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RESUMEN

La contaminación por polvo plantea un riesgo importante para la salud humana y los sistemas naturales, y 
tiene un impacto sustancial en la calidad general del aire interior y exterior. El polvo también juega un papel 
crucial en el transporte de elementos metálicos en un ambiente interior. Este estudio examina los niveles de 
metales específicos (Al, Fe, Cu, Pb, Zn) presentes en muestras de polvo recolectadas en dos laboratorios en la 
universidad UiTM Cawangan Pahang, Malasia. El análisis se centra en evaluar los niveles de contaminación 
y los posibles impactos en la salud humana. Las concentraciones de metal fueron significativamente mayores 
en el Laboratorio 2. Se encontró un enriquecimiento moderado de Zn en las muestras de polvo interior. Se 
demostró que en ambos laboratorios la principal vía de exposición a metales que planteaban riesgos para la 
salud era la ingestión, seguida del contacto con la piel y la inhalación, en personas de todos los grupos de 
edad, incluidos adultos y niños. El Zn y el Pb exhibieron un mayor riesgo potencial no cancerígeno que el 
Fe y el Cu. El índice de peligro (HI) y el riesgo de cáncer de por vida (LCR) estuvieron dentro de umbrales 
aceptables (HI < 1 y 10–6 <LCR < 10–4) en ambos laboratorios.

ABSTRACT

Dust pollution poses a significant risk to human health and natural systems, and has a substantial impact 
on the overall quality of both outdoor and indoor air. Dust also plays a crucial role in transporting metal 
elements in an indoor environment. This study examines the levels of specific metals (Al, Fe, Cu, Pb, Zn) 
present in dust samples collected from two laboratories in UiTM Cawangan Pahang, Malaysia. The analysis 
focuses on assessing pollution levels and potential impacts on human health. The concentrations of metal 
were significantly higher in Lab 2. Moderate enrichment of Zn was found in the indoor dust samples. Both 
laboratories showed that the major route of exposure to metals posing health risks was ingestion, followed 
by skin contact and inhalation, for individuals of all age groups, including adults and children. Zn and Pb 
exhibited higher potential non-cancer risk than Fe and Cu. The hazard index (HI) and lifetime cancer risk 
(LCR) were within acceptable thresholds (HI < 1 and 10–6 < LCR < 10–4) in both laboratories.
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1.	 Introduction
Indoor dust is diverse and has an intricate combination 
of particulate matter originating from various sources, 
both inside and outside (Clarke et al., 2022). Such dust 
is widely recognized as a significant reservoir and 
transporter of diverse environmental contaminants, 
encompassing organic and inorganic pollutants (Wang 
et al., 2021). Metals such as copper (Cu), zinc (Zn), 
and lead (Pb) present in indoor dust are common 
due to their persistence, resistance to degradation, 
significant toxicity, and detrimental impact on human 
health (Zhao et al., 2021). The concentration of metals 
indoors tends to be higher than outside (Latif et al., 
2014). It is worth noting that students spend more of 
their time indoors compared to people in workplace 
locations (Raysoni et al., 2013).

Exposure to poor-quality indoor air can poten-
tially impact students’ productivity and overall 
health (Zhong et al., 2014). Various researchers have 
indicated a potential relationship between exposure 
to indoor air pollution and adverse health effects, 
including skin irritation, cardiovascular and respi-
ratory diseases, allergies, and cancer (Massey et al., 
2012; Sloan et al., 2012; Cao et al., 2020). It has 
been observed that the presence of iron (Fe), arsenic 
(As), and lead (Pb) in indoor dust is related to an 
increased risk of cancer and cardiovascular damage 
(Massey et al., 2013). Engaging in indoor activities 
can pose possible health hazards due to the presence 
of airborne particles and exposure via oral, dermal 
contact, and inhalation of particulate matter (Hu et 
al., 2012).

