classification, 
regression and detection of outliers. The basic idea 
of SVM for regression (SVR) is to map the data into 
a high dimensional feature space via a nonlinear 
mapping using a kernel function, in order to perform 
a linear regression in this feature space (Mohandes et 
al., 2004). The model learns a variable’s importance 

for characterizing the relationship between input 
and output, without making assumptions on the data 
distribution (Zhang and O’Donnell, 2020). Based on 
N data samples (x, y), where x is the input vector and 
y the target values, the SVR estimator is expressed 
in Eq. (3), where ϕi is a nonlinear transfer function 
mapping the input vectors into a high dimensional 
feature space, wi represents a weight vector, and b 
denotes a bias. The sub-index i indicates the sample 
number. The coefficients (wi and b) can be obtained 
by minimizing a risk function (Huang et al., 2014). 

f (x) = wi∅i(x) + b	 (3)

A comprehensive formulation of SVM algorithms 
can be found in Cortes and Vapnik (1995).

2.6 Metrics to evaluate the model
Models are further evaluated to assess the accuracy 
of wind power estimates. The assessment of a fore-
casting model is crucial to address its validity for 
estimating future values of wind power (González-
Sopeña et al., 2021). The forecast accuracy of de-
terministic estimates is evaluated by measuring the 
difference between the forecast and real values. On 
this basis, the metrics employed are normalized mean 
absolute percentage error (NMAPE), mean absolute 
error (MAE), and centered root mean squared error 
(CRMSE), shown in Eqs. (4) to (6), respectively. 
CRMSE is the random component of the root mean 
squared error and therefore can be associated with 
the intrinsic predictive skill of the forecast due to 
physical aspects.

NMAPE =
1
N

N

∑
i=1

Fi − Oi

Ō
∙ 100%	 (4)

M A E =
1
N

N

∑
i=1

Fi − Oi 	 (5)

CR MSE =
1
N

N

∑
i=1

[ Fi − F̄ − (( )) Oi − Ō ]2 	 (6)

where Fi is the predicted wind energy, Oi is the real 
wind energy, F̅ and O̅ are the averages of the predicted 
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and real energy production, respectively, and N is the 
number of samples in the evaluation dataset.

Additionally, some other statistics such as the 
Spearman correlation, the coefficient of determina-
tion (R2), and the mean bias are used to account for 
the degree of relationship between the forecast wind 
energy and the actual energy generation.

3.	 Evaluation of the wind power forecast model 
3.1 Simulations of wind speed and direction
A comparison between WRF wind output and ob-
servations at La Rumorosa for the period 2015-2017 

is provided in Figures 3 and S5. In general, WRF 
represents the annual cycle of the wind fairly well, 
particularly from August to October. During this time 
of the year the north of Baja California experiences 
high temperatures (with maximum above 40 ºC) 
and the smallest winds with a westerly component 
prevailing most of the time. On the contrary, the 
largest errors in the wind field are observed from 
January to April (Figs. 3a, b and S5a, b), when winds 
experience an increase in magnitude and the extreme 
temperatures decrease.

Figure 3c, d shows diurnal cycles of wind, demon-
strating a good representation of the hourly averages 
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of both wind speed and direction by the WRF model. 
The wind speed experiences a diurnal peak between 
15:00 and 18:00 LT, which is also well reproduced 
by WRF. However, the hour of minimum wind speed 
in the diurnal cycle is not correctly predicted and 
represented later by WRF with respect to observa-
tions. Both annual and diurnal cycles of wind speed 
forecasts are closest to observations after the bias 
correction, with a MAE improved by around 1 m s–1 
and a NMAPE by more than 10 percentage points.

Also shown in Figure S5 are the frequency distri-
butions of modeled and observed winds and the wind 
rose plots. It is evident that the largest frequencies 
are adequately represented by WRF, particularly for 
wind speed (before and after bias correction), with 
the maximum frequencies between 5 and 7 m s−1. The 
histogram for wind direction shows a mismatch in 
the 0-50º directions, while the rest of the values are 
approximately well represented. For example, the two 
most frequent wind direction values coincide for both 
WRF and observations (around 245-275º). Finally, 
the wind rose plots show a good agreement between 
the two-time series of WRF and the observed wind; 
in particular, winds from the west and west-southwest 
directions prevail in both plots. Also, winds from the 
east-northeast are frequent in both plots; however, the 
winds from the northeast are more common in WRF 
than in observed data.

