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RESUMEN

Se desarrolla una teorfa de ondas baroclfnicas en dos niveles, con humedad, cuasi-geostréficas y con variacién meridional, pero sin
efecto 8. La formulacién es similar a la de Tang y Fichtl (1983) excepto que se permiten variaciones meridionales. Los pardmetros
bé4sicos son el ndmero rotacional de Froude F = 21%[Sqp3(k 2+ €3)]7! (donde f es el pardmetro de Coriolis, S4 la estabilidad
estitica en la porcién descendente de la onda, p2 la presién en el nivel medio, kg el nimero de onda zonal en la parte descendente
de l1a onda, ¢{(= x/D) el nimero de onda meridional y D es la extensién meridional de la onda) y un pardmetro de calentamiento
€ que es proporcional al gradiente vertical en el nivel central del flujo medio de la razén de mezcla de saturacién. Para # 0 las
perturbaciones se caracterizan por una longitud zonal desigual de la porcién ascendente o himeda de la onda (a) con respecto a
Ia longitud zonal de la porcién descendente o seca de la onda (%). El primer modo tiene una Pequeia regién de fuerte movimiento
ascendente y una gran regién de débil movimiento descendente {(a/b < 1), sucediendo lo contrario para el segundo modo (a/b > 1).
Estas caracteristicas son similares a las obtenidas por Tang y Fichtl (1983). En el presente trabajo se deduce una ecuacién a escala
meridional, mostrando tres posibilidades: (i) ¢/kqa=0 (ondas baroclinicas sin variaciones meridionales, discutido en Tang y Fichtl,
1983), (ii) ¢ = 0 (modelo seco, discutido en Phillips, 1954 sin el efecto B, y con ¢ arbitraria); y (iii) una ecuacién bicuadratica en
kq.

La iltima ecuacién contiene esencialmente la informacién de la influencia de la liberacién de calor latente en la escala meridional
de las ondas baroclinicas. EI modelo de ondas baroclincias meridionalmente uniformes (¢/ka = 0) y el modelo seco (¢ = 0} son
singulares en tanto que sus caracteristicas no se pueden deducir haciendo ¢/k; — 0 6 ¢ — 0 en esta ecuacién bicuadritica. Para
€ < 0.464, la razén de la extensién meridional D del dominio zonal, a + b, es menor que 0.7. Para e y F dadas, esta razén es
mayor para el primer modo que para el segundo. La razén de crecimiento en la regién ascendente es la misma que en la regién
descendente. La razén de crecimiento depende de F Y ¢/kq. Para una F dada, la razén de crecimiento serd mayor cuanto mayor
sea el pardmetro de calentamiento .

ABSTRACT

An analytical theory of two-level, moist, quasi-geostrophic baroclinic waves with meridional variation, but without the g-effect,
is developed. The formulation is similar to that of Tang and Fichtl (1983) except that the meridional variation of the waves is
allowed. The basic parameters are a rotational Froude number F = 213[Sqp3 (k3 +£2))~ (where f is the Coriolis parameter, Sy the
static stability in descending portion of the wave, p2 the pressure at the middle level, k; the zonal wave number in the descending
portion of the wave, £{(= x/D) the meridional wave number and D the meridional extent of the wave) and a heating parameter ¢
which is proportional to the midlevel vertical gradient of the mean flow saturation mixing ratio. For ¢ # 0 the disturbances are
characterized by an unequal zonal length of the ascending or wet portion of the wave (a) and rzonal length of the descending or dry
portion of the wave (b). The first mode has a small region of strong ascending motion and a large region of weak descending motion
(a/b < 1) with the reverse for the second mode (a/b > 1). These features are similar to those obtained by Tang and Fichtl (1983).
In the present paper a meridional-scale equation is derived, expressing three possibilities: (i) £/k4 = 0 (no meridional variation of
baroclinic waves, discussed in Tang and Fichtl, 1983); (i) € = 0 (dry model, discussed in Phillips, 1954, with B-effect ignored, ¢
being arbitrary); and (iii) a biquadratic equation in £/k4. This latter equation essentially contains the information of the influence
of latent heat release on the meridional scale of baroclinic waves. The model of meridionally uniform baroclinic waves (¢/k; = 0)
and the dry model (¢ = 0) are singular in that the characteristics of these two models cannot be deduced by setting £/kg — O or
€ — 0 in this biquadratic equation. For ¢ < 0.464, the ratio of the meridional extent D of the zonal domain, a + b, is less than 0.7,
For a given ¢ and a given F, this ratio is larger for the first mode than for the second mode. The growth rate in the ascending
region is equal to that in the descending region. The growth rate depends on both F and ¢/k,. For a given F, the larger the heating
parameter ¢, the larger the growth rate.
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1. Introduction