Indoor air pollutants can originate from a variety 
of sources, depending upon occupant activities, 
the geographical placement of a building (Yang et 
al., 2015), indoor sources such as emissions from 
building materials (Latif et al., 2009; Srithawirat 
et al., 2016), and external sources like fuel com-
bustion (Mohamad et al., 2016). The infiltration of 
soil or air has been identified as the main source of 
indoor pollutants originated from outdoor pollutants 
(López-Aparicio et al., 2011). According to Latif et 
al. (2014), particulate matter in interior air serves 
as a medium for the adsorption of air contaminants, 
which subsequently accumulate as indoor dust. The 
presence of a ventilation system and human activity 
significantly impact the suspension of tiny particles in 
the interior air within a building setting (Braniš et al., 

2005). Smaller size particles show reduced deposition 
velocities and hence have longer residence times in 
the environment, potentially posing a risk to human 
respiratory health (Matson, 2005).

There are limited studies on the metal content of 
indoor dust in university laboratories, particularly in 
tropical regions. Some previous studies reported the 
metal concentration from the university campuses 
and laboratories in tropical areas (Zhong et al., 2014; 
Sulaiman et al., 2017; Sulaiman and Suratmin, 2020). 
Therefore, this study elucidates the concentration 
of metal concentrations (aluminum (Al), iron (Fe), 
copper (Cu), lead (Pb), and zinc (Zn)) found in indoor 
dust samples collected from several laboratories lo-
cated at UiTM Cawangan Pahang, Jengka, Malaysia. 
Several statistical methods, including correlation 
and cluster analysis, were used to determine the 
possible origins of metals in indoor dust. The health 
risk assessment methodology has been employed to 
determine the non-cancer and cancer risks associated 
with metal constituents in indoor dust.

2.	 Materials and methods
2.1 Sampling and analysis
About 32 dust samples were collected from two engi-
neering laboratories, Lab 1 and Lab 2, located within 
the academic building complex in UiTM Cawangan 
Pahang (Fig. 1). Lab 1 is a structural lab facing the 
main campus road. Lab 2, the soil mechanics lab, is 
on the opposite side. Both laboratories have a compa-
rable occupancy capacity, allowing for the presence 
of 30 people simultaneously, with an estimated area 
of 200 m2 each. The ventilation systems utilised in 
the building are of the mechanical supply type, with 
fans installed in Lab 1, and of the exhaust type, with 
air conditioning, in Lab 2. These sampling areas 
were chosen considering students’ use patterns and 
the presence of ventilation systems that effectively 
confine pollutants within the building (Zhong et al., 
2014; Sulaiman and Suratmin, 2020).

For all sampling locations, samples were taken for 
four weeks during academic activities between 09.00 
and 17.00 LT. Each sampling location is equipped 
with a combination of exhaust ventilation systems, 
such as air-conditioning, and mechanical supply, such 
as fans. A soft brush was used to collect the indoor 
dust from various sources, such as fume hoods, air 
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conditioners, benches, fans, and windows (Sulaiman 
et al., 2017).

The dust samples were subjected to a drying 
process in a laboratory oven set at a temperature of 
65 ºC overnight. The dust, weighing approximately 1 
g, was subsequently measured and underwent diges-
tion using a mixture of nitric acid (HNO3 75% GR, 
Merck, Germany) and hydrochloric acid (HCl 70% 
GR, Merck, Germany) at a 4:1 ratio. This process 
was carried out on a hot plate set at a temperature of 
50 ºC for a duration of 1 h under a fume hood. After 
cooling, the solution was further filtered using filter 
paper and transferred into a 100 ml volumetric flask. 
Deionized water was then added to the filtrate until it 
reached the 100 ml calibration level. Concentrations 
of Al, Cu, Fe, Pb, and Zn in the samples were assessed 
using inductively coupled plasma optical emission 
spectrometry (ICP-OES) (Agilent 5100).