3.2 Estimation of wind power
This section evaluates the usefulness of the NWP 
model and the NN algorithm combined, for the site 
of interest in northwestern Mexico. Furthermore, the 
ability of this method is compared with wind power 
estimates obtained from two benchmark methods.

Table II indicates the average metrics computed 
over the evaluation period (the year 2017) for the two 
methods of wind power estimation. As shown, the 
NN exhibits slightly improved metrics with respect 
to DT and SVR. For instance, NMAPE decreases 
by six percentage points, and MAE and CRMSE by 
around 164 and 366 kW, respectively, with respect to 
DT estimates. In terms of mean bias and linear cor-
relation, the performance is roughly similar between 
the three methods.

Monthly and hourly NMAPE are displayed in 
Figure 4. Similar plots, but for the CRMSE. are 
shown in Figure S6. In the annual cycle (Fig. 4a) 
lowest errors occur from June to August, coinciding 
with some of the months with lowest wind speeds 
(July and August in Fig. 3a) and smallest wind speed 
forecasting errors (Fig. S5a) in La Rumorosa. In those 
months, the errors of the NN and DT estimates differ 
little, while SVR exhibits the largest errors. Errors 
increase from December to April, when the NN 
performs notably better than the rest of the methods. 
Overall, NMAPE remained below 16% for the NN 
in the evaluation year, while errors reached up to 
20 and 30% for the DT and SVR estimates, respec-
tively. Figure 4b displays the mean hourly errors in 
two different seasons: May to October (MJJASO) 
and November to April (NDJFMA). As expected, 
errors are higher during the NDJFMA with respect 
to MJJASO season. Those errors decrease for the 
second part of the diurnal cycle in the NDJFMA sea-
son. The NN estimates exhibit similar errors during 
both seasons, while DT and SVR errors differ more 
between seasons.

A comparison of the frequency distributions of 
wind power estimates from the three methods is 

Table II. Metrics of three methods for estimation of wind power*.

Method NMAPE (%) MAE (kW) CRMSE (kW) Mean bias (kW) Spearman ρ

NN 6.97 187.53 371.58 –23.22 0.98
DT 13.06 351.62 620.18 –2.02 0.98
SVR 20.57 553.15 856.29 –64.44 0.96

*Values represent an average of all samples for the year 2017. The average energy production in La 
Rumorosa wind farm for the period studied is 2692.30 kW.
NMAPE: normalized mean absolute percentage error; MAE: mean absolute error; CRMSE: centered root 
mean squared error; NN: neural networks; DT: decision trees; SVR: support vector regression.
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shown in Figure 5. Overall, the three methods are able 
to adequately represent the probability distribution of 
real energy generation in La Rumorosa. NN overesti-
mates wind power in the near zero range, while SVR 
underestimates it, indicating that these models tend to 
mismatch near-zero energy production. On the other 
hand, DT forecasts are correctly represented in the 
near-zero range. The SVR method tends to forecast 
more values in the extreme part of the distribution 
(> 10000 kW), which is erroneous. The rest of the 
energy generation values have roughly the same 
frequencies in the forecast and observations, for the 
three methods.

A further exploration of errors as a function of 
non-overlapping energy intervals is shown in Figure 6, 

which easily illustrates the energy ranges affected 
by the largest errors. This type of analysis can be 
relevant for wind energy markets since they can 
be interested in power generation above or below 
certain thresholds. Overall, MAE is smaller for NN 
than for the other methods at all the energy ranges. 
Errors for NN and DT peak between 5000 and 8000 
kW, and decrease for the rest of the ranges, while 
for SVR errors maximize for large values, i.e., from 
8000 to 10 000 kW, suggesting the method experi-
ences difficulties in capturing larger energy peaks, 
overestimating them (Fig. 5c).

