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RESUMEN

Se investiga la estructura de las ondas baroclinicas en una corriente zonal. Usando un modelo cuasi-nodivergente de dos capas,
es posible derivar dos ecuaciones no lineales que describen los cambios con respecto al tiempo de la razén de las amplitudes y la
diferencia del 4ngulo de fase entre la onda promediada verticalmente y la onda térmica. Se obtienen todos los estados estacionarios
y sus propiedades de estabilidad lineal.

Los resultados muestran que hay un estado estacionario estable que tiene una onda con inclinacién hacia el oeste que aumenta
su amplitud con la altura, éste corresponde al estado asintético de la onda baroclinica amplificada. Otro estado estacionario con la
pendiente opuesta es inestable. Se encuentran cuatro estados estacionarios para cizallamientos del viento suficientemente pequefios,
que son estables, pero de naturaleza oscilatoria, y que son o verticales o con una inclinacién igual a la mitad de la longitud de onda.

ABSTRACT

The structure of baroclinic waves on a zonal current is investigated. Using a two level, quasi-nondivergent model it is possible to
derive two nonlinear equations describing the changes in time of the ratio of the amplitudes and the phase angle difference between
the vertically averaged wave and the thermal wave. All steady states and their linear stability properties are found.

It turns out that one stable steady state describes a westward sloping wave increasing in amplitude with height. This state
corresponds to the asymptotic state of the amplifying baroclinc wave. Another steady state with the opposite slope is unstable.
Four additional steady states are found for sufficiently small windshears. They are stable, but of an oscillatory nature, and are
either vertical or sloping half a wave length.

Introduction

The observed structure of synoptic scale waves has been described in detail in numerous studies.
Palmén and Newton (1969) give a detailed description of the properties of these waves, and they
stress the westward slope with height of the waves. The slope can be seen by following the ridge and
trough lines in vertical, zonal cross-sections. A westward tilt of the geopotential waves is consistent
with a lag of the temperature field behind the geopotential field on tropospheric isobaric surfaces.

It is generally recognized that the observed waves exist due to the baroclinic instability of the zonal
currents in the atmosphere. According to the results from studies by Charney (1947) and many
others using various models, it is established that the atmosphere is almost always baroclinically
unstable. From the results of the stability studies, it is possible to show that the unstable steady
state results in baroclinic waves which slope westward with height provided the zonal current increases
with height as shown by Ogura (1957) using a two-level model, but the problem is, of course, that
the perturbation studies deal with infinitesimal disturbances while the atmosphere contains finite
amplitude disturbances.
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It may therefore be instructive to consider the problem in a different way. To keep the treatment
as simple as possible, we shall adopt a two-level, quasi-nondivergent model and finite amplitude
waves of a particularly simple form. Heating and dissipation will also be neglected for simplicity.
In view of these assumptions, we shall be dealing with free waves, and we cannot expect to obtain
absolute, but only relative values of the amplitudes. We shall, as a matter of fact, be able to derive
equations for the relative amplitude and its development in time and for the phase-difference between
the geopotential and thermal fields.

No analytic solution is available to these nonlinear equations. It is, however, possible to find all
steady state solutions as a function of the wave length and the thermal wind. A following investigation
of the stability of the steady states will show that one stable steady state will represent a wave which
slopes westward with height. Other stable states exist for sufficiently small values of the wind shear
and/or sufficiently small wave lengths, but these waves have supposedly minor importance because
they are outside the region of baroclinic instability. In any case, these waves, as we shall see, have no
slope in the vertical direction because the temperature field is either in phase with the geopotential
field or lags this field by a phase angle corresponding to half a wave length.

The present study is a continuation of similar studies by Ogura (1957), Thompson (1959) and the
author (1961). The present approach is different because it does not rely on the results of baroclinic
instability studies, but on equations which describes the structure of the wave directly.

