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RESUMEN

Este estudio se enfoca a identificar modulaciones de gran escala por oscilaciones sinópticas, interanuales y 
decenales sobre la precipitación extrema en el estado de Baja California Sur y propone modelos estadísticos 
para proyectar su evolución futura. La zona de estudio es árida, registra el 70% de precipitación acumulada 
anual entre julio y octubre, y es impactada por sistemas tropicales que pueden provocar lluvias moderadas 
a intensas. Se obtuvieron siete conglomerados mediante el método de Ward aplicado a datos climatológicos 
controlados por calidad desde 1950 hasta 2014. La precipitación extrema normalizada (percentil 95) muestra 
un aumento en las últimas décadas (1995-2004 y 2005-2014), con valores totales mayores en comparación 
con los 50 años anteriores. Se desarrollaron cuatro modelos lineales multivariados (MLM) usando como 
predictores los índices de la Oscilación Decenal del Pacífico (PDO) y El Niño-Oscilación del Sur (ENOS) 
en la región 3.4, que demostraron modular la precipitación extrema en la región. El MLM basado en PDO, 
ENSO y la fracción del número de ciclones tropicales (TC) en un radio de 300 km con centro en la península 
(identificado como M4), tiene una mejor correlación con la lluvia extrema que las simulaciones históricas 
del Proyecto de Intercomparación de Modelos Acoplados versión 5 (CMIP5). Su proyección futura se evaluó 
en función de las simulaciones de MLM y CMIP5 con los escenarios RCP4.5 y RCP8.5, para horizontes de 
mediano y largo plazo. El modelo M4 proyecta más eventos extremos que los modelos CMIP5, y todos pro-
yectan tendencias negativas en precipitaciones extremas de 2041 a 2100 con el escenario RCP8.5. Este estudio 
proporciona información valiosa sobre las precipitaciones extremas futuras en una región árida en presencia 
de topografía escarpada, lo que podría resultar en daños potenciales a los ecosistemas y la infraestructura.

ABSTRACT

This study focuses on identifying modulations by large-scale synoptic, inter-annual, and decadal oscillations 
on the extreme rainfall in the state of Baja California Sur, and provides statistical models to forecast future 
evolution. The region is arid, with 70% of precipitation from July to October, and is affected by tropical sys-
tems that may lead to moderate and even intense precipitation. Seven clusters were obtained using the Ward 
method applied to quality-controlled climatological data from 1950 to 2014. Normalized extreme precipitation 
(95th percentile) shows an overall increase in the last decades (1995-2004 and 2005-2014), with total values 
much larger than in any of the previous 50 years. Multivariate linear models (MLMs) were developed based 
on indices for the Pacific Decadal Oscillation (PDO) and El Niño-Southern Oscillation (ENSO) in Region 
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3.4, which were shown to modulate extreme precipitation. The MLM based on PDO, ENSO, and the frac-
tion of tropical cyclones (TC) within a radius of 300 km to the peninsula (M4), has a better correlation with 
observed rainfall than the historical simulations of the Coupled-Model Inter-comparison Project version 5 
(CMIP5) models; moreover, M4 outperforms all other MLMs in six of the seven clusters. Projections were 
evaluated based on the MLMs and CMIP5 simulations under scenarios RCP4.5 and RCP8.5 for mid- and 
long-term horizons. Model M4 projects more extreme events than CMIP5, and all MLM projects negative 
trends in extreme precipitation from 2041 to 2100 under RCP8.5. This study provides valuable information 
on future extreme precipitation in an arid region in the presence of steep topography, which could result in 
potential damage to ecosystems and infrastructure.

Keywords: hydroclimatic extremes, climate change projections, Pacific Decadal Oscillation, El Niño-Southern 
Oscillation, multivariate models, precipitation.

1.	 Introduction
The state of Baja California Sur (BCS) (Fig. 1a) is 
located in the southern half of the Baja peninsula (on 
average ~250 km wide and ~1000 km long, from 28º 
to 22.86º N and 115.06º to 109.24º W), in the tran-
sition from tropics to subtropics and bounded by the 
Pacific Ocean to the west and the Gulf of California 
to the east. The widespread flat terrain is divided 
in the northwest-southeast direction by the Sierra 
la Giganta (1176 masl) and the Sierra de la Laguna 
(2090 masl), shown in Figure 1b. The climate is in-
fluenced by the subsidence associated with the North 
Pacific anticyclone and the cold California current, 
resulting in a generally arid climate. The average 
annual temperature ranges from 18 to 22 ºC. The 
highest average temperature (35 ºC) is observed in 

July and August, while the lowest (9 ºC) is recorded 
in January.

BCS is affected during the rainy season by moist 
air masses of tropical systems that develop in the In-
ter-Tropical Convergence Zone (ITCZ) in the eastern 
tropical Pacific. Due to the orographic forcing, humid 
and unstable air masses may lead to moderate and, 
on occasion, intense precipitation. Maximum accu-
mulated precipitation is recorded yearly during July, 
August, September, and October, accounting for 70% 
of the total precipitation. Moreover, intense regional 
precipitation depends strongly on the occurrence of 
tropical cyclones (TCs) (Cavazos et al., 2008). Winter 
months are generally dry with the occasional presence 
of mid-latitude systems that may lead to stratiform 
precipitation. Changes in precipitation have been 
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Fig. 1. (a) Location of the State of Baja California Sur in Mexico. (b) Topographic map of Baja California Sur with 
contour lines in meters above sea level. Red dots correspond to the location of climatological stations.
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observed in recent years concerning the climate and 
the implications for water resources, habitats of land 
and sea flora and fauna, and agriculture. Furthermore, 
possible impacts on the stability of infrastructure like 
dams, bridges, inundations, and other constructions 
have been discussed (Fluixá-Sanmartín et al., 2018).

The variability of rainfall has long been a subject 
of concern and interest due to its profound implica-
tions for water resources, agriculture, and overall 
environmental sustainability (Larson et al., 2013). 
BCS’s climate is largely influenced by its geographic 
location, with the Pacific Ocean to the west and the 
Gulf of California to the east. Former investigations 
recognized patterns in precipitation that withstand 
traditional expectations, presenting challenges for 
both short-term planning and long-term resilience. 
The intricate interplay of these factors, coupled 
with global climate change, has led to a clear trend 
of increasing minimum and maximum temperatures 
(Martínez-Austria and Jano-Pérez, 2021). However, 
seasonal variations and the frequency of extreme 
weather events have raised questions about the reli-
ability of historical climate data for the predictability 
of future rainfall.