For reference, a sample of topsoil was obtained 
near the sampling location, about 2 m away from 
the building designated as the sampling point. The 
collection was made at a depth of 0.01 m. This study 
used the neighboring topsoil metal concentrations as 
background ratio (Sulaiman et al., 2017). The soil 
samples were dried in a furnace set at a temperature 
of 450 ºC for 3 h. The reference sample underwent 
digestion using the same steps as the dust samples.

The accuracy of the analytical process was veri-
fied using an analysis of a spiked sample containing 
a known quantity of metal standard for recovery test-
ing, with the metal recovery rates ranging between 85 

and 115%. All analysis devices underwent preclean-
ing treatment in which they were submerged in nitric 
acid overnight, followed by rinsing with deionized 
water. An individually new soft paintbrush was used 
for each sampling event to prevent cross-contamina-
tion. Powder-free gloves were worn, especially when 
dealing with interior dust.

2.2 Enrichment factor (EF)
The enrichment factor (EF) calculation has been 
applied to ascertain the source of metals in samples, 
relying on the prevailing metal element found in the 
Earth’s crust. Nazir et al. (2011) stated that an EF 
larger than 10 (EF > 10) signifies that the element 
is of anthropogenic origin. In contrast, an EF value 
less than 10 (EF < 10) indicates that the element is of 
natural origin. The EF was computed using Eq. (1):

EF = (Cx /Cref)dust / (Cx/Cref)surface soil	 (1)

in which (Cx/Cref)dust is the concentration ratio 
calculated from the concentrations of element x and 
Fe measured in indoor dust, and (Cx/Cref)surface soil 
is the concentration ratio in the surface soil (Latif et 
al., 2014). Due to its dominance in the composition 
of the Earth’s crust, Fe is widely used as a reference 
element.

2.3 Statistical analysis
Prior to the statistical analysis, the datasets underwent 
a verification procedure. Skewness, kurtosis, and 
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Fig. 1. Sampling locations in the university laboratories.
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Shapiro-Wilk test were employed to assess normality. 
A t-test was performed to assess potential changes 
in mean metal levels in the indoor dust throughout 
the sampling sites. Correlations between mean heavy 
metal concentrations were analyzed using a Pearson 
correlation, considering the data had a normal dis-
tribution. Cluster analysis (CA) was employed to 
categorize the metals derived from various sources, 
while a dendrogram was utilized to evaluate similar-
ities among the heavy metal concentrations in indoor 
dust. Statistical evaluations were carried out using 
IBM SPSS v. 20.

2.4 Health risk estimation
The average daily dosage (ADD) of pollutants and 
possible risks from indoor lab dust were assessed. 
According to the United States Environmental 
Protection Agency (USEPA), Cu, Fe, Pb, and Zn 
may represent non-carcinogenic concerns. Eqs. 
(2)-(4) were used to compute the ADD values of 
pollutants. The hazard quotient (HQ) was calculated 
to estimate the non-carcinogenic risk (Eq. [5]). Eq. 
(6) was used to estimate the total non-cancer risk or 
hazard index (HI), encompassing the summation of 
HQ values (USEPA, 2011). High hazards are likely 
when the HQ and HI values surpass a value of 1 
and vice versa.

ADDingest = (Cdust × IngR × 
ED × EF × CF) / (BW × AT)

	 (2)

ADDdermal = (Cdust × AF × SA × 
EF × ED × ABS × CF) / (BW × AT)	 (3)

ADDinhale = (Cdust × EF × 
ED × ET) / (BW × AT × PEF)	 (4)

HQ = ADD/RfD@RfC	 (5)

HI = ∑HQ	 (6)

The possibility of cancer risk (CR) from indoor 
dust was assessed using Eqs. (7)-(9). Lifetime can-
cer risk (LCR) was calculated by adding the CR 
from three exposure routes (Eq. [10]). Only Pb was 
considered to be carcinogenic. The parameter values 
adopted to calculate health risk are shown in Table I.

