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RESUMEN

A pesar de ser muy común que el territorio de Chihuahua, Chihuahua, México, experimente sequía, sus 
consecuencias continúan impactando severamente a la población sin previo aviso. El aprendizaje automático 
ha demostrado tener una importante capacidad para predecir series temporales, y el índice estandarizado 
de evapotranspiración y precipitación (SPEI, por su sigla en inglés) se perfila como el indicador de sequía 
más preciso. En este estudio, se desarrollaron modelos predictivos utilizando redes neuronales artificiales 
(ANN), memoria a largo y corto plazo (LSTM) y regresión de vectores de soporte (SVR) para estimar el 
SPEI. Se consideraron escalas temporales de 12 (SPEI 12) y 24 meses (SPEI 24) para el periodo 1901-2020 
en el territorio mencionado. Esto se hizo para simular el comportamiento de los ciclos de sequía y mejorar 
la capacidad de anticipar las consecuencias. Los índices de precisión utilizados para evaluar los modelos 
fueron el error cuadrático medio (MSE), el error absoluto medio (MAE), el error de sesgo medio (MBE), el 
coeficiente de determinación (R2) y el coeficiente de Kendall. En total, se realizaron 956 experimentos con 
los tres métodos, variando parámetros como el número de neuronas, el kernel y el grado del polinomio, entre 
otros. Se seleccionaron los dos mejores modelos para cada método y los resultados promedio revelaron MSE 
= 0.0051, MAE = 0.0537, MBE = 0.0218, R2 = 0.8495 y coeficiente de Kendall = 0.7592 para SPEI 12, y 
MSE = 0.0024, MAE = 0.0375, MBE = 0.0162, R2 = 0.9218 y coeficiente de Kendall = 0.8558 para SPEI 24.

ABSTRACT

Despite being very common in the territory of Chihuahua, Chihuahua, Mexico, to experience drought, its 
consequences continue to severely impact the population without prior warning. Machine learning has proven 
to have a significant capacity for predicting time series, and the Standardized Precipitation Evapotranspira-
tion Index (SPEI) is emerging as the most accurate drought indicator. In this study, predictive models were 
developed using Artificial Neural Networks (ANN), Long-Short Term Memory (LSTM), and Support Vector 
Regression (SVR) for estimating SPEI. Temporal scales of 12 months (SPEI 12) and 24 months (SPEI 24) 
for the period 1901-2020 in the mentioned territory were considered. This was done in order to simulate the 
behavior of drought cycles and enhance the ability to anticipate consequences. The accuracy indices used 
to evaluate the models were the mean squared error (MSE), mean absolute error (MAE), mean bias error 
(MBE), coefficient of determination (R2), and Kendall coefficient. In total, 956 experiments were conducted 
using the three methods, varying parameters such as the number of neurons, kernel, and polynomial degree. 
The two best models for each method were selected, and the average results revealed MSE = 0.0051, MAE 
= 0.0537, MBE = 0.0218, R2 = 0.8495, and Kendall coefficient = 0.7592 for SPEI 12; and MSE = 0.0024, 
MAE = 0.0375, MBE = 0.0162, R2 = 0.9218, and Kendall coefficient = 0.8558 for SPEI 24.
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1. Introduction
Drought is defined as a reduction in precipitation 
compared to the annual average and is caused by 
prolonged periods of below-normal rainfall. It can 
affect various aspects of the water cycle and as a 
consequence, one type of drought can become an-
other over time, being a phenomenon that operates 
at different scales and is influenced by the speed with 
which a specific area responds to changes. Therefore, 
the time scale plays a critical role in determining the 
specific type of drought that is occurring. The different 
time scales help classify droughts into meteorological 
(1 month), agricultural (3-6 months), and hydrological 
(12-24 months) categories. Specifically, hydrological 
drought occurs when the levels of surface reservoirs 
such as rivers and lakes gradually decrease, sometimes 
even depleting completely (Esparza, 2014). Classify-
ing droughts based on these time scales is essential 
to accurately assess the severity and type of drought 
in a given region. Drought is also a phenomenon that 
occurs in cycles in all climates worldwide, although 
with varying intensity and frequency. In Mexico, 
droughts occur on average once every 20 years, leading 
to a hydrological imbalance in the water cycle due to 
insufficient resource availability.