Climate variability occurs on different time scales. 
Large-scale modulations are exerted on different 
regions by decadal- to multidecadal oscillations, via 
atmospheric teleconnections. A teleconnection is de-
fined as an ocean-atmosphere interaction that occurs 
at a distant point on Earth and causes persistent and 
recurring modes of low-frequency climate variability 
(Kiladis and Díaz, 1989). Teleconnections are one 
of the most relevant internal causes of variability in 
the climate system (IPCC, 2007).In the absence of 
external forcing, climate variability is determined 
by processes of the internal dynamics of the system, 
such as ocean-atmosphere interaction, as in the case 
of climate variability associated with the phenome-
non El Niño-Southern Oscillation (ENSO), or with 
variations in periods of decades such as those asso-
ciated with the Pacific Decadal Oscillation (PDO) 
and the Atlantic Multi-decadal Oscillation (AMO) 
(IPCC, 2007). Some of these teleconnections will 
be described in the next subsections.

At shorter scales, inter-annual variability occurs 
when more intense rains (or warmer/colder tempera-
tures) are observed in some years compared to others. 
There is also variability at smaller time scales within 

the rainy season—intra-seasonally—corresponding to 
fluctuations on a monthly scale. Studies have shown 
how phenomena with different timescales affect local/
regional precipitation and temperature in Mexico, e.g., 
mesoscale convective systems in the Southern Gulf of 
California, the North American monsoon, or smaller 
processes such as orographic or convective rainfall.

1.1 Decadal scale variability
The PDO, first reported by Mantua et al. (1997), 
has been described as a long-term fluctuation in the 
surface temperature of the Pacific Ocean (Trenberth 
et al. 1994; Mantua and Hare, 2002). The associated 
teleconnections in atmospheric geopotential fields 
modulate temperature and precipitation in vast re-
gions of western North America. In their studies of 
northwestern Mexico, Englehart and Douglas (2001, 
2002) report that the positive phase of the PDO favors 
precipitation associated with TCs. Although these are 
high-frequency phenomena (with large interannual 
variability), the influence of the warm PDO phase 
is associated with warm sea-surface temperature 
(SST) anomalies from Baja California to the south 
and southward of the Equatorial Pacific, favoring 
the development of TCs. Brito-Castillo et al. (2002) 
explain that in addition to TCs, rain in northwestern 
Mexico is influenced by orography and moisture 
influx from the Pacific Ocean, similar conditions 
associated with the North American Monsoon, which 
develops progressively from July to September from 
south to north and east to west.

Méndez et al. (2010) identified that the PDO is 
positively correlated with precipitation in Mexico, 
particularly during the boreal winter, so the positive 
phase favors rains, while its negative phase favors 
droughts, especially in the Mexican highlands and 
northern Mexico. The northwestern region of Mex-
ico is affected by landfalling TCs (Englehart and 
Douglas, 2001, 2002), which can lead to intense 
precipitation events. Raga et al. (2013) analyzed 
150-year reconstructed records of landfalling TCs to 
determine that the positive phase of the PDO favored 
their landfalling.

1.2 Interannual scale variability
ENSO, an ocean-atmospheric phenomenon centered 
on the equatorial Pacific Ocean, is responsible for 
substantial interannual variability in the atmosphere. 
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Although it can be considered an oscillatory 
phenomenon, its period is irregular and linked to 
medium-term climate variability (Martínez and 
Fernández, 2004). The warm phase of ENSO, named 
El Niño, corresponds to warm sea surface tempera-
ture anomalies (SSTAs) in the central and eastern 
equatorial Pacific; the opposite SSTAs correspond 
to the cold phase, known as La Niña. ENSO causes 
changes in the general extra-tropical circulation, 
contributing to meteorological anomalies globally. 
El Niño is associated during winter, for example, 
with abundant rainfall in the southeastern United 
States, the Gulf of Mexico, the Straits of Florida, 
and western Cuba (Glantz et al., 1991). In northern 
Mexico, it is associated with anomalously high 
precipitation in winter, while La Niña tends to corre-
spond with drier winters, which could lead to severe 
drought (Magaña et al., 2003). Previous research 
(Zhang et al., 1997; Hare and Mantua, 2000) has 
reported a larger climatic response when ENSO and 
PDO are in phase; a good example is the exceptional 
El Niño in 1997-1998, when changes in atmospheric 
circulation modified surface temperature anomalies 
of the Pacific Ocean.

Romero-Vadillo et al. (2007) identified that the 
percentage of intense hurricanes (categories 4 and 5) 
and hurricanes with a long lifetime (greater than 12 
days) is larger during El Niño years than under neutral 
conditions. Martínez-Sánchez and Cavazos (2014) 
indicate that the frequency of category 4 and 5 hur-
ricanes has a significant positive correlation with El 
Niño and PDO.

1.3 Intra-seasonal scale variability
The Pacific/North American (PNA) pattern is one 
of the most important sources of intra-seasonal 
variability in the mid-latitudes of the Northern 
Hemisphere during winter. It consists of anomalies 
in the geopotential height (typically at 700 and 500 
hPa), observed in the northern Pacific, as well as in 
the western and eastern USA. One of the centers of 
this system is in the northern Gulf of Mexico (30º 
N-85º W), which favors the flow of winds from the 
subpolar region toward the central USA and the Gulf 
of Mexico in winter and spring, and is associated 
with cold temperature anomalies over that region. 
During the positive phase of ENSO, there is a higher 
incidence of the PNA pattern, which increases the 

frequency and intensity of cold fronts in the Gulf of 
Mexico (White and Downton, 1991).