Power curves for the three power forecasting 
methods and the real power are shown in Figure 7, 
featuring the wind power against observed wind 
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speed in La Rumorosa. As seen in the figure, the 
NN and DT power curves resemble the true curve, 
although with more dispersion in DT estimates. Wind 
speed above nominal velocities (14 m s–1) is more 
clearly represented in the DT model, and the NN has 
difficulties in accurately simulating the relationship 
between above-nominal wind speed and power. 
However, the forecasted power for the cut-in wind 
speed is more accurate in NN, which shows good 
agreement with the true curve. On the other hand, the 
SVR method does not reproduce well the observed 
power curve, evidencing a large mismatch between 
wind speed and power and a strong overestimation 
of wind power well above the maximum capacity 
of the plant.

4.	 Assessment of wind power forecast under spe-
cial meteorological conditions
A previous work has reported that for some sites, 
wind speed and wind power forecast uncertainties 
depend on the weather situation (Lange and Waldl, 
2001). Therefore, with the aim to further examine 
the wind power forecast performance in detail, its 
ability under special meteorological situations is 
evaluated in this section. To this end, we selected 
two events of frontal systems that arrived in Mexico 
by its north-western portion and transited over Baja 
California, thus affecting the La Rumorosa site. The 
first event corresponds to October 25-26 (hereinafter 
Oct25-26), and the second to November 6-9 (here-
inafter Nov6-9), both in 2020. These cold fronts 
caused an increase in wind speed and a reduction of 
surface temperature that affected the dynamics of the 
boundary layer and, thus, the wind power forecast. 
Figure 8 shows the histogram of observed wind speed 
at La Rumorosa for 2015-2017, which compares the 
maximum wind speeds recorded at each event. Those 
values are above three standard deviations of the 
7.24 m s−1 mean. The value that marks three standard 
deviations of the mean is also represented in Figure 8 
and equals 18.04 m s−1. Therefore, the two cases 
are considered adequate for testing the behavior and 
ability of the NN model in forecasting wind power 
under synoptic features that cause an extreme turn of 
local meteorology, particularly wind speeds.

Figures S7 and S8 show maps of surface tem-
perature and wind fields for each case, evidencing 
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the southwards advance of the cold air mass. In the 
Oct25-26 event, the cold front arrives in Baja Cali-
fornia on October 26 during the morning hours and 
rapidly moves through the peninsula and northwest-
ern Mexico, vanishing between the end of the day 
and the dawn of the next. On this day (October 26), 
Santa Ana winds affected several parts of southern 
California, USA (Nelson, 2020). This could explain 

the fact that winds behind the cold front have mostly 
a northerly component (Fig. S7). In the Nov6-9 case, 
the cold front arrives on November 7 during the early 
morning (between 00:00 and 03:00 LT) and moves 
southward at a slow pace. On November 8 at noon, 
the front becomes quasi-stationary over Baja Califor-
nia Sur, and a high-pressure system is present in the 
southwestern US. Then it dissipates by November 9.

To examine the ability of the wind power forecasts 
on these events, WRF simulations were carried out, 
and the NN, DT, and SVR models were applied to 
the outputs, following the same procedure as detailed 
in section 2.

4.1 October 25-27 cold front
Figure 9 shows the forecast and real hourly wind 
power for Oct25-27. The three methods fail to repro-
duce the real energy generation, particularly before 
the arrival of the cold front. After the arrival of the 
cold front, NN presents the largest errors (Fig. S9), 
forecasting values far above the observations, and 
this persists during most of the event. Instead, DT and 
SVR tend to be more accurate during the cold front.

Table III summarizes some relevant evaluation 
metrics as daily averages of hourly values. In general, 
the three wind power forecasting methods exhibit a 
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bias in different parts of the time series from October 
25 to 27, which are slightly larger for NN. Mean daily 
values of energy generation are overestimated by 
the three methods (positive bias in Table III). Daily 
NMAPEs are comparable for October 25, 2020, but 
are much smaller for the SVR method for October 26 
and 27, ranging between 35 and 43%. Although errors 
for NN are large during the cold front, correlations 
still are high, as proven by values on October 26 and 
27 (0.87 and 0.97, respectively).