The lack of rainfall in different regions of the state of 
Chihuahua has resulted in drought occurring in 64 out 
of the 67 municipalities of the territory, as described by 
the Drought Monitor in Mexico in its report published 
on July 4, 2022. The report details that the state is ex-
periencing all five classifications of drought. The three 
watersheds that supply water to the municipalities in 
the region were affected by severe, extreme, or excep-
tional drought conditions, with the city of Chihuahua 
experiencing extreme drought (SMN, 2022).

One of the most alarming consequences of 
drought is the damage to agriculture in recent years. 
The direct impact of these losses is reflected in the 
rising prices of basic commodities. Crop loss, in turn, 
increases the risk of widespread famine due to the 
inability to ensure a stable food supply. Furthermore, 
the situation has generated tensions and conflicts at 
various levels and locations.

The Standardized Precipitation Evapotranspi-
ration Index (SPEI) aims to measure the level of 
drought at a specific location. It is based on precipi-
tation and temperature data and combines multiscale 
character with the ability to incorporate temperature 

variability. Machine learning efficiently captures 
knowledge within the data to make decisions based 
on it.

In the work of Belayneh and Adamowski (2013), 
machine learning techniques for Artificial Neural 
Networks (ANN), Support Vector Regression (SVR), 
and Wavelet Analysis (WA) were investigated in the 
Awash River basin in Ethiopia using the Standardized 
Precipitation Index (SPI). The results show that the 
WA-ANN is the most accurate model for predicting 
the values of SPI-3 and SPI-6, with coefficient of 
determination (R2) values greater than 0.96 and root 
mean squared error (RMSE) less than 0.025. The 
study of Zhang et al. (2019) took place in Shaanxi, 
China. The Distributed Lag Non-Linear Models 
(DLNM), ANN model, and Extreme Gradient Boost-
ing (XGBoost) model were constructed, and their 
validations were compared to predict SPEI one to 
six months in advance. As a result, the XGBoost 
model was superior, with R2 values between 0.68-
0.82, 0.72-0.89, 0.81-0.92, and 0.84-0.95 in three, 
six, nine, and 12 months, respectively. The study 
of Mokhtar et al. (2021) took place on the Tibetan 
Plateau, China considering SPEI-3 and SPEI-6 to 
develop the random forest (RF) algorithm, XGBoost, 
convolutional neural networks (CNN), and Long-
Short Term Memory (LSTM) models.

Seven scenarios of various combinations of cli-
mate variables were adopted as input to build the 
models. The best model was the SPEI-3 XGBoost, 
which obtained an MBE of 0.04 and a Nash-Sutcliffe 
efficiency (NSE) of 0.70. The study of Dikshit et al. 
(2021) uses LSTM networks to predict SPEI-1 and 
SPEI-3. The model was compared to the RF algo-
rithm and applied in Australia’s New South Wales 
region. The model achieved an R2 value of more 
than 0.99 for the SPEI-1 and SPEI-3. In the work of 
Hernández (2021), ANNs were evaluated in the So-
nora River basin, Mexico, using SPI and SPEI at time 
scales of three, six, 12, and 24 months. The results 
showed an average R2 of 0.76, and it was observed 
that the performance of SPEI was better than that of 
SPI and increased with increasing time scale.

The existing works on machine learning algo-
rithms to predict drought are not exactly focused on 
hydrological drought, meaning they do not focus on 
obtaining the best results on the 12- and 24-month 
time scales. As the SPEI is the improved version of 
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the SPI, this work specializes in the SPEI to obtain 
more precise and updated information, unlike other 
studies. The few works in which SPEI and machine 
learning algorithms work together train only one type 
of algorithm. Therefore, the results have limitations. 
Given this, the study’s objective is to anticipate ex-
treme situations by analyzing drought cycles within 
the city of Chihuahua using a database of the monthly 
SPEI 12 and SPEI 24 indices from 1901 to 2020. This 
analysis employs the machine learning methods of 
SVR, ANN, and LSTM to predict droughts, mitigate 
their impact, and visualize future trends.