A simple analytical quasi-geostrophic baroclinic model with latent heat release was investigated by
Tang and Fichtl (hereafter referred to as TF), 1983. The second-order non-quasi-geostrophic effects
were incorporated in TF (1984). An important result was that the width of the moist region can be
different from that of the dry region. In fact, one.of the two modes (i.e., the first mode) has a narrow
moist region and a wide dry region. The growth rate in the moist region is equal to that in the dry
region, but the growth in the moist region is different from that in the dry region (cf. TF, 1983).
The non-quasi-geostrophic effects in the model with latent heat release reveal some features obtained
in Saltzman and Tang (1972, 1975), e.g., in the first mode there is an intensification and contraction
of the trough and the weakening and spreading of the ridge compared to the quasi-geostrophic case.
It was also shown that the frontal zones were intensified by latent heat release in the non-quasi-
geostrophic model. Another feature due to latent heat release in the ascending region (but no latent
heating or evaporative cooling in the descending region) is the increase of the zonal mean temperature
in the model atmosphere. Thus, TF (1983, 1984) reproduced some salient features of the observed
zonal variation in the real atmosphere. But since the waves have no meridional variation, the influence
of latent heat release on the meridional scale of baroclinic waves was excluded.

Now the meridional variation of baroclinic waves with latent heat release is allowed within the
framework of a two-level, quasi-geostrophic model (Phillips, 1954), without the B-effect, for an at-
mosphere saturated with water vapor and subject to pseudo-adiabatic lifting and dry adiabatic sub-
sidence. We shall see that the meridional scale of a class of baroclinic waves can be determined by
latent heat release.

2. The governing equations
The set of the equations without S-effect are given by equation (6) of TF (1983). The set is

9 _2 9 _2 9 2 0 2 d 2
2 2z ‘v 2 2 vy =0
atV ¢2+"2axV ¢2+u'_raz Y7 +vzayV ¢2+0Tay YT
9 _o 9 _2 9 _2 9 2 9 2 I
= el v/ =z fadl fhadl .
atV ¢T+uzaz ¢T+uTan ¢z+vzayv 1/7T+v1'ayv P2 w2
a a3 ] pgS _
at!/)T + uz—azl/)T +vz—ay|/)T — ——2f wg =0 (1)

where the symbols have usual meaning. Note that the subscripts 2 and T relate to the subscript 1
(upper level) and 3 (lower level) as follows:

02 =101+ 0s]/2 2)

Or = [01 - 0sl/2 (3)

and u = —8v/dy,v = 8¢/dy. Note that u and v are geostrophic components of the wind.
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S is the static stability generalized to include the effect of latent heat release, i.e.:

S = Sd(l - 65‘) (4)

where

_ 1 for wy <0
6_{0 for wy >0 (5a)
Sq= —%8&10/61) (5b)
R L aq,,
= 5
- s 25 (5¢)

where both S; and € are constant, T is temperature, § potential temperature, R gas constant for
air (all for the dry atmosphere), L the latent heat of evaporation of water, cp the specific heat at
constant pressure, and ¢, the saturation mixing ratio.

Now we superimpose a disturbance (denoted by a prime) on a basic mean zonal flow. We shall
use a frame of reference which translates with the mean zonal wind at the middle level. Thus, the
coordinate transformation formulas can be written as

g = — ujt

to=t (6)

where z, and i, are the zonal and time coordinates in the moving frame of reference. The bar denotes
a zonal average

()=

0 A b b+A

where the tilde indicates the quantity in the pseudo-adiabatically ascending region of zonal length
a and the caret indicates the dry-adiabatically descending region of zonal length b. Note that, in
contrast to the classical dry model, disturbances characterized by a # b are allowed. The increment
A is introduced in (7) because the quantity represented by the parantheses may be discontinuous
between the pseudo-adiabatically ascending region and dry adiabatically descending region.