Tropical cyclones provide a potentially large contri-
bution to mean and extreme precipitation in Baja Cali-
fornia. Another very important source of intra-seasonal 
variability during the rainy season in the eastern tropical 
Pacific (EPAC) is associated with the Madden-Julian 
Oscillation (MJO, with a period ~30-60 days) and the 
quasi-biweekly oscillation (QBWO, period of ~20 
days). Jiang et al. (2012) and Zhao et al. (2018) have 
shown that these oscillations modulate tropical cyclo-
genesis in the EPAC during the rainy season (May to 
October). The active phase of the QBWO results in 
increased tropical cyclogenesis with positive anomalies 
in mid-level relative humidity and in low-level cyclonic 
vorticity. In addition, the active phase is associated with 
a northern shift in the cyclogenetic region, leading to 
potentially more TCs affecting the Baja peninsula.

The objective of this study is to identify the role 
of modulations by large-scale synoptic, inter-annual, 
and decadal oscillations on the observed extreme 
rainfall in BCS and make projections to 2100 through 
different statistical models.

2.	 Datasets and methodology
The historical records of temperature and rainfall 
data from climatological stations were analyzed, after 
applying thorough quality control and homogeneity 
tests to eliminate spurious records.

2.1 Quality control of the database
The BCS climate database has a total of 6 922 927 
valid daily records up to 2014, from 161 climato-
logical stations. Of those, only 132 stations were 
operational by 2015 and an additional 29 have been 
discontinued since. The oldest and still-operating sta-
tion (since 1921) is the observatory at Santa Rosalía; 
the most recently installed station is El Ciruelito in 
the city of La Paz in 2013. The largest sequence—93 
years of continuous records—was observed at the 
Mulegé station. Station altitudes range from 2 to 
1080 masl. Climatological stations report maximum 
and minimum temperatures (both daily values), and 
accumulated rain in 24 h.

Quality control was carried out on daily records 
of the stations using the RClimdex software (ETC-
CDI, 2020) to correct digitization errors and validate 
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suspicious data compared with neighboring stations. 
Additionally, a homogenization process was carried 
out to correct errors related to changes in location, 
observer, instrumentation, and environment of the 
station, which resulted in a validated time series that 
can be confidently used to analyze climate variability. 
This rigorous quality control process resulted in the 
selection of a total of 50 climatological stations (out 
of the original 161) shown as red dots in Fig. 1b.

2.2 Climatological analysis and decadal variability
After quality control, climatologies over several 
different periods were estimated. Monthly averages 
were calculated from daily values for each station, 
and climatological maps were produced over the 30 
years 1971-2000. Moreover, five decadal averages 
were calculated (1961-1970, 1971-1980, 1981-1990, 
1991-2000, and 2000-2010) to evaluate variability. 
Anomalies of the different decades with respect to 
climatology were estimated. Additionally, climatol-
ogies for the tropical cyclone season (July-October) 
were also estimated.

Extreme precipitation values were determined 
from the frequency distribution function of daily 
records with values  the 95th percentile during each 
month. The same methodology was followed to 
calculate climatological anomalies for the extreme 
precipitation accumulative value on a monthly scale.

2.3 Cluster analysis
The Ward method (Ward, 1963) for clustering was 
used to determine regions of similar precipitation and 
temperature within the state of BCS. This hierarchical 
method considers the merge of clusters that have the 
least increase in the sum of squares of the differences 
between each individual and the cluster’s centroid. 
Daily normalized precipitation and temperature val-
ues over the period 1971-2000 were analyzed from 
each of the 50 stations to determine separate cluster-
ing for each variable, which were then combined to 
generate a single regional grouping of seven clusters 
representing similar climates. An additional require-
ment of at least 85% of information was applied in 
1971-2000, decreasing the number of stations to 34.

2.4 Climate indices
Tme series of the PDO, ENSO, and PNA indices were 
obtained from the websites of official agencies, to 

correlate them with extreme precipitation. The PDO 
index is calculated with the principal components 
method and considers the monthly SSTA over the 
North Pacific Ocean, from 20º N towards the pole, 
with data from 1854 to 2021 (PDO, 2023).

The PNA index is obtained from the anomalies 
in the geopotential height fields (typically at 700 and 
500 hPa) observed in the northern Pacific Ocean, as 
well as in the western and eastern USA; information 
from 1950 to 2021 was available (PNA, 2023).

Two indices for ENSO are considered: El Niño 3.4 
and the Multivariate ENSO Index (MEI). El Niño 3.4 
(referred to as ENSO hereafter) is the SSTA averaged 
over the region between 170º-120o W and between 5o S- 
5o N, spanning from 1870 to 2021 (ENSO, 2023). 
The MEI is calculated as the first principal compo-
nent without rotating of the six combined observed 
fields of atmospheric pressure at sea level, zonal and 
meridional wind, SST, air temperature at sea level, 
and cloud cover (MEI, 2023).

2.5 Correlation analysis
Monthly data for the PDO, PNA, and ENSO indices 
were correlated (Spearman) with monthly time series 
of extreme precipitation at each station. As the MEI 
index is calculated every two months, the extreme 
precipitation records were also calculated every two 
months, to calculate the correlations simultaneously 
and considering a two-month lag.

The Spearman correlation (a non-parametric 
test) measures the association between two discrete 
variables (x and y) and is defined by:

ρ = 1 − 6Σ D2

N (N 2 − 1) 	 (1)

where D is the difference between the corresponding 
values of x – y, and N is the number of pairs.

For N > 20 an approximation to the t-Student 
distribution is given by:

t =
ρ

1 − ρ2
N − 2

	 (2)

Normalization using the mean and standard 
deviation is one of the most common and efficient 
methodologies for the analysis of climatological 
data (Hare and Mantua, 2002). Thus, time series of 
extreme precipitation are normalized as:
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PRECnormalized = (PRECobserved – PRECmean)/ PRECSTD	(3)

Correlations between extreme precipitation at 
each station and each climate index were carried out, 
interpolated, and displayed in maps. The statistical 
significance of the correlations was estimated through 
Student’s t-test at a 95% confidence level.

2.6 Statistical models of extreme precipitation
Four statistical linear models (M1 to M4) are pro-
posed to represent the normalized extreme precipi-
tation as a function of the climate indices described.