2. Materials and method
2.1 Standardized Precipitation Evapotranspiration 
Index (SPEI)
The purpose of the SPEI is to measure the level of 
drought at a specific location. Its multiscale nature 
makes it useful for various scientific disciplines be-
cause it can measure severity based on its intensity 
and duration and identify the onset and end of drought 
episodes. It can be calculated across a wide range of 
climates, and a crucial advantage over other indices 
is that its multiscale characteristics allow it to identify 
different types of droughts and impacts in the context 
of global warming (Vicente-Serrano et al., 2010). The 
specific definition and classification of drought based 
on SPEI are shown in Table I.

2.1.1 Calculating the SPEI
The probability density function of a three-param-
eter log-logistic distributed variable is expressed as 
follows:

f (x) = 1 +
β β–1 βx – y x –α α

x – y
α( ( )( )) –2

 (1)

where α, β, and γ are scale, shape, and location 
parameters, respectively, for values of D within the 
range γ > D < ∞.

The parameters of the log-logistic distribution 
can be obtained by following the method (Singh et 
al., 1993):

β = 2W1 – W0

6W1 – W0 – 6W2
 (2)

α =
(W0 – 2W1)β

1+Г Г1
β 1– 1

β( () )  (3)

γ = W0 – αГ 1+ Г1
β 1– 1

β( () ) (4)

where Γ(β) is the gamma function of β.
The probability distribution function of D accord-

ing to the log-logistic distribution is given by:

F(x) = 1+
β –1α

x–y[ ]( )  (5)

With F(x), the SPEI can be easily obtained as the 
standardized F(x) values. For example, following the 
classical approximation of Abramowitz and Stegun 
(1964):

SPEI = w – C0+C1W+C2W2

1+d1W+d2W2+d3W3 (6)

where

W = − 2 ln In (P) (7)

For P ≤ 0.5, where P is the probability of exceed-
ing a certain value D, P = 1 – F(x). If P > 0.5, it is 
replaced by 1 – P, and the sign of the resulting SPEI 
is inverted. The constants are: 

C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 
1.432788, d2 = 0.189269, and d3 = 0.001308.

2.2 Machine learning algorithms
In the second half of the 20th century, machine learn-
ing evolved as a subfield of artificial intelligence, 
offering a more efficient alternative for capturing 
knowledge from data. Instead of relying on humans to 

Table I. Categorization of SPEI values.

Category SPEI

Extremely wet Greater than 2.0
Very wet De 1.50 a 1.99
Moderately wet De 1.00 a 1.49
Near normal De –0.99 a 0.99
Moderately dry De –1.00 a -1.49
Very dry De –1.50 a –1.99
Extremely dry Less than –2.0

SPEI: Standardized Precipitation Evapotranspiration 
Index.
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manually derive rules and construct models through 
the analysis of vast datasets, machine learning iden-
tifies patterns of statistical repetitions to gradually 
improve the performance of predictive models and 
make data-driven decisions.

2.2.1 Artificial Neural Networks (ANN)
It is well known that learning takes place within 

the brain. To understand this process, it is neces-
sary to comprehend the basic element, the neuron. 
Neurons perform chemical transmissions within the 
brain, carrying information that can either increase 
or decrease the neuron’s electrical potential. If this 
membrane potential reaches a certain threshold, the 
neuron fires a pulse of specific strength and duration 
sent down the axon. The axon, in turn, branches out 
into various connections to other neurons, linking to 
each of them through synapses.