CRingest = ADDingest × SF	 (7)

CRdermal = (ADDdermal × SF) / ABSGI	 (8)

CRinhale = ADDinhale × IUR	 (9)

LCR = ∑CR	 (10)

3.	 Results and discussion
3.1 Indoor dust metal composition
Table II presents the metal concentrations of Al, Fe, 
Cu, Pb, and Zn measured in samples of indoor dust 
and surface soil collected from the sampling loca-
tions. Fe had the highest concentration relative to 
other metals in indoor dust samples. For Lab 1, the 
average Fe concentration was 79.85 ± 33.35 mg kg–1, 
followed by Al (65.60 ± 21.90 mg kg–1), Zn (5.05 
± 2.23 mg kg–1), Cu (1.53 ± 0.62), and Pb (0.68 ± 
0.18 mg kg–1). Lab 2 showed the same trend, with 
average values for Fe of 127.63 ± 50.70 mg kg–1, 
followed by Al (70.40 ± 21.20 mg kg–1), Zn (4.35 ± 
1.45 mg kg–1), Cu (0.93 ± 0.24 mg kg–1), and Pb (0.81 
± 0.24 mg kg–1). Compared to nearby surface soils, 
indoor dust contained more metals (Table II). The 
results show that the interior environment exhibits 
greater metal pollution. The higher coefficient of vari-
ation (CV) levels specify that the metal likely is of an 
anthropogenic source. Metals primarily influenced by 
natural sources exhibit a low coefficient of variation 
(CV), while metals affected by man-made sources 
display a relatively high CV (Guo et al., 2012).

There were statistically significant variations 
(p < 0.05) in metal concentrations found in indoor 
dust across different sampling locations. Fe and Al 
concentrations in indoor dust from Lab 2 were higher 
than those in Lab 1. Lab 2 also showed a slightly 
higher Pb concentration than Lab 1. The variations 
in Fe and Al concentration in indoor dust collected 
from these two laboratories may be attributed to the 
introduction of soil dust into the interior environ-
ment through student activities and the nature of the 
laboratory. Lab 2, as the soil mechanics lab, focuses 
on soil as the primary material for the practical lab-
oratory exercises.
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Table III compares selected metal concentrations 
in this study’s indoor dust samples to those in previous 
studies’ indoor dust samples. The metal concentrations 
in laboratories’ indoor dust were comparatively lower 
than those reported by Latif et al. (2011), Sulaiman et 
al. (2017), and Fan et al. (2021). This could be related to 
the nature of the laboratories since previous studies have 
been documented from biological or chemical-based 
labs. However, the laboratories’ indoor dust metal 

concentrations in this study were higher than those in 
Nigeria (Ajayi et al., 2023). This study found lower 
concentrations of indoor metals compared to indoor 
dust in urban homes (Kelepertzis et al., 2021; Asvad 
et al., 2023), except for a study by Harb et al. (2015).

3.2 Enrichment and correlation between metals
Both laboratories had a similar trend of EFs, wherein 
Zn had the highest EF value, followed by Al, Cu, 

Table I. Parameters used for the estimation of non-cancer and cancer risks.

Parameter Unit Value Reference

C (concentration of metal in indoor dust) mg kg–1 — —

SA  (surface area of the skin that contacts the dust) cm2 event–1 5700 USEPA (2002)

AF  (skin adherence factor) mg cm–2 7 × 10–2 USEPA (2002)

ABS (dermal absorption factor) mg cm–2 1 × 10–3 Chabukdhara and Nema (2013)

EF (exposure frequency) days year–1 350 USEPA (2002)	

ED (exposure duration)
years 24 (adults) USEPA (2002)

years 6 (children)

ET (exposure time) h day–1 24

CF (conversion factor) kg mg–1 1 × 10−6 USEPA (2002)