The first model (M1) includes predictors for 
decadal (PDO), interannual (MEI), and intraseasonal 
variability (PNA), as follows:

PRECext = a (PDO) + b (MEI) + c (PNA) + d	 (4)

where the parameters a, b, c, and d were calculated by 
the least squares method, using the normalized annual 
accumulated precipitation and the annual average of 
teleconnections during the period 1950-2005 in each 
cluster. This model is proposed to evaluate extreme 
precipitation events during winter, as both ENSO 
and PNA are known to modulate it predominantly 
during that season.

A second model (M2), considers the influence of 
decadal (PDO) and interannual (ENSO) modulations. 
Given that the largest amount of annual precipitation 
is concentrated in the TCs season (from July to Oc-
tober), it also includes an additional predictor that 
represents the proximity of a TC within a radius of 
300 km from Los Cabos, as follows:

PRECext = a (PDO) + b (ENSO) + c (TC) + d	 (5)

The TC variable is derived from the HURDAT 
database, as explained below and parameters a, b, 
c, and d were calculated by least-squares, using the 
normalized accumulated precipitation from June to 
October and the average of teleconnections in the 
same months during the period 1950-2005 in each 
cluster.

A third model (M3), includes only the decadal 
(PDO) and interannual (ENSO) modulations, which 
can be applicable to project future extremes in precip-
itation based upon the oceanic conditions projected 
by CMIP5 models:

PRECext = a (PDO) + b (ENSO) + c	 (6)

where the parameters a, b, and c were calculated 
by least-squares using the normalized accumulated 
precipitation from June to October and the average 
of teleconnections in the same months during the 
period 1950-2005 in each cluster.

A final model (M4), includes a different predictor 
for the proximity of TCs, based on the study by Tory 
et al (2020), who analyzed TC formation in a warmer 
future from the simulations of twelve CMIP5 models. 
They determined that a reduction in the number of 
TCs is expected in the EPAC basin in the medium and 
long term. Thus, a proximity coefficient associated 
with the presence of a TC was calculated from the 
difference between the number of TCs at a radius of 
300 km from Los Cabos, Baja California Sur, and 
the total number of TCs formed in the EPAC basin, 
as documented by Tory et al (2020). This parameter 
is called TC-Coef and is directly associated with 
extreme precipitation events, so M4 is expressed as:

PRECext = a (PDO) + b (ENSO) + c (TC-Coef) + d	(7)

where the parameters a, b, c, and d were calculated 
by least-squares, using the normalized accumulated 
precipitation from June to October and the average 
of teleconnections in the same months during the 
period 1950-2005 in each cluster.

2.7 HURDAT database
The Hurricane Database (HURDAT) is produced by 
the US National Hurricane Center for TCs developed 
in the eastern Pacific from 1949 to 2014 (HURDAT, 
2022). The variables include the name of the TC 
(TCname) and the position (latitude [lat] and longi-
tude [long]) at 6-h intervals to estimate trajectories, 
central pressure, and maximum winds.

The TC-Coef, mentioned in the previous section, 
was extracted from the HURDAT database. It consists of 
a timeline formed by dividing the number of TCs within 
a 300 km radius of Los Cabos, Baja California Sur, by 
the total number of TCs formed in the eastern Pacific 
basin from June to October over the period 1950-2005.

2.8 Climate model output
Daily precipitation time series from the historical 
simulation (1950-2005) and future projections of an 
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ensemble of climate models were obtained from CMIP5 
for the future scenarios RCP4.5 and RCP8.5. The data 
from the projected time series of precipitation from the 
ensemble of CMIP5 models were obtained from all grid 
points in Fig. S1 in the supplementary material (indicat-
ed by large red circles) and the data of the nearest grid 
point was considered for each cluster (CMIP5, 2023).

The projected PDO and ENSO indices were cal-
culated using the SSTA outputs from the ensemble 
simulations of the CMIP5 models under both scenarios 
and analyzed for two future horizons: 2006-2040 and 
2041-2100. These projected indices were substituted 
into model M4. Fuentes-Franco (2015) investigated the 
combined impact of ENSO and PDO on North Amer-
ican winter climate in current and future climate pro-
jections from 11 global models in the CMIP5, detailing 
that for the historical period they are able to reproduce 
the spatial patterns of the observed teleconnections 
when ENSO and PDO are in phase and thus interfere 
constructively, while future climate projections suggest 
that the interaction between active PDO and ENSO is 
slightly increased in frequency and intensity.

The time series of extreme precipitation from 
the statistical model M4, considering future SSTA 
(which is necessary to calculate future PDO and 
ENSO indices), are then compared with the projected 
extreme precipitation from simulations to determine 
the validity of the statistical model, applied outside 
the historical period sample (1950-2005).

3.	 Results
3.1 Regions with similar climates
The cluster analysis allowed to identify seven regions 
with similar climates shown in Figure 2: Cluster 1 
corresponds to western Sierra la Giganta mountains 
and El Vizcaino; Cluster 2 to northeastern Sierra la 
Giganta mountains; Cluster 3 to southern Sierra la 
Giganta mountains and Valley of Santo Domingo; 
Cluster 4 to the intermountain region; Cluster 5 to 
northern mountains in the Cape Region; Cluster 6 
to southern Cape and Cluster 7 to Sierra la Laguna 
mountains. Table SI in the supplementary material 
has the location of the stations in each cluster.

3.2 Observed annual and decadal variability
The evolution of normalized extreme precipitation, 
corresponding to the 95th percentile determined from 

the daily observations for each one of the clusters 
and for all clusters combined, at decadal, annual, 
and monthly scales, is shown in Figure 3. Note that 
the last decades of the analyzed period (1995-2004 
and 2005-2014) show an overall increase in extremes 
(Fig. 3a), driven by clusters 1, 2, 3, 6, and 7. In partic-
ular, the last decade (2005-2014) shows total values 
that are much larger than in any of the previous 50 
years. Figure 3b shows the total number of events of 
extreme precipitation at an annual scale (in dashed 
pink curve) as well as the frequency per cluster since 
1950. This annual variability clearly shows years with 
increased events of extreme precipitation while other 
years with very few extreme events, suggesting the 
modulation by large-scale interannual phenomena 
(e.g., ENSO), which can combine with phenomena 
with longer time scales (e.g., PDO).