McCulloch and Pitts (1943) introduced the first 
mathematical model of an artificial neuron that could 
capture the essential elements of how a neuron func-
tions by emulating its operations and determining 
whether it should fire. Subsequently, Frank Rosen -
b l a t t  ( 1 9 5 8 )  invented the first neural network 
known as the Perceptron, and later, Bernard Widrow 
and Ted Hoff (1997) published the adaptive linear 
neuron algorithm (ADALINE) algorithm, which 
can be considered an improvement. This algorithm 
consisted of a collection of McCulloch-Pitt neurons 
and inputs and weights.

ADALINE is particularly interesting because it 
illustrates the concept of defining and minimizing 
cost functions, laying the foundation for understand-
ing more advanced machine learning algorithms for 
classification and regression models. In addition, 
backpropagation is the process that seeks the best 
parameters to reduce the network’s error.

2.2.2 Long Short-Term Memory (LSTM)
Juergen Schmidhuber (1997) introduced the so-called 
LSTM units, which are managed in memory blocks 
with self-connections. Their advantage lies in their 
ability to store the temporal state of the network. 
LSTM cells have special multiplicative units called 
gates, which control the data flow. The components 
of memory blocks include the input gate (it), which 
controls the flow of input activations into a cell; the 
output gate (ot), where the flow of output from the 

cell’s activation is controlled; and the forget gate (ft), 
where the input information is filtered (xt) and the 
previous output is filtered (Fig. 1).

2.2.3 Support Vector Regression (SVR)
SVR uses the perceptron algorithm to minimize 
classification errors. Its objective is to maximize 
the distance between the separation hyperplane and 
the closest training samples to it, referred to as sup-
port vectors. In a dataset where it is not possible to 
separate the samples using a linear hyperplane as a 
boundary with the assistance of linear models, kernel 
methods attempt to create nonlinear combinations of 
features to project them into a higher-dimensional 
space through mapping, where linear separation 
becomes feasible (Fig. 2).

2.3 Obtaining climatological data
The dataset containing monthly SPEI 12 and SPEI 
24 data will be collected through the Global SPEI 
Database project (https://spei.csic.es/) from the Cli-
matology and Services Laboratory. This involves 
searching for geographical coordinates on the official 
website, selecting the data type sought, and down-
loading the information in .csv format. The type of 
data is shown in Table II.

2.4 Preprocessing
Once the file is obtained, it is scaled so that the data 
is no longer between –3 and 3, but the minimum data 
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Fig. 1. Graphic representation of the structure of a Long-
Short Term Memory (LSTM) model where: xn is the input 
of the model, hn is the output, ft is the forget gate, it is the 
input gate y ĉt is the update cell, ct is the state cell and ot 
is the output gate. Obtained from Zhu et al. (2020).

https://spei.csic.es/
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value becomes 0, and the maximum becomes 1 (a 
process known as normalization). This reduces the 
computational cost associated with working with a 
variety of values.

Due to the nature of the data, this analysis is 
categorized as a time series. The way to work with 
such projects involves creating small windows of 
data, which in the case being discussed consists of 
12 months because a cycle repeats yearly. These 
windows are formed with data from t = 0 to t = 
11, and the last column is considered the one to 
be predicted or, in other words, the label. This is 
how all the windows are created from the database, 
overlapping. The previous windows help serve as 
feature vectors along with the label. This is how 
subseries are generated.

2.5 Data import
A series of experiments were conducted to find the 
best configurations for the three proposed methods 
and the two types of SPEI. From the results, the top 
two architectures for each method were selected and 
analyzed in the obtained results.

2.5.1 ANN
The dataset was split into 90% for training and 10% 
for testing. The Adamax optimizer was used. The net-
works were trained for 20 epochs with a batch size of 
1. The values of ‘n’ were based on the configurations 
that yielded the best results in the consulted articles, 
resulting in a total of 100 different cases (Table III).

2.5.2 LSTM
Same configuration as in ANN, resulting in a total of 
250 different cases (Table IV).

2.5.3 SVR
The varied parameters included kernel, regulariza-
tion parameter ‘C’, kernel coefficient ‘Gamma,’ 
and polynomial degree. This way, five folds were 
obtained for 128 candidates, resulting in a total of 
640 fits (Table V).