Using (6),

oz~ 9z (8)
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The zonal mean equations can be obtained by taking the zonal average of (1) and using (8). They

are
0 3y _ 3¢y 3 Iy A3yh 3 dy O 8 L oy 8 oy
Ao dy Az 8y 8:::0 dy dxg 8::3 dzg Ay azg dy 9z 8:1:(2)
8 dur _ Yy 9 _ Yy 3 Py  dyp 9 %), dYr o Aty - ©)
8ty dy  9z9dy 3z} By Ozg 9z} ' Ozmg By 9z2 Oy dzg dxk  py
- 81/7; 81/:5. 81/:; 8¢T P2S4€e
—(_)E'I’T o (8:1:0 dy dy azo 2f(a+b)/ w2dz°+ Swz
where

ae
S =84(1— et

The eddy equations, with (8) applied, are as follows:

Dry region:
D O pgy e OV _pyy Pwmol Suradh
oty dz2 2 9zo" dzl dy? 3z¢g Iy? 9z
DOyt gy Tuoh Pmotr 1y g
dty" dz2 zo " dz} Y7oy 9zg  8y? 9z p3 @3+ Ny )

My  _ P std € /".r e
3t T3z (o2 — @9 Jo @3dzrg] = My

Moist region:
3’ 3wy dvy  urdvr -
—_ — N2

a 82¢2 lz -1
+_ _— ==
dtg " azl ¥2) o( a2 ¥r) dy? dzg 9y 9Oz

.p, 2 dur dgy, ltw oy  f
$2) 3y 9z 0y 2y —;};werNT (11)

a P _
o102 — 897) + 0(

Py _ P2'Sd e [ — K

where
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Np=—(2¥2 0 3%y Ovr 0 O'p  ayy o Oy avp o i
dz9 8y 9z} = dzp By Ax? dy 9z9 9z2 dy 9z¢ Izl

Np—— (220 3%y 391 8 0% avh 9 L ok & i (12)
dzp dy Az} 9z dy 93 dy dz¢ Iz} dy dzp Az}

Mo — _(av/:; VT _ ¢y dYT s
T dzg dy Ay 9z
In addition, we have the mass balance requirement

D r0 , D b
/ / wadzg + / / G);dzo =0.
0 J—a o Jo

(13)
3. Linearized baroclinic system with static stability /vertical motion correlation
Now we consider the baroclinic case, i. e.:
i*uy  dtup

and we assume that the perturbation is small compared to the mean field. Thus, we set

Nz = Ny = My =0.

(15)
This means that the nonlinear quantities in the advection terms are ignored. Similar to Phillips
(1954) we assumed that the meridional variation of the perturbation is of the form sin 2y, i. e.:

! [ I .
¢2’ 'PT,“’Z ~ 8in ly

(16a)
x
=X
D (16b)
with (14), (15) and (16) substituted (11), (12) and (13) become:
Dry region:
3 g ? ¥
—_— —_ ipr— — =0
3 ' 23 3 3 2 N
D@t _pgy el (@ gy 1, 7
i anp ) g (G -2 = Loy (7)

P —w o¥r paSq

b
N € N —
dtg z0  2f 92T oy b) /o @adzo] = 0
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Moist region:

3 a2¢2 270 | - a a’.pT
90 a1~ CPN 5 Gy ~E47) =
3 32¢T - a 3'/’2 v _ L
Fm —£97) + g (e — 89 =& (18)
o9y _ 3 mSa ot [ Ghzg) =
Mass balance requirement:
° b . _
wadzqy 1+ A wodxg =0 - (19)
—a

The basic wind shear in (17) and (18) is constant in space and time. The system of equations is
linear in each region, because in additon to the fact that the nonlinear part of the advection terms

are ignored, the static stability fluctuations are constat in each region. The combined system of
equations (17) and (18), constitutes a nonlinear set because the form of the thermodynamic equation
depends on the sign of w (cf. TF, 1983).

4. Stability analysis and meridional scale of the moist baroclinic waves

Assume that the disturbance grows exponentially with time in the frame of reference moving with
the mean zonal wind at the middle level, such that

0 1
a—to() =() (20)

where v is the gowth rate. Because of the mass balance requirement (19), the growth rate in the
moist region is equal to tha.t in the dry region. Similar to the method used in TF (1983) we can
derive a single equation for wz in the dry region and for &} in the moist region. They are as follows:

Dry region:

b
N 2 2\ ~ 2 N 2 € N
‘*”MozozoZo +(Xg—€ —n )“"22020 +n (Mg + € )w'g —-n tz—(a ) /o w;dzo =0 (21)

Moist region:

0
- 2 2. 2 - € -
yzozosoze + (Am — £ = n)Bhzozo + 12 (Am + £)3) + n 9675 ) Ghdzg =0  (22)

where the subscript zg indicates differentiation with respect to zg and other parameters are given by
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Ad = 2f2/S;p} (23a)
Am = Ag/(1 - €) (235)
n=v/upr. (23¢)