The annual cycle of events of extreme precip-
itation (Fig. 3c) in clusters 2, 4, 5, 6, and 7 show 
maxima in September, with only clusters 1 and 3 in 
August. As mentioned earlier, 70% of precipitation 
in the regions is observed between July and October, 
when also most of the extreme precipitation events 
are observed. August and September coincide with 
the maximum frequency of landfall of tropical 
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Fig. 2. Distribution of stations in seven clusters identified 
by the Ward algorithm based on maximum temperature 
and precipitation from 34 stations out of the original 50, 
which complied with the requisite of at least 85% of the 
information for the period 1971-2000. The color contours 
represent the topography of the region (from sea level to 
2000 masl).
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cyclones in the southern portion of the peninsula. 
Note the small frequency of extreme events that show 
peaks in December and January, when the overall 
precipitation amount is low. These events are likely 
modulated by annual and interannual patterns such 
as the PNA (White and Downton, 1991) and ENSO, 
which influence the penetration of frontal systems 
to the peninsula, affecting all clusters. Correlation 

maps with climate indices will be discussed in the 
following section.

3.3 Linear correlations with climate indices
Monthly correlation maps between extreme precipita-
tion and the PDO index show a positive correlation for 
most months (Fig. 4). March has the highest correla-
tion, followed by April, which suggests that the PDO 
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modulates extreme precipitation during the transition 
season. Note that there is some modulation of extreme 
precipitation by PDO in July and August, which could 
be associated with the influence of landfalling TCs 
(Raga et al., 2013) in the southern Baja peninsula.

During September and October, when extreme 
rainfall is observed due to monsoonal conditions and 
the influence of TCs in Baja California Sur, extreme 
rainfall is positively—but weakly—correlated with 
PDO in the southernmost tip of the peninsula, again 
likely due to landfalling TCs.

Averages of the two-month values of extreme 
precipitation were calculated and correlated with 
the MEI for the same bimester (that is, without lag). 

Figure 5 shows that the maximum positive correlation 
values are from February to April. A high positive 
correlation is also observed from October to Decem-
ber. Low correlation values are observed during the 
rainy season from June to October, and even negative 
correlations in the south and center of the state. Two-
month lagged correlations (ENSO leading precipi-
tation) are also calculated and shown in Figure 3S 
in the supplementary material and basically show 
little difference from results without lag.

The correlation between bimonthly MEI and 
monthly precipitation (not shown) indicates there is a 
positive influence in almost all months, reaching max-
imum values in the winter months. The correlation 
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is practically null in June and very low from July to 
October during the rainy season. This is consistent 
with previous studies that did not observe ENSO 
modulation during the rainy season in the Baja pen-
insula (Cavazos et al., 2008).

The monthly correlation maps between extreme 
precipitation and the PNA (Fig. 6) show positive 
correlations during the winter months, reaching a 
maximum in March. In contrast, low and negative 
correlations are observed, as expected, during the 
rainy season.

Also, both MEI and PNA exert a larger modu-
lation during winter months but, surprisingly, show 

the maximum correlation in March, in the transition 
between the cooler-dry season and the warmer-dry 
season but before the rainy season is established. 
PDO also strongly modulates extreme precipitation 
in March, and there is also some modulation in July 
and August, but not much during September-October, 
with only some influence at the southernmost region 
of the peninsula.

3.4 Statistical models based on the historical period
As described in section 2.6, four different multivar-
iate linear models for extreme precipitation were 
derived from the observations, considering the 
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correlation analysis presented in the previous section. 
The fit coefficients for each of the four models M1, 
M2, M3, and M4 are presented in Tables SII-SV in 
the supplementary material.

Figure 7 shows a comparison between observed 
normalized extreme precipitation (black solid line) 
averaged over clusters 2, 4, and 7 and the results from 
the four multivariate models proposed in section 2.6 
(represented by the different dashed lines as indicat-
ed in the legend of the figure). A similar figure for 
the rest of the clusters is shown in Figure S2 in the 
supplementary material. These clusters were chosen 
because they have quite different characteristics 

and represent regional climate variability: Cluster 2 
consists of five stations located close to the Gulf of 
California and approximately at sea level. In contrast, 
Cluster 7 consists of three stations located at high 
altitudes in the Sierra de la Laguna mountains close 
to the southern tip of the peninsula, where orographic 
forcing can contribute to extreme precipitation. Clus-
ter 4 is the smallest (only 2 stations), located halfway 
between clusters 2 and 7.

Observations in Cluster 2 indicate large positive 
anomalies of normalized extreme precipitation 
from 1956 to 1964. All four statistical models show 
positive anomalies but underestimate the magnitude 
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in this period. While all statistical models show a 
change in the tendency of anomalies, only one (M3) 
reproduces the negative anomalies observed in the 
late 1960s. The heavy dashed line corresponds to 
the results from the CMIP5 ensemble during the 
historical period, which displays a larger magni-
tude of the anomalies and reproduces the change in 
sign as observed in the 1950s and 1960s. Observed 

anomalies between 1970 and 1978 oscillate around 
zero with no clear tendency and are reproduced by 
all four models. A clear positive tendency in the ob-
servations becomes obvious after 1978, with positive 
anomalies until 1985, which is also reproduced by all 
four statistical models. However, the observed large 
negative anomalies between 1986 and 1996 are not 
reproduced by any of the statistical models. From 
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Fig. 7. Time series of observed normalized extreme precipitation (solid black 
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1997 to 2005, all models underestimate observations, 
with M4 performing best of the four. Also note that 
after 1977 (“the climate shift”; Trenberth and Hurrell 
[1994]), the CMIP5 ensemble results seem to be out 
of phase from observations in Cluster 2.

In contrast to the large positive anomalies in Clus-
ter 2, observations in Cluster 7 initiate in 1955 with 
mostly negative anomalies in the record of extreme 
precipitation, with only 1958 and 1959 showing slight 
positive anomalies. Negative anomalies dominate the 
observations until 1978. These contrasting observa-
tions between clusters 2 and 7 highlight the intricacies 
of the regional variability in the small land mass of 
the peninsula, which is also topographically quite 
complex. All four statistical models underestimate 
the magnitude of the observed anomalies, which 
oscillate around zero, changing sign in phase with 
the observations. Nevertheless, since 2000, negative 
anomalies have been modeled, and none of the mod-
els can capture the observed large positive anomalies. 
The CMIP5 ensemble results also fail to reproduce 
the observed anomalies and appear out of phase for 
the full 50 years analyzed.