2.6 Performance statistics for model evaluation
The model’s performance was evaluated by com-
paring statistical parameters between predicted and 
observed data, using the metrics mean bias error 
(MBE), MAE, MSE, R2, and Kendall’s correlation 
coefficient.

Table II. SPEI 12 and SPEI 24 input data.

Date SPEI 12 SPEI 24

1901-01-16 –0.25413 0.94915
1901-02-15 –0.09160 0.92983
1901-03-16 –0.36882 0.92330
1901-04-16 –0.42440 0.91418
— — —
2020-09-16 –1.56340 –1.60910
2020-10-16 –1.94560 –1.86140
2020-11-16 –2.18390 –1.92440
2020-12-16 –2.24050 –1.96930

SPEI: Standardized Precipitation Evapotranspiration 
Index.

Margin

SVM:
Maximize the margin

Support vectors

“Positive”
hyperplane
wTx = 1

“negative”
hyperplane
wTx = –1

Decision boundary
wTx = o

WX2

X1

Fig. 2. Graphic representation of the support vector ma-
chine’s (SVM) work and the intention to maximize the 
margin. Obtained from Raschka (2015).

Table III. Structure of Artificial Neural Networks (ANN) 
models.

Input Hidden 1 (n) Hidden 2 (n + 9) Output

12 11 11…20 1
12 12 12…21 1
12 13 13…22 1
12 14 14…23 1
12 15 15…24 1
12 16 16…25 1
12 17 17…26 1
12 18 18…27 1
12 19 19…28 1
12 20 20…29 1
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2.6.1 Mean bias error (MBE)
It is used to estimate the model’s average bias and 
determine the steps needed to correct the model’s 
bias.

MBE = (Oi – Pi)∑1
N

N

i=1  (8)

where N is the total number of samples, P corre-
sponds to the predicted value, and O to the observed 
value. An MBE equal or near zero indicates that, on 
average, the model predictions are free of systematic 
bias. A positive MBE indicates that the model predic-
tions tend to be systematically higher than the actual 
values, and similarly, a negative MBE indicates that 
the model predictions tend to be systematically lower 
than the actual values.

2.6.2 Mean absolute error (MAE)
It is an evaluation metric used with regression mod-
els. It involves taking the mean of the absolute values 
of individual predictive errors across all instances. 
Each prediction error is the difference between the 
actual value and the predicted value,

MAE = |Oi – Pi|∑1
N

N

i=1
 (9)

A MAE value equal to 0 would indicate that the 
model makes perfect predictions, coinciding with 
the real values in all cases. The closer to 0, the better 
the accuracy of the model. A relatively high MAE 
indicates that the model predictions tend to deviate 
more from the actual values.

2.6.3 Mean squared error (MSE)
It is a quantitative measure of a model’s performance. 
It is the average value of the cost function, which is 
the sum of squared errors that is minimized to fit the 
regression model. MSE is very useful for comparing 
different regression models or tuning their parameters 
through grid search and cross-validation.

MSE = (Oi – Pi)2∑1
N

N

i=1
 (10)

Like the previous error, a low MSE indicates better 
model performance but differs in that when squaring 
the errors, the MSE gives more weight to larger errors.

2.6.4 Coefficient of determination (R2)
It can be understood as a standardized version of MSE 
for better interpretability of the model’s performance:

R2 =
(Pi – O)2∑ N

i=1

(Oi – O)2∑ N
i=1

 (11)

1
N ∑O = Oi

N

i=1
 (12)

where Ō is the mean observed value. R2 has a range 
from 0 to 1. If R2 converges to 1 it is considered a 
‘very good’ relationship. When R2 is between 0.8 and 
1, it is labeled ‘good’. In the range of 0.6 and 0.8, it 

Table IV. Structure of Long-Short Term Memory (LSTM) models.