BW (average body weight)
kg 70 (adults) USEPA (2002)

kg 15 (children)

AT (averaging time) 
days 8760 (adults) USEPA (2002)	

days 2190 (children) USEPA (2002)

RfDingest (reference dose – ingested)

mg kg–1 day–1 Fe: 7 × 10–1

Cu: 4 × 10–2

Pb: 3.50 × 10–3

Zn: 3 × 10–1

USEPA (2011)
USEPA (2011)
USEPA (2011)
USEPA (2011)

RfDdermal (reference dose – dermal contact) mg kg–1 day–1 Pb: 5.25 × 10–3

Zn: 6 × 10–2
ATSDR (2005)
ATSDR (2005)

RfCinhale (reference concentration – inhaled)
mg m–3 Pb: 3.52 × 10–3 ATSDR (2005)

Zn: 3.6 × 10–2 USDOE (2011)

InR (inhalation rate) m3 day–1 20 USEPA (2002)

PEF  (particle emission factor) m3 kg–1 1.36 ×109 USEPA (2002)

SF (slope factor) mg kg–1 day–1 Pb: 8.5 × 10–2 USDOE (2011)

ABSGI (gastrointestinal absorption factor) — Pb: 1 USDOE (2011)

IUR (inhalation unit risk) µg m–3 Pb: 1.2 × 10–5 USDOE (2011)
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and Pb, respectively (Fig. 2). Indoor dust indicated 
a higher enrichment of Zn compared to other metal 
elements. Based on the EF value, this study suggests 
anthropogenic sources of Zn (EF > 10). Lab 1 had 
a higher EF value of Zn compared to Lab 2. Han et 
al. (2011) reported that the presence of Zn in road 
dust has been identified as a significant component, 
primarily due to its release from tires, vehicle 
brakes, and motor oil. Since Lab 1 is located near a 
road and has a mechanical supply type (i.e., a fan), 
wind from the outside may have contributed to the 
Zn enrichment (Latif et al., 2014).

The Pearson’s correlation between indoor dust 
metals is shown in Table IV. Fe showed strong 

Table III. Comparison between metal concentrations (mg kg–1) in indoor dust in this study and selected previous 
studies.

Study site Reference Cu Pb Zn

Lab 1 This study 1.53 0.68 5.05
Lab 2 This study 0.93 0.81 4.35
University’s laboratory, Pahang, Malaysia Sulaiman et al. (2017) 193 27 30776
University’s  laboratory, Selangor, Malaysia Latif et al. (2011) 444.86 179.40 705.70
Universities, China Fan et al. (2021) 93.50 158.60 665.90
Universities, Nigeria Ajayi et al. (2023) 0.31 0.11 0.25
Urban homes, Germany Kelepertzis et al. (2021) 101 68 722
Urban homes, Saudi Arabia Harb et al. (2015) 0.05 0.14 0.02
Urban homes, Iran Asvad et al. (2023) 8.50 11.67 73.17

Table II. Metal concentrations in indoor dust of university laboratories and surface 
soil (mg kg–1).

Fe Al Cu Pb Zn

Lab 1

Minimum 49.57 33.67 0.86 0.49 1.99
Maximum 132.25 99.52 2.71 0.96 8.36
Mean 79.85 65.60 1.53 0.68 5.05
Standard deviation 33.35 21.90 0.62 0.18 2.23
CV (%) 41 33 40 26 44

Lab 2

Minimum 63.82 40.63 0.53 0.44 1.99
Maximum 219.65 100.55 1.20 1.27 6.60
Mean 127.63 70.40 0.93 0.81 4.35
Standard deviation 50.70 21.20 0.24 0.24 1.45
CV (%) 39 30 26 30 33
Surface soil 37.21 9.77 0.51 0.32 0.20