In contrast with both previous clusters, Cluster 4 
shows observed anomalies that start quite negative in 
1955 and tend towards zero by 1965, after which the 
observed anomalies oscillate around zero until 1978. 
Between 1979 and 1999, anomalies are small except 
between 1989 and 1995 when they are negative, 
with the lowest value observed in 1990. None of the 
statistical models can reproduce the large positive 
anomalies observed from 2000 to 2005, and neither 
does the CMIP5 ensemble.

Several metrics were calculated to evaluate the per-
formance of each model in each of the seven clusters, 
such as root mean square error (RMSE) and bias, as 
well as the correlation between predicted and observed 
values of the normalized extreme precipitation (R2 
values are listed in Tables SII-SV in the supplemen-
tary material). An additional test for statistical models 
involves the estimation of Receiver Operating Char-
acteristics (ROC) curves from the confusion matrix 
determined for each model, is the estimate of the true 
positive rate (frequency of an extreme event that was 
predicted, whether it was recorded in the historical 
data) versus the false positive rate (frequency of an 
extreme event that was predicted and did not occur). 
The area under the ROC curve (AUC) for each model 

provides an objective measure to compare models and 
determine the one that has better skill. The results 
(Table VI) indicate that model M4 is the best model in 
six of the seven clusters in the Baja peninsula. Model 
M3 has slightly better skills than M4 in Cluster 3. This 
metric also allows us to conclude that model M1 is the 
one with the least skill for any of the clusters.

3.5 Statistical models applied to future projections
Future projections of precipitation extremes in the 
southern Baja peninsula are estimated using model 
M4 (bias-corrected), based on CMIP5 oceanic con-
ditions associated with PDO, ENSO, and TC-Coef 
(based on Tory et al., 2020) as predictors, for scenar-
ios RCP4.5 and RCP85.

Figure 8 presents the projections from model 
M4 for clusters 2 (top panel), 4 (middle panel), and 
7 (bottom panel) as examples. Three periods of in-
terest are separated by vertical solid lines in Fig. 8: 
1950-2005, 2006-2040, and 2041-2100. The first 
period corresponds to the historical observations of 
normalized extreme precipitation (solid black line), 
the output of the M4 model (solid red line), and the 
historical ensemble simulation from CMIP5 (solid 
blue line). Normalized observations (solid black line) 
in clusters 2 (top) and 7 (bottom) oscillate around 0 
and do not indicate any clear trend between 1950 and 
2005, while observations in Cluster 4 since 1990 indi-
cate a positive trend, which is seen neither in M4 nor 
in CMIP5 historical simulations, possibly indicating 
very localized phenomena responsible for this trend, 
not modulated by large scale oceanic conditions.

4.	 Discussion
Extreme precipitation during the rainy season (Ju-
ly-October) in the Baja peninsula has been associated 
with large-scale phenomena such as the PDO and 
ENSO, as well as the presence of TCs even when 
they do not make landfall. Thus, the four models pro-
posed here for extreme precipitation (95th percentile) 
explore the modulation by these climate indices and 
the proximity of TCs.

The correlation analysis between extreme precip-
itation and climate indices indicates that the greatest 
influence on extreme precipitation is the PDO in 
model M3, resulting in the highest correlation coef-
ficients in six of the seven clusters. Recall that M3 
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has terms for PDO and also ENSO indices, which 
are solely determined by SSTA. While not explicitly 
including a term associated with the proximity of 

TCs, M3 performs well in several clusters because 
the positive phase of the PDO favors precipitation 
associated with TCs (Englehart and Douglas, 2001, 
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2002), and because TC’s landfall is also modulated 
by the positive phase of PDO (Raga et al., 2013).

Extreme precipitation anomalies increased in 
all clusters in southern Baja from the mid-1990s to 
2005 (solid black line in Fig. 8 for clusters 2,4, and 7) 
corresponding to the cool phase of the PDO. While 
O’Brien et al. (2019) identify that precipitation during 
the PDO cool phase is associated with drought in the 
western USA, the opposite effect is detected at the 
latitude of the state of Baja California Sur. Note that 
the cool phase is associated with cold SST anomalies 
in the northern Pacific near the Aleutian Islands and 
corresponds to warm SST anomalies at tropical lat-
itudes, likely responsible for the increased extreme 
precipitation observed. In contrast, the results of 
Peralta-Hernández et al. (2009) for southern Mexico 
show that extreme events tend to occur more frequent-
ly during La Niña and the warm phase of the PDO.

Models M2 and M4 both include terms associ-
ated with PDO and ENSO and an additional term 
related to the presence and proximity of TCs. Model 
M2 has a better correlation with records of extreme 
precipitation events than the M3 model, which does 
not explicitly include TCs. In clusters 5, 6, and 7, 
located in southern BCS, the variable TC has a greater 
influence than ENSO and PDO. It was expected that 
the linear multivariate model M2, which includes 
a term associated with the proximity of TCs to the 
southern Baja peninsula, would be a good predictor, 
but it underperformed compared with M4, which 
includes the proximity of the fraction of TCs in the 
EPAC basin that are found within 300 km from the 
southern tip of the peninsula.

Models M3 and M4 both include terms associated 
with the PDO and ENSO indices, but the additional 
term in M4 provides a slight advantage as a predictor 
for six of the seven clusters. It is not surprising that 
M4, which includes the contribution of TCs, would 
have better skill than M3 in predicting extreme pre-
cipitation in these clusters. M4 represents extreme 
precipitation better because 70% of the annual 
precipitation in BCS is concentrated between July 
and October, with peak precipitation in September 
coinciding with the month of highest tropical cyclone 
activity (Cavazos et al., 2008).

Models M3 and M4 (solid red line in Fig. 8) cor-
relate better with the observed extreme precipitation 
values than the historical ensemble simulation of the 

CMIP5 models. While the CMIP5 models capture the 
oceanic decadal variability, they do not quite capture 
the amplitude of the extreme precipitation anomalies, 
showing a systematic negative bias.