Input LSTM Hidden 1 Dropout Hidden 2 Output

12 1 1, 2, 4, 8, 16 0.5 1, 2, 4, 8, 16 1
12 2 1, 2, 4, 8, 16 0.5 1, 2, 4, 8, 16 1
12 4 1, 2, 4, 8, 16 0.5 1, 2, 4, 8, 16 1
12 8 1, 2, 4, 8, 16 0.5 1, 2, 4, 8, 16 1
12 16 1, 2, 4, 8, 16 0.5 1, 2, 4, 8, 16 1
12 32 32, 64, 128, 256, 512 0.5 32, 64, 128, 256, 512 1
12 64 32, 64, 128, 256, 512 0.5 32, 64, 128, 256, 512 1
12 128 32, 64, 128, 256, 512 0.5 32, 64, 128, 256, 512 1
12 256 32, 64, 128, 256, 512 0.5 32, 64, 128, 256, 512 1
12 512 32, 64, 128, 256, 512 0.5 32, 64, 128, 256, 512 1

Table V.  Support vector regression (SVR) parameters.

Kernel Gamma C Degree

Polynomial, 
linear, radial basis 
function, sigmoid

Auto, scale 1, 2, 3, 4 1, 2, 3, 4
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is ‘satisfactory’. If lower than 0.6, it is classified as a 
weak relationship. When a correlation converges to 
0, it is considered ‘inefficient’. Finally, if R2 is less 
than 0, it is considered invalid.

2.6.5 Kendall’s correlation coefficient
The Kendall correlation coefficient evaluates the 
order relationship between variables, not the mag-
nitude of the difference between them. Unlike the 
determination coefficient R2, Kendall’s coefficient 
takes into account the order used in the time se-
ries. Therefore, it proves to be widely useful data 
dependent on a temporal variable. It is a rank-based 
correlation coefficient known as non-parametric 
correlation. Its formula is:

τ = 

Number of concordant pairs – 
Number of discordant pairs

n(n – 1) / 2
 (13)

where:
Concordat pair: A pair of observations (x1, y1) and 

(x2, y2) that follow: 

x1 > x2 and y1 > y2 or x1 < x2 and y1 < y2 (14)

Discordant pair: A pair of observations (x1, y1) 
and (x2, y2) that follow:

x1 > x2 and y1 < y2 or x1 < x2 and y1 > y2 (15)

Tau equal to or close to 1 indicates a perfect pos-
itive correlation between the two ordinal variables, 
which means that there is an increasing monotonous 
relationship between the classifications of both 
variables. Tau equal to or close to –1 indicates a 
perfect negative correlation, and there is a decreas-
ing relationship. Tau equal to or close to 0 indicates 
that there is no correlation between the two ordinal 
variables.

3. Results
The best results are presented in Tables VI and VII. 
Comparison graphs of actual data with predicted val-
ues in the validation set and loss graphs for the ANN 
and LSTM methods are also shown (Figs. 3 and 4).

The loss graphs for MSE, obtained epoch by 
epoch during the training of ANN and LSTM, re-
veal that the training was stable due to the inverse 
exponential behavior. This also indicates that the 
algorithm is learning correctly without overfitting.

3.1 SPEI 12
The ANN algorithms achieved MSE of around 
0.005, MAE of 0.054, MBE of 0.020, R2 of 0.84, 
and Kendall’s coefficient of 0.75. When comparing 
the two best configurations, it is observed that the 
15-15 network outperforms the 12-17 network in the 
MAE and Kendall’s coefficient categories, while it 

Table VI. Best SPEI 12 configurations, where Hn represents the hidden layers, L the LSTM layer, K the kernel, 
G the gamma, C the regularization parameter C, and D the degree.