The solution of the differential equations (21) and (22) for the vertical motion can be written as
(see Appendix)

@y = (Agsinkgzo + Bgycoskqzg + Cq)e”*0sin Ly (24a)

@ = (Amsinkmzg + Bmcoskmzo + Cm)e**0sin ¢y. (24d)
Substitution of (24a) in (21) and (24b) in (22) leads to

F-1_ kmaF—K

& =71 =GV g (25)
Cq = &[A4(1 — coskgb) + Bgsinkgb] (26)
Cm = &[Am(1 ~ coskma) — Bmsinkmal] (27)
where

F =2g/(k}+ %) (28a)
T=Am/Ag=(1-¢)" (285)
K = (k& + %)/ (k% + &%) (28¢)
&= — (28d)

kab{[1 + FI(FF)?F + F + 1] — ¢}
& = &/ (km/kg). (28¢)

From the definition of K in (28c) we obtain

km /kq = [K + (K'— 1)(¢/kg)*|"/? (29)
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substitution of (29) in (25) with the aid of (23a), (23c) and (28a) leads to the formula for the growth
rate, i.e.:

v

T = GlE/ i )

= (1 + (K - D 1 g+ - (30)

From the second expression of (30) we obtain a quadratic equation in K, i.e.:

1

K? [1+( )]+K[F+1

F - (- )('7F+1)]+'7F[ +( )]—0 (31)

F+1

with the roots given by

K = GhF + (G OF + 0 - 557

i[ (VF + (¢~ )(7F+1) T R +( ))(1+( ))] HL+ (- )}_ (32)

F+1 F+1

Recall from (24a, b, 26 and 27) that A4, B4, Am and Bm are not determined. The boundary
conditions for w}

=0 at zog =0,b

&5 =0 at zp = —a,0 (33)

are needed to find the ratios, By/Ag4, Bm/Am and other parameter relations. When (24a, b) are
substituted in (33) with the aid of (26) and (27), we obtain

Bg _ &(1 — coskgb)

Ay 1+ asinkgd (34a)
Bm _ @&(1 — coskma)

Am 1 — asinkma (340)
tan(kgb/2) = —(28) " (34c)
tan(kma/2) = —(2&) ™} (34d)

Substitution of (34a, b) in (24a, b), (26) and (27) and substitution of (26) and (27) in (24a, b)
lead to
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&(1 — coskgb)

t, .
1+ Gsinkgb Je"0sin £y (35a)

&% = Ag[sinkgzo + (1 — coskgzo)

@(1 — coskma), vt,

~t . _
@3 = Am|sinkmzo + (1 — coskmzg) 1~ Geinka

le"%sin 2y. (35b)

Substitution of (35a, b) in the mass balance requirement yields the formula for the ratio Ay, JAg,
i. e

Am _ (k_m)( 1+ akgb )(1 — &sinkma)( 1- coskdb)
Ay ‘kqg''1—Gkma’' 1+ éasinkgb 1 — coskma’’

(36)

From (35a, b) we can obtain the divergent components of the wind by using the continuity equa-
tions. They are

N kqAq

a &(1 — coskgb)
X pkl+2)

nk vty
1+ Gsinkgb sinkgzgle Csin Ly (37a)

[coskqzo +

-1 kmAm

a &(1 — coskma)
X pa(kh + )

' Viogin ¢ 7b
1 —Gsinkma sinkmzgle” °sin Ly (37b)

[coskmzo +

N LA, . kg + £ &(1 — coskgb), vt,
= ——92% _[sinkyx — coskgrg)—F—T"le ¢ 38
Oy pg(k3+£2)[sm dzo + ( 7 coskgzg) 1 ¥ Geinkgh Je"cos ty (38a)
ol = _ Am [stnkmzq + (——-—k?" +& — coskmz )&(1 — cos’cma)]e"t"cos £ (38b)
X py(kd, + ) mo 2 M " asinkma y
where
" _ '
Uy = Uyl = ~Ux3
vy = ”5(1 = —v;(g (39)

Next, we apply the condition that the normal component of the wind across the meridional interface
between the pseudo-adiabatically ascending region and dry adiabatically descending region must be
continuous, and that this condition applies to the periodic meridional interface. Since % is a constant
at any given level, @ is continuous across meridional interface. Thus, u' + ug( must be continuous

at such an interface. However, the non-divergent component u' vanishes at the reference latitude
y = D/2. Therefore, we have