For future decades, CMIP5 models capture the 
presence of the PDO modulating extreme precipita-
tion but again show much smaller anomalies that are 
superposed to a large overall decreasing trend to the 
end of the century. This behavior contrasts with the 
results of model M3, which includes PDO and ENSO 
modulations but no explicit atmospheric response. 
The oceanic conditions associated with PDO and 
ENSO from the ensemble of CMIP5 models indicate 
a good correlation with the multivariate linear model 
in all clusters for both future scenarios (RCP4.5 and 
8.5). This is consistent with DeFlorio et al. (2013), 
who indicate that total and extreme precipitation 
(90th percentile) over the western USA show statisti-
cally significant links with ENSO and PDO. In addi-
tion, M3 showed systematically positive precipitation 
anomalies from 2006 to 2040 (possibly linked to the 
CMIP5 ensemble negative bias) and smaller values 
from 2041 to 2100, particularly in clusters 1, 4, 5, 6, 
and 7. However, also note that the decreasing trend 
is much smaller in the results of model M3 than in 
the ensemble CMIP5 simulation to 2100.

For Cluster 2, projections from model M4 (Fig. 8) 
are found between the projections for RCP 4.5 
and RCP 8.5 of CMIP5, while for clusters 4 and 7, 
model M4 shows higher values than those projected 
by CMIP5. The future projection of extreme events 
using model M4 shows a decrease with respect to 
historical values, consistent with Tory et al. (2020), 
who show a reduction between 10 and 23% of 
TCs (in five CMIP5 models with the best fit in the 
EPAC basin). Although model M4 projects extreme 
precipitation events in the future, these are directly 
associated with the presence of TCs near BCS, and 
thus, extreme precipitation is expected to decrease 
by the end of the century.

5.	 Conclusions
The available dataset from 161 climatological sta-
tions in the state of Baja California was subjected 
to a thorough quality assurance process resulting 
in a robust and representative climate database for 
the state. A high-quality database from only 50 
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climatological stations is now available on a daily, 
monthly, and annual scale, essential for any rigorous 
climatological study. Clustering analysis allowed the 
grouping of stations into seven regional clusters with 
similar climates (Fig. 2).

Extreme precipitation events (95th percentile) 
were estimated for each cluster and showed a decadal 
modulation with an increasing tendency in the last 
decade in all clusters. The annual cycle of extreme 
precipitation events shows maxima in August and 
September, during the rainy season (July-October). 
Nevertheless, all clusters also show small peaks in 
the frequency of extreme events during December 
and January. Interannual and decadal modulation of 
extreme precipitation in each of the seven clusters 
indicates the strongest influence of PDO, PNA, and 
MEI in March, in the transition from the cooler-dry 
period to the warmer-dry period before the onset of 
the rainy season.

Four multivariate statistical models (M1, M2, 
M3, and M4) were developed based on historical 
information. The statistical model M1 (using PDO, 
MEI, and PNA as predictors) is a better fit for ex-
treme precipitation in the winter months; however, 
extreme precipitation in winter is very low compared 
to summer.

Model M3 (with only PDO and ENSO as pre-
dictors), while not explicitly including a TC term, 
performs moderately well since precipitation in NW 
Mexico and landfalling TCs are modulated by the 
PDO. The results here indicate that these climate 
indices are also good predictors of extreme precipi-
tation, particularly in the region close to the Gulf of 
California (Cluster 2) and the central region of the 
peninsula (clusters 3 and 4)

Additionally, two models (M2 and M4) were 
developed to include not only PDO and ENSO but 
also the influence of tropical cyclones as predictors 
of extreme precipitation.

In model M2 the additional term includes an 
indicator of the number of cyclones within 300 km 
of Los Cabos during the historical period from the 
HURDAT. Model M2 performs better than M3 over 
the rainy season in the historical period. In model 
M4, the additional term includes an indicator of 
relative TCs activity near the Baja peninsula based 
on Tory et al. (2020). M4 performs better than all 
other models in six of the seven clusters during the 

historical period, only performing with less skill than 
M3 in Cluster 3.

Future projections of extreme precipitation can be 
made based solely on oceanic conditions since, due 
to their coarse resolution, few of the CMIP5 models 
can accurately depict the number of tropical cyclones 
near the Baja California peninsula. Nevertheless, the 
recent work of Tory et al. (2020) provides a means 
to estimate the fraction of TCs near the peninsula as 
a fraction of the total TC number in the EPAC basin 
that can be used for future projections. M4 incor-
porates the fraction based on Tory et al. (2020) and 
projects more precipitation in extreme events than 
the ensemble of CMIP5 for both future scenarios. For 
the second half of the century, projections by both 
M4 and the CMIP5 ensemble simulation indicate a 
decrease in extreme precipitation in most of the seven 
clusters identified within BCS.

This study provides valuable information on fu-
ture extreme precipitation in an arid region located 
in a very narrow peninsula in the presence of steep 
topography, which could result in potential damage 
to ecosystems and infrastructure. These will be eval-
uated in a companion paper.
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Fig S1. Small colored circles correspond to the locations of 
climatological stations in each of the seven clusters, while 
large red circles correspond to the location of gridpoints 
of the output of the CMIP5 models’ ensemble.
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Fig. S2. Time series of observed normalized extreme precipitation (solid black 
line) and modeled extreme precipitation values (red line) for clusters 1, 3, 5 and 
6, for the period 1955 to 2005.
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Fig. S3. Bimonthly correlation maps between MEI and extreme precipitation with 
a two-month lag. The months in red represent MEI, and the black ones represent 
precipitation. The reporting period is from 1922 to 2005.
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S.1 Lagged correlations between the MEI and extreme precipitation
Once the bimonthly maximum precipitation values were calculated, they were also correlated with the bi-
monthly MEI values but with a two-month lag. In other words, an attempt was made to evaluate how SST 
anomalies in the central Pacific region (Niño 3.4), observed two months before, modulate the precipitation 
in the state. Bimesters with the highest correlations are basically the same with or without lag, but the max-
imum correlation values vary slightly.
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Table SI. Stations that compose each climatically similar cluster.