Method Parameters MSE MAE MBE R2 Kendall’s
coefficient

ANN H1: 15, H2: 15 0.0053 0.0544 0.0207 0.8461 0.7553
ANN H1: 12, H2: 17 0.0052 0.0546 0.0196 0.8470 0.7543
LSTM L: 32, H1: 64, H2: 64 0.0055 0.0550 0.0250 0.8407 0.7583
LSTM L: 64, H1: 32, H2: 64 0.0054 0.0546 0.0257 0.8425 0.7612
SVR K: poly, G: scale, C: 1, D: 1 0.0047 0.0517 0.0193 0.8618 0.7620

SVR K: linear, G: scale, C: 1, D: 1 0.0048 0.0523 0.0209 0.8598 0.7642

SPEI: Standardized Precipitation Evapotranspiration Index; MSE: mean squared error; MAE: mean absolute 
error; MBE: mean bias error; ANN: Artificial Neural Networks; LSTM: Long-Short Term Memory; SVR: Support 
Vector Regression.
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Fig. 3. Graph of actual SPEI values (black line) and predicted values (red line) from the Support Vector 
Regression (SVR) model for SPEI 12. Both with scaled gamma, C = 1, Degree = 1, and polynomial 
kernel. (SPEI: standardized precipitation evapotranspiration index.)

Fig. 4. Graph of real (black line) and predicted (red line) SPEI values from the LSTM model for SPEI 24 
with 32-32-32 neurons. (SPEI: Standardized Precipitation Evapotranspiration Index; LSTM: Long-Short 
Term Memory).
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Table VII. Best SPEI 12 configurations, where Hn represents the hidden layers, L the LSTM layer, K the kernel, 
G the gamma, C the regularization parameter C, and D the degree.

Method Parameters MSE MAE MBE R2 Kendall

ANN H1: 12, H2: 19 0.0029 0.0398 0.0219 0.9096 0.8564
ANN H1: 13, H2: 20 0.0028 0.0396 0.0216 0.9112 0.8602
LSTM L: 32, H1: 32, H2: 32 0.0022 0.0353 0.0135 0.9293 0.8653
LSTM L: 64, H1: 64, H2: 128 0.0027 0.0388 0.0242 0.9157 0.8685
SVR K: poly, G: scale, C: 1, D: 1 0.0021 0.0356 0.0086 0.9335 0.8436
SVR K: linear, G: scale, C: 1, D: 1 0.0021 0.0363 0.0080 0.9317 0.8409

SPEI: Standardized Precipitation Evapotranspiration Index; MSE: mean squared error; MAE: mean absolute 
error; MBE: mean bias error; ANN: Artificial Neural Networks; LSTM: Long-Short Term Memory; SVR: 
Support Vector Regression.
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is inferior in MSE, MBE, and R2. Employing LSTM 
networks for SPEI 12, MSE of around 0.005, MAE 
of 0.054, MBE of 0.025, R2 of 0.84, and Kendall’s 
coefficient of 0.76 were obtained. Comparing the 
two architectures, the 32-64-64 network surpasses 
the 64-32-64 network in the MBE category, while 
it is inferior in all other aspects. Using the SVR 
method for SPEI 12, MSE of around 0.004, MAE 
of 0.052, MBE of 0.020, R2 of 0.86, and Kendall’s 
coefficient of 0.76 were achieved. When comparing 
the two configurations, the polynomial configuration 
outperforms the linear one in the MSE, MAE, MBE, 
and R2 categories while being inferior in Kendall’s 
coefficient category.

Comparing all the results, for SPEI 12, the poly-
nomial SVR (Fig. 3) dominated all categories except 
Kendall’s coefficient, where ANN 12-17 performed 
better. However, there was no significant difference in 
the values. Unlike the other methods, SVR performed 
better when facing drastic drops in observed values.