ﬁ;( = &;( at zg =0,y =D/2 (40a)

@ix(zo = b) = @iy(z0 = —a),y = D/2. (400)
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Note, that, because of the assumed form of meridional variation in (37a, b), the conditions in (40a,
b) also apply at an arbitrary latitude. Applying \37a, b) in (40a, b), we obtain

Am/Ag = Kkg/km (41)

1 — coskgb 1 — asinkma
1 — coskma’" 1+ asinkgb

( )=1. (42)

Substitution of (42) in (36) leads to

Am _ km

Am _ ckmy 1+ dkgb
Ag kg

1-— &kma

)( ). (43)

From (41) and (43) with the aid of (28d, e) and (29) we obtain
(LY KB +1+ (o)) - 1) = (P + () =0, (44)
d d d

Elimination of K between (44) and (31) gives

(—) )2{['7F2—(1+'7)F (= ) L+ F -2+ F - (1+27)F - 1](-) —F(F+1)’} =0 (45)

(1-

From (45) there are three possibilities:

(1) (£/kg)? = 0. This is the case that the perturbation has no meridional variation, which was
investigated in TF (1983).

(ii) € = 0. This is the dry model which has been studied many times.

(iii) The quantity in the large brackets vanishes. This is the new result. It is a bi-quadratic
equation in £/kq, whose solution can be written as

& =t (2 - asli (16)

where

=yF2—(1+7)F -1
—4F3 — (2+4)F* - (1+27)F -1 (47)

ag = —F(F +1)°
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The minus sign in front of the brackets in (46) is deleted because it gives an imaginary value of
£/kq. Note that from (ii) the meridional wave number cannot be determined: since the meridional
wave number is inversely proportional to the meridional extent of the domain, the meridional scale
of the disturbance cannot be determined in the dry model. On the other hand, from (46) we see that
the meridional scale of the moist baroclinic waves can be determined by latent heat release.

Next, we wish to derive a formula for a/b. Substitution of (28d) in (34c) gives

= {F+(F+1- e)(é)’ + s(;f;)’[(t n)/ELN (P + (P + 1)(-,{;)"'}. (48)

o8

Similarly, substitution of (28e) in (34d) with the aid of (28d) yields

kma kma

2 = () ltan ™30y 00 - [P+ (PO AP+ F1- ) (19)
But, kgb in (48) and kma in (49) are unknown. From (28e), (34c) and (34d) we get

tnk"'—“: ( )t (50)

The product of (48) and (49) together with the expression given by (50) yields

kdb

(b ™){e (—) tan® 1 (8 p 4 (p 41 —s)(k—i)”'l}

—[F+(F+1*e)(é)21t (s )10 ntd =0 (51)

where the formula for the km/k; is given by (29). From (51) using (46) and (29) we can obtain the
value of k4b by iteration. From the values of kzb and £/k; we can use (48) to obtain the ratio of zonal
length of moist region to that of dry region, a/b. From the values of kgb,£/k; and a/b, the ratio of
the meridional extent to the zonal domain can be computed using the formula

D=/ {kgbl1 + (a/B)][E/kal). (52)

a+b
We are now in a position to calculate the growth rate, the ratio of the area of the moist region to
that of the dry region, the ratio of the meridional extent to the zonal domain. The figures shown in
the following are for ¢ = 0.2, 0.3 and 0.464. From (46) we calculate £/kg. Figure 1 shows the curves
for £/k4 as functions of the rotational Froude number. As € decreases, £/kq increases, but the range
of F' in which the solution is valid becomes narrower. From the first expression of (30) the growth
rate depends on both F and £/k;. But £/k; depends on the latent heating parameter ¢ as seen in
Figure 1. Thus, the growth rate is a function of both F and €. Figure 2 shows the growth rate
(measured in the unit of /\'11/ 2ET) versus F. For a given F, the larger the latent heat release (i. e.,
the larger ¢€), the larger the growth rate. Next, we calculate K from (32) and then calculate km/ky
from (29). Figure 3 shows the values of km/kq versus F; the upper curves correspond to plus sign
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in front of the square root in the formula for K in (32), and the lower curves correspond to minus
sign. We shall call the former the first mode and the latter the second mode. Next, we calculate
a/b from (48). In this formulation the meridional extent of the moist region is equal to that of the
dry region. Thus a/b is also equal to the ratio of moist area to dry area. This is shown in Figure 4.
Similar to TF (1983), the first mode has a narrow ascending region and wide descending region, and
the second mode has a wide ascending region and narrow descending region. But the first mode in
this model has narrower ascending region than that in TF (1983) for given € and F. Next, the ratio
of the meridional extent to the zonal domain is calculated using (52) and is shown in Figure 5. For
given € and F, this ratio is larger for the first mode than for the second mode. For £ < 0.464, this
ratio is less than 0.7. For a given F in the same mode, the larger the heating parameter € the larger
the ratio.