4.2 November 6-9 cold front
Figure 10 shows the time series of wind power for 
November 6-9, 2020. In this case, the highest errors 
are observed from November 7 at 00:00 LT (i.e., at 
the arrival of the cold front) until November 8 at 

21:00 LT, when the cold front starts to dissipate. 
Biases are positive during all the event, ranging be-
tween 2000 and 6000 kW for the NN and DT models, 
while SVR exhibits the largest errors, with more than 
10 000 kW in certain hours (Fig. S10). It is noticeable 
that before and after the passage of the cold front, 
all models produce significantly smaller errors. In 
general, the three wind power forecasting methods 
tend to overestimate the energy production during the 
two strong synoptic forcing events analyzed.

Table IV shows daily averages of errors for the 
Nov6-9 case study. Before the cold front, mean 
daily biases ranged between 1000 and 2500 kW for 
the three forecasting methods, and afterwards they 
increased considerably. Furthermore, the biases of 
NN and DT models are comparable throughout the 

Table III. Daily average metrics during the Oct25-27 event: mean bias (kW), NMAPE (%), and Spearman ρ.

Days NN DT SVR NN DT SVR NN DT SVR

2020-10-25 3023.14 2942.42 2961.62 52.28 51.12 53.03 0.21 0.29 0.43
2020-10-26 2284.52 1633.15 1280.11 66.32 51.02 43.93 0.87 0.64 0.62
2020-10-27 2449.20 1584.76 1006.91 67.08 51.22 35.53 0.97 0.75 0.92

NMAPE: normalized mean absolute percentage error; NN: neural networks; DT: decision trees; SVR: support 
vector regression.

Fig. 10. Wind power on November 6-9: NWP-NN model, and real production. (NWP-NN: numerical weather pre-
diction-neural networks).
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four days studied (see also Fig. S10). These methods 
evidenced a roughly similar behavior in forecasting 
wind energy under special meteorological conditions. 
The NMAPE is also similar for NN and DT during 
November 7 and 8, and the NN slightly improves 
afterward. The models also exhibit poor correlations 
during the same days, with a rapid increase on No-
vember 09, especially for NN. 

5.	 Discussion and conclusions
This paper proposes a hybrid method for day-ahead 
forecasts of wind energy and tests its functionality 
and performance for a wind farm in northwestern 
Mexico, by comparing it with two widely used 
benchmark approaches. The method uses an NWP 
model to forecast meteorological variables, which are 
the input of a non-supervised NN algorithm. A clear 
advantage of this approach is the ability to post-pro-
cess NWP model outputs, accounting for low model 
resolution and uncertainties of physical models, and 
correcting the resulting biases (Novak et al., 2014). 
Another beneficial characteristic of this method is 
the capability to incorporate physical aspects of lo-
cal weather conditions in the site of interest into the 
wind power estimates. Finally, the ability to capture 
non-linear relationships between meteorology and 
power generation by the NN is also a good feature 
of this methodology. On the other hand, some of the 
drawbacks of this method are the requirement of a 
historical dataset to train the artificial intelligence 
model, the need to develop a single model for a 
specific site, and the need for computer resources to 
run the NWP model.

We have used DT and SVR algorithms as bench-
mark models to compare the proposed methodology 
against them. Results show that the NN is capable 

of surpassing the performance of both DT and SVR, 
although the former shows skills comparable to the 
NN for hourly errors during the MJJASO season. The 
SVR method showed poorer skills for wind power 
forecasting, and exhibited large errors above the plant 
maximum generation capacity. In general, hourly 
bias tend to be smaller for the NN model as shown 
in Figure S11; they are mostly concentrated around 
zero while DT tends to exhibit more dispersion from 
zero and SVR has a slight negative bias in high wind 
power values. The improvement in performance of 
the NN is evident by a reduction in monthly errors 
by 6 and 13 percentage points with respect to DT and 
SVR, respectively (Table II). Thus, the proposed NN 
model can supply wind power forecasts that better 
represent the overall relationship between observed 
meteorological variables and wind energy than the 
two AI methods.