CV: coefficient of variation.
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Fig. 2. Estimated enrichment factor (EF) value of metal 
concentrations in indoor laboratory dust.
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positive correlations with Pb (r = 0.870). The Cu 
concentration had a moderate relationship (r = 0.432) 
with Zn. To further confirm the correlation between 
metals, the data went through a cluster analysis, 
wherein Euclidean distances were computed to deter-
mine similarities. Figure 3 depicts the cluster analysis 
outcomes performed on the metals found in indoor 
dust. The study identified three distinct clusters: C1, 
consisting of Cu and Zn; C2, consisting of Pb and Fel, 
and C3 consisting solely of Al. Metals in C1 and C2 
may be influenced by anthropogenic sources, while 
those in C3 could be considered to have natural ori-
gins. Vehicle emissions are a significant source of Cu, 
Zn, and Pb (Han et al., 2011; Hassan, 2012). Another 
possible anthropogenic source of Zn and Pb could 
be linked to the use of paint containing Zn and Pb 
compounds (McAlister et al., 2008). Furthermore, the 
presence of Zn in the composition of indoor dust can 

be attributed to the process of corrosion experienced 
by objects coated with Zn inside laboratory settings 
(Zhong et al., 2014).

3.3 Potential health risk
HQ and HI values were calculated to evaluate non-car-
cinogenic health hazards associated with the exposure 
to individual metals via oral, dermal contact, and in-
halation, as well as the combined exposure to metals 
(Cu, Fe, Pb, and Zn). In contrast, the possible health 
risk of Al was not considered due to the absence of 
input from the World Health Organization (WHO) or 
the USEPA. For Fe and Cu, only the oral pathway was 
considered, as no information on dermal or inhalation 
routes has been published by USEPA or WHO. Due 
to the greater vulnerability of children compared to 
adults towards the impacts of metals, differences in 
the duration of exposure and body weight compared to 
adults (Guney et al., 2010), an independent assessment 
of risk was conducted for this population subgroup.

Table V lists the potential non-carcinogenic risks 
associated with metal composition in indoor dust. 
Generally, the HQ values of indoor dust exposure 
were below the unity value (HQ < 1), indicating low 
non-cancer risks to students and staff. The HQ for 
oral pathways suggests higher values than HQs for 
dermal contact and inhalation. Children have higher 
non-carcinogenic risks than adults, except for Fe. In 
terms of the hazard index (HI), children are more 
susceptible to non-cancer risks than adults (Fig. 4). 
The HI shows increment values of Pb < Zn < Fe < Cu 
for children; however, for adults, it shows increment 
values of Pb < Fe < Cu < Zn.

The findings of this study confirmed that the 
oral route is the most hazardous exposure pathway 
for metals and all population subgroups, consistent 
with prior research (Chabukdhara and Nema, 2013; 
Mohamad et al., 2016; Wang et al., 2021; Asvad et 
al., 2023). Indoor dust samples recorded considerably 
lower HQ values for dermal contact and inhalation, 
indicating that these pollutants are less harmful when 
inhaled. The relative contributions of HQingest, HQ-
dermal, and HQinhalation to children’s overall health 
index (HI) were 99.2, 0.73, and 0.02%, respectively. 
For adults, the related contributions were 97.9, 2.04, 
and 0.05, respectively.

The order of cancer risk (CR) values was CRingest 
> CRdermal > CRinhale for both children and adults 

Table IV. Correlation matrix between metals in laboratories’ 
indoor dust.

Fe Al Cu Pb Zn

Fe 1 0.148 –0.360 0.870* 0.154
Al 1 0.319 0.222 0.060
Cu 1 –0.030 0.432
Pb 1 0.332
Zn 1

*Correlation is significant at the 0.01 level (two-tailed).

Cu

0 5 10 15 20 25

C1

C2

C3

Pb

Zn

Fe

Al

Fig. 3. Dendrogram of the indoor lab dust cluster analysis.
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(Table VI). The risk associated with all exposure 
routes was shown to be greater in children than in 
adults (Fig. 5), similar to the results reported in Iran 
by Asvad et al. (2023). Despite the lifetime cancer 
risk (LCR) values in children being found to be two 
times greater than in adults, the values fell within the 
tolerated range (10–6 < LCR < 10–4).