5 ! I !
4_ p—
= _
L
kg
ol _
= |
o 1 | I I | | |
0 ) 2 3 4 5 6 7 8

Fig. 1. The ratio of the meridional wave number to the ronal wave number in the dry region, £/k4, versus the rotational Froude
number, F, for the heating parameter ¢ = 0.2,0.3 and 0.464.
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| 1 | | ] | ]
09, I 2 3 4 5 6 7 8
F

Fig. 2. The non-dimensional growth rate v/A:/ z_u},- versus F for ¢ = 0.2,0.3 and 0.464.

Fig. 3. km/kq vs. F for ¢ = 0.2,0.3 and 0.464. The upper set of curves represents the first mode and the lower set of curves
represents the second mode.
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15 1 I | ] | T |

oo

Fig. 4. The ratio of the sonal length of the moist region to that of the dry region, a/b, versus F for ¢ = 0.2,0.3 and 0.464. The
lower set of curves represents the first mode and the upper set of curves represents the second mode.

07 ] T
0.6 - -
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a+b
O3 -
021 -
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0 1 l
0 l 8 9

Fig. §. The ratio of the meridional extent to the zonal domain, D/(a + b), versus F for ¢ = 0.2,0.3 and 0.464.
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6. Conclusions

We have shown the control on the meridional scale of a class of the baroclinic waves exercised by
latent heat release. A meridional-scale equation was derived, i. e. (45), in which the dry model and
the moist model without the meridional variation of the baroclinic waves were revealed. In the dry
model, the stability analysis cannot determine the meridional scale of the baroclinic waves. When
latent heat release is included, the meridional variation of the waves either vanishes (TF, 1983) or is
finite. When the waves have meridional variation with latent heat release, the growth rate increases as
the heating increases for a given rotational Froude number, and there are two modes: the first mode
has small ascending region and large descending region while the second mode has small descending
region and large ascending region. For the rotational Froude number greater than 2.5, the first mode
shows that the zonal length in the moist region is about 20% of that in the dry region. This seems
to agree qualitatively with the observed narrow cloud band along cold front on the saltellite images.
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Apendix
The general solution to the equations (21) and (22) can be written as:
(:)’2 = (Gdsinkdzo =+ Hdcoskd:l:o + Idsinmdkda:o + Jdcosmdkdxo + C’d)eyt%in Ly (Al)
@7 = (Gmsinkmzo + Hmcoskmzo + Imsinmmkmzo + Jmcosmmkmzo + Cm)e”0sin by (A2)

Substitution of (A1) in (21) and substitution of (A2) in (22) give two sets of expressions:

kj—k30a -2 ~n)+n?g+A) =0 (A3a)
mgky — miki(0a - & —n) + 0?0y +2) =0 (A3b)
2 2 n2le
n“(Ag+€°)Cq — [-Gg(coskgb — 1) + Hysinkgb

kd (a + b)

— L Ta(cosmakgb — 1) + - Jysinmgkgb + kgbCy] = 0 (A3¢)
my myq
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kb — kL Om - =)+ n?Om+ ) =0

mikh — mE kR (Om— & —n®) +n20m+ ) =0

n

202

n?(Am + £)Cm +

1

m

km(a + b)(l —

) [-Gm(1 — coskma) + Hmsinkma

——Im(1 — cosmmkma) + LJ,,.sinm,rnlcma + kmaCym| = 0.
m, mm

The difference of (A3b) and (A3a) gives

or

md::tl

1
mg = :tEl;[)\d — (k2 + ) — n?)3.

Similarly, the difference of (A4b) and (A4a) gives

or

1 1
Mm = £—[Am — (kZ, + £2) — n?]2.
km

In order to limit the scope of this paper, we shall consider only (A5a) and (A6a), i. e.:

mg = Mm = +1.

Then, we can substitute (A5a) in (A1) and substitute (A6a) in (A2), and define

Thus, we obtain (24A) and (24B).

AdZGd:tId
By=Hg+J,
Am:GmZtIm

Bm: Hm+Jm.

(A4a)

(A4b)

(A4c)

(A5a)

(A5b)

(A6a)

(A6b)
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