An objective comparison of our results with pre-
vious approaches would be insightful; however, it is 
limited because results depend on metrics definition, 
evaluation period, and plant maximum capacity, 
among other factors. Nevertheless, a qualitative as-
sessment allowed us to confirm the usefulness of our 
results in the context of previous works. The NN fore-
casts exhibited monthly errors ranging between 3 and 
15%, and hourly errors between 5 and 9% (Fig. 4), 
thus representing a good performance with respect to 
the average model’s performance in the medium term 
(6-24 h ahead predictions), which range between 10 
and 20% (Okumus and Dinler, 2016). For example, 
Alessandrini et al. (2015) used an analog ensemble 
method for wind power forecasting over complex 
topography and obtained a MAE (normalized by 
plant nominal power) of around 10% for a 18-24 h 
ahead forecast horizon, while our monthly MAEs 
(normalized by plant average power production) are 

Table IV. Daily average metrics during the Nov6-9 event:  mean bias (kW), NMAPE (%), and Spearman ρ.

Days NN DT SVR NN DT SVR NN DT SVR

2020–11–06 2520.09 2261.08 1425.43 62.42 56.51 35.89 0.91 0.83 0.91
2020–11–07 4526.99 4415.35 6184.05 94.01 91.69 128.42 –0.43 –0.17 0.29
2020–11–08 5939.15 5886.52 8113.79 184.58 182.94 252.16 0.14 0.43 –0.04
2020–11–09 1563.69 1328.14 1661.88 111.65 94.24 119.14 0.97 0.89 0.85

NMAPE: normalized mean absolute percentage error; NN: neural networks; DT: decision trees; SVR: support vector 
regression.



below 9% (except for January). The same applies to 
our hourly MAEs (between 5 and 9%). More recently, 
Duarte et al. (2021) reported a monthly percentage 
MAE of 12.6% for wind power estimates using NWP, 
while our monthly NMAPE (averaged from January 
to December) is 6.93%.

The present work also assessed the behavior of 
the wind power forecasting system under special 
meteorological conditions in La Rumorosa, such as 
cold fronts. It was seen that model’s ability declines, 
which was consistent among all the methods com-
pared. One of the main sources of these large errors 
under cold front conditions is possibly originated in 
insufficient training data, since extreme meteorologi-
cal conditions occur at a low frequency, with a scarce 
representation in the training dataset, which can limit 
the model’s learning process. Therefore, the AI and 
NN models fail to capture the complex dynamics of 
extreme events. Other approaches, like hierarchical 
algorithms (Peláez-Rodríguez et al., 2022), must be 
applied to improve the prediction skills of NN models 
on extreme events while preserving the prediction 
performance for regular conditions.

In conclusion, the method presented and evaluated 
in this paper is a valid tool for wind power forecasting 
with high accuracy under typical conditions. This 
method can be operational and provide decision 
support to grid operators, facilitating the implemen-
tation of renewable energy resources and gaining 
confidence in them.

Further work needs to be done to increase the 
accuracy of NWP models, due both to horizontal 
resolution and physical uncertainties, since they 
play an important role in hybrid methods of wind 
power forecasting. Besides, there is still much to 
do regarding the design of NN algorithms that can 
accurately forecast renewable power during extreme 
meteorological episodes, which is still problematic 
for artificial intelligence algorithms.
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Fig. S1. (a) Location of La Rumorosa wind farm in northwestern Mexico. (b) Google Earth view of the horizontal 
setup of the wind turbines.  
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a)

b)

c)

Fig. S3. Correlation matrix of Spearman coefficients for 78-m 
wind speed at five wind turbines in La Rumorosa study site.
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a)

b)

c)

Fig. S4. Correlation matrix showing Spearman coefficients for 
the 78-m wind direction at four wind turbines in La Rumorosa 
study site. Correlations are shown only for wind turbines 2 to 
5, because wind direction data for turbine 1 had poor quality 
and missing values.
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a)

b)

Fig. S6. (a) Monthly and (b) hourly CRMSE for NN, DT, and SVR estimates for the 
year 2017. (CRMSE: centered root mean squared error; NN: neural networks; DT: 
decision trees; SVR: support vector regression.)



286 Y. Díaz-Esteban et al.

a)

c)

b)

Fig. S7. Surface temperature and wind field for the cold front of October 25-27, 2020.  

a) b)

c) d)

Fig. S8. Surface temperature and wind field for the cold front of November 6-9, 2020.



287Wind power forecasting in Mexico

Fig. S10. Time series of bias (forecast minus observations) during the cold front of November 6-9, 2020.

Fig. S9. Time series of bias (forecast minus observations) during the cold front of October 25-27, 2020.
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