# ID
Station

Cluster Latitude Longitude Altitude 
(masl)

Years with
information

Complete
data (%)

1 3002 1 27.689 –114.897 15 54 91.7
2 3029 1 26.182 –112.078 95 76.3 99
3 3041 1 26.821 –112.797 249 54 93.9
4 3047 1 26.716 –113.574 20 59.7 93.5
5 3055 1 26.589 –112.722 140 60.7 95.9
6 3057 1 26.257 –112.483 20 54 94
7 3035 2 26.013 –111.343 20 76.4 95.1
8 3038 2 26.889 –111.984 10 93 91.8
9 3039 2 26.324 –111.985 180 73.5 87
10 3054 2 25.865 –111.544 200 61.8 91.8
11 3061 2 27.339 –112.270 10 85.2 92.3
12 3033 3 25.397 –111.755 40 62.8 93.6
13 3052 3 27.299 –112.875 150 76.1 92.5
14 3063 3 25.490 –111.915 18 61.8 93.7
15 3065 3 25.092 –111.326 180 54 97.1
16 3068 3 25.032 –111.670 50 57.8 97.1
17 3031 4 24.813 –110.981 340 54 91.8
18 3042 4 24.392 –111.108 50 62.3 96.1
19 3030 5 23.597 –109.586 15 68.2 99.5
20 3036 5 23.893 –110.143 490 71.4 98.2
21 3037 5 23.968 –109.936 20 63.2 88.7
22 3050 5 23.742 –109.840 395 74 97.6
23 3058 5 23.925 –110.264 190 73.6 92.3
24 3062 5 23.482 –109.718 132 78 96.9
25 3074 5 24.135 –110.336 16 75 95.2
26 3077 5 23.756 –110.271 222 54 92.9
27 3003 6 23.289 –109.438 20 57.5 94.9
28 3005 6 22.882 –109.913 15 77.6 87.4
29 3053 6 23.238 –110.068 95 61.9 98.1
30 3056 6 23.069 –109.707 10 88.1 85.7
31 3066 6 23.449 –110.223 10 75.2 95.7
32 3051 7 23.108 –109.854 380 75.9 96.7
33 3060 7 23.533 –110.074 520 74.2 98.6
34 3067 7 23.271 –109.779 160 53.7 91



593Projections of hydroclimatic extremes influenced by tropical cyclones

S.2 Fit coefficients for multivariate lineal models
The following tables (SII, SIII, SIV, and SV) include the coefficients’ values for the multivariate linear 
models described in section 2.6.

Table SII. Parameters of the multivariate linear model M1 (based on PDO, MEI, and PNA, 
from Eq. [4]) for each cluster and correlations with extreme precipitation for the historical 
period (1950-2005). Coefficient d corresponds to the intercept in Eq. (4).

Cluster d a (PDO) b (ENSO) c (PNA) R2 R2

(with bias correction)

1 –0.07 0.23 –0.05 –0.03 0.05 0.19
2 0.19 0.29 0.01 0.60 0.12 0.36
3 –0.07 0.48 –0.13 0.04 0.17 0.45
4 0.06 0.36 –0.07 0.08 0.03 0.16
5 0.11 0.07 0.02 0.40 0.04 0.15
6 –0.04 0.04 –0.15 0.26 0.03 0.11
7 0.03 0.29 –0.44 0.49 0.11 0.33

Table SIII. Parameters of the multivariate linear model M2 (based on PDO, ENSO, and TCs, from Eq. 
[5]) for each cluster and correlations with extreme precipitation for the historical period (1950-2005). 
Coefficient d corresponds to the intercept in Eq. (5).

Cluster d a (PDO) b (ENSO) c (PNA) R2 R2

(with bias correction)

1 –0.07 0.22 –0.05 0.02 0.06 0.13
2 0.22 0.24 0.08 0.15 0.23 0.27
3 –0.05 0.43 –0.93 0.12 0.18 0.48
4 0.07 0.34 –0.04 0.08 0.07 0.14
5 0.14 0.09 0.11 0.21 0.14 0.19
6 –0.01 –0.06 –0.04 0.29 0.12 0.35
7 0.07 0.20 –0.33 0.29 0.13 0.38

Table IV. Parameters of the multivariate linear model M3 (based on PDO and ENSO, 
from Eq. [6]) for each cluster and correlations with extreme precipitation for the 
historical period (1950-2005). Coefficient c corresponds to the intercept in Eq. (6).

Cluster c a (PDO) b (ENSO) R2 R2

(with bias correction)

1 –0.07 0.23 –0.05 0.05 0.2
2 0.21 0.29 0.03 0.06 0.2
3 –0.06 0.48 –0.13 0.16 0.45
4 0.06 0.32 –0.06 0.03 0.19
5 0.12 0.07 0.04 0.008 0.12
6 –0.03 0.04 –0.13 0.012 0.14
7 0.05 0.30 –0.42 0.07 0.28
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Table V. Parameters of the linear multivariate model M4 (based on PDO, ENSO, and TC-Coef 
from Eq. [7]) for each cluster and correlations with extreme precipitation for the historical 
period (1950-2005). Coefficient d corresponds to the intercept in Eq. (7).

Cluster d a (PDO) b (ENSO) c (TC–Coef) R2 R2

(with bias correction)

1 –0.09 0.20 –0.06 0.12 0.27 0.48
2 0.20 0.27 0.02 0.12 0.27 0.49
3 –0.05 0.51 –0.12 –0.16 0.20 0.24
4 0.05 0.34 –0.07 0.11 –0.02 –0.01
5 0.12 0.06 0.04 0.06 0.11 0.21
6 –0.03 0.05 –0.13 –0.06 0.12 0.24
7 –0.06 0.32 –0.41 –0.09 0.27 0.50

Table VI. Area under the ROC curve (AUC) for each of the four evaluated models. 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

M1 0.597 0.600 0.595 0.626 0.638 0.608 0.691
M2 0.605 0.600 0.590 0.719 0.681 0.642 0.712
M3 0.656 0.592 0.695 0.731 0.731 0.693 0.741
M4 0.673 0.788 0.560 0.753 0.777 0.727 0.755

Note: Figures in bold represent the maximum AUC value for each cluster.

S.3 Evaluation of model performance 
Table SVI presents the results of the area under the ROC curve (AUC), one of the metrics used to evaluate 
each model’s performance, as described in section 3.3.