3.2 SPEI 24
Using ANN algorithms, MSE of around 0.002, MAE 
of 0.039, MBE of 0.021, R2 of 0.91, and Kendall’s 
coefficient of 0.85 were achieved. In this case, the 
13-20 configuration has an advantage in all categories 
over the 12-19 configuration. Moving on to LSTM 
networks, MSE of around 0.002, MAE of 0.036, MBE 
of 0.019, R2 of 0.92, and Kendall’s coefficient of 0.86 
were obtained. In this case, the 32-32-32 configuration 
has an advantage in all categories over the 64-64-128 
configuration. When using SVR, MSE of around 0.002, 
MAE of 0.036, MBE of 0.008, R2 of 0.93, and Kend-
all’s coefficient of 0.84 were achieved. In this case, the 
polynomial configuration is better in MAE, R2, and 
Kendall’s coefficient and inferior in MSE and MBE.

For SPEI 24, the competition is more balanced. 
The polynomial SVR performed better in MSE and 
R2, the LSTM 32-32-32 in MAE, the linear SVR in 
MBE, and the LSTM 64-64-128 in Kendall’s coef-
ficient. In this case, the LSTM 32-32-32 (Fig. 4) is 
slightly more accurate than the SVR methods.

3.3 Overall interpretation
The observed performances of the models high-

light the importance of selecting appropriate architec-
tures for SPEI prediction. Variations in performance 
metrics offer insights into the model’s abilities to cap-

ture complex environmental dynamics. Assessing the 
robustness of the models over different time intervals 
reveals the temporal sensitivity of the predictions.

Sensitivity analysis on network architectures and 
hyperparameters sheds light on the nuanced impact of 
design choices on model performance. Recognizing 
the sensitivity of models to these factors is vital to 
optimize predictive capabilities.

Comparisons between ANN, LSTM, and SVR 
highlight the nuances of trade-offs associated with 
each model type. While SVR shows resilience 
against drastic drops in observed values, ANNs and 
LSTMs are stronger at capturing specific temporal 
dependencies.

4. Discussion
In this research, we created predictive models us-

ing ANNs, LSTM, and SVR to estimate the temporal 
scales of SPEI 12 and SPEI 24 from 1901 to 2020 
in Chihuahua, Chihuahua, Mexico. A total of 956 
experiments were carried out, involving variations in 
parameters such as the number of neurons, kernel, and 
polynomial degree, among others. The two best mod-
els were chosen for each method, and the outcomes 
indicated the following performance metrics: MSE = 
0.0047, MAE = 0.0517, MBE = 0.0193, R2 = 0.8618, 
Kendall’s coefficient = 0.7620 for SPEI 12, and MSE 
= 0.0022, MAE = 0.0353, MBE = 0.0135, R2 = 0.9293, 
Kendall’s coefficient = 0.8653 for SPEI 24.

As reported by Hernández (2021), it is observed 
that the precision of the models is better as the time 
scale increases, probably due to greater short-term 
variability of the conditions. The improvement in re-
ducing errors from SPEI 12 to SPEI 24 was between 
30-50%, and the increase in the other metrics was 
7-11%, so the assumption can be complemented. In 
this study, the performance of the SVR algorithms was 
very good compared to all the methods used, and as 
it is unusual to see this technique in other papers, it is 
interesting to consider that there is an area of oppor-
tunity. On the other hand, the XGBoost algorithm has 
performed outstandingly in several studies and was not 
tested in this work. Future experiments should consider 
studying and applying it to improve the accuracy of 
trained models. Although the purpose of this paper 
is limited to training machine learning models, the 
possibility of working on its application opens up.
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5. Conclusions
The models developed during the project performed 
well and were not very different from each other. 
However, the polynomial SVR achieved greater ac-
curacy in the case of SPEI 12, while LSTM 32-32-32 
was slightly better for SPEI 24.

Notably, in all models, there was a challenging 
peak to adapt to and predict. This value corresponds 
to the smallest in the database (indicating the 
highest presence of drought) and is located in January 
2011, which was the driest year in recent times in the 
Mexican territory.

Based on related articles, the project’s results are 
determined to be at a highly competitive level. The 
most accurate model fulfills the objective of having 
the potential to help predict droughts within the city 
of Chihuahua.

Future projects could focus on conducting more 
experiments to obtain even more accurate models and 
developing an executable program with an interface 
that indicates the region’s current and future drought 
conditions.
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