This study found that the health risk parameters (HI 
and LCR) remained within acceptable ranges. However, 

it is crucial to maintain regular monitoring of the con-
centrations of hazardous elements, as prior research 
has indicated considerable health hazards from indoor 
dust exposure in universities (Latif et al., 2011; Zhong 
et al., 2014; Sulaiman et al., 2017; Fan et al., 2021). 
Considering the combination of human-induced and 
naturally occurring emissions, it is imperative for 
universities and risk managers to focus not only on 
mitigating levels of particulate matter (PM) but also 
on reducing the concentration of hazardous elements 
and human exposure to indoor dust.

4.	 Conclusion
This study on the metal content of indoor dust sam-
ples from university laboratories concluded that Fe 
and Al had the highest concentrations among the 
elements investigated in the laboratories’ indoor 
dust. Zn exhibited slightly high concentrations, but 
Cu and Pb showed comparatively lower levels. The 
average Fe, Al, Cu, Pb, and Zn concentrations in all 
indoor dust samples were generally higher than their 
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Zn Cu Pb

H
I

Fig. 4. Hazard index (HI) of metal exposure from indoor 
dust.

Table V. Potential non-cancer risk of metal exposure from indoor dust.

Metal Location HQingest HQdermal HQinhale

Adults

Fe Lab 1 1.56 × 10–3

Lab 2 2.49 × 10–3

Cu Lab 1 5.25 × 10–5

Lab 2 3.18 × 10–5

Zn Lab 1 2.88 × 10–5 5.97 × 10–6 3.52 × 10–8

Lab 2 1.98 × 10–5 6.41 × 10–6 2.43 × 10–8

Pb Lab 1 2.68 × 10–4 6.56 × 10–6 3.63 × 10–7

Lab 2 3.19 × 10–4 4.53 × 10–6 2.50 × 10–7

Children

Fe Lab 1 4.37 × 10–4

Lab 2 6.99 × 10–4

Cu Lab 1 1.47 × 10–4

Lab 2 8.91 × 10–5

Zn Lab 1 8.38 × 10–4 2.78 × 10–5 1.64 × 10–7

Lab 2 9.00 × 10–4 2.99 × 10–5 1.13 × 10–7

Pb Lab 1 6.91 × 10–3 3.06 × 10–5 1.69 × 10–6

Lab 2 4.76 × 10–3 2.11 × 10–5 1.16 × 10–6
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relative values in surface soil. The enrichment factor 
analysis indicated that the pollution levels fell within 
the acceptable ranges, except Zn, which exhibited 
a moderate degree of enrichment. Pb had a strong 
positive correlation with Fe. The cluster analysis 
confirmed that the metals were grouped into three 
clusters, in which two clusters may be influenced 
by anthropogenic sources. This study revealed that 
health risks linked to metals are more prominent in 
children as opposed to adults. The primary mode 
of exposure to metals for children and adults was 
oral, followed by skin contact and inhalation. The 
non-cancer risk was found within the tolerable level 
(HI<1), and lifetime cancer risk was at a manageable 
level (10–6 < LCR < 10–4). This research proposes 
a thorough examination of additional potentially 
harmful elements, such as arsenic (As), cadmium 
(Cd), chromium (Cr), and mercury (Hg), in indoor 
dust. Additionally, it is suggested to perform a com-
prehensive evaluation of health hazards, considering 
other gastrointestinal variables. It is necessary to 
consider additional variables such as wind direction, 

and the temporal pattern of the inhabitants’ activities. 
While the non-cancer and cancer risk levels were 
acceptable, this study recommends the university 
administration to implement precautionary measures 
to prevent an increase in indoor pollutants.
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