2. The model

As mentioned in the introduction, we use the quasi-geostrophic two-level model in this study. The
model is described in many places in the literature (e.g., Wiin-Nielsen, 1973), and it will suffice to
give the equations. They are:
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in which £ = v? + is the vorticity, ¢ the stream function, V k x V’(,[), the horizontal, nondivergent
wind, 8 = df/dy, where f is the Coriolis’ parameter, q = 2f0 /oP where ¢ = adlnf/dp is the
stability measure, © the potential temperature, a the specific volume, p pressure and P = 50 cb.
The reference levels for the model are 25 cb (subscript 1) and 75 cb (subscript 3). The subscripts *
and T are defined by

0e=301+0sl Oz =301 0al (2:2)

The zonal flow will be characterized by the two constant velocities Us and Up. On the zonal flow
we superimpose waves of a single wave number, i.e., we specify the following stream functions:

Vi(z, y, t) = —Usy+ A(t)coskz + B(t)sinkz

Yr(z, y, t) = —Upy+ C(t)coskz + D(t)sinkz (2.3)
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The expressions (2.3) are substituted in (2.1) resulting in four equations as follows:

dA 8
E:-k(U*—CR)B_kUTD; CR:]C—Z

% — k(Us — CR)A + kUpC
9 _ _rw.-—B _yp_ Lk WL
dt T 1+ q2/k2 1+q2/k2 T
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dt T 14 g2 /k? 1+q2/k2 T ‘

It will be advantageous to introduce an amplitude and a phase angle for the waves in the mean
field and the thermal field, say:

A = Ricosb«, B = Rusinf., C = Rpcosfp, D = Rpsinfr (2.5)

Substitution of (2.5) in (2.4) yields the following equations:

it _ kUp Rysin(8x — 0p)
dt
R*% = k(U* — CR)R* -+ kUTRTCOS(e* — 0T)
dRyp 1—q%/k? .
= - kUp Resin(0s — 6
dt 15 g2 g2 VT Besin(6s — 07)
dor Cr 1 - ¢%/k?
Ry el k(U g q2/k2)RT + ey kUpRicos(8« — 07) (2.6)

We may consider (2.6) as a predictive system, but we are not at the moment interested in the
absolute position of the wave as specified by 6. and 87, but rather in the ultimate structure of the
wave. The important quantity is, therefore, ¢ = 6« — 8. Substracting the fourth equation in (2.6)
from the second we find:

_l-gY/k’L
1+q%/k%r

d g% /k?
e _ KCR_/Z_Z_
dt 1+¢%/k

+ kUp(r )cosp (2.7)

in which r is defined by:

r=— (2.8)
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An equation for the rate of change of r may be obtained by noting that:

dr- 1, dRp dR,
o 2 (REET _ R, 2.
dt Rz( *Tdt T g ) (2.9)
Using (2.6) we then obtain:
d 1— 2 /1.2
U q [k + r¥)singp (2.10)

at T(1+q2/k2

The nonlinear system (2.7) and (2.10) is the basic system for the remaining part of the study. It
may be solved numerically, but we shall use the strategy of finding all steady states of the system
and thereafter discuss the stability of them.

3. The steady states

In finding the steady states of (2.7) and (2.10), we note that r by definition is a positive quantity.
From (2.10) it is then seen that the parenthesis on the right hand side cannot be zero when k > ¢. In
this case we find from (2.10) that a steady state requires that ¢ =0 or m, corresponding to cosp =1
or cosp = —1, respectively. By using these values in (2.7), we find the following steady states:

k>gq, ps=0

1Cr ¢ 1/2 Ch & v Jk-¢
== + Dy D=|(=———3 4—-= 3.1
and
k> = _1_¢r 7 + p'/?] 3.2
g, ps =T 1‘3—-2- UTq2‘+‘k2 ()

We note that the values for rs in (3.1) and (3.2) are obtained from quadratic equations, but that
only one sign can be retained in the square root because rs shall be positive.

Turning next to the case where k < g we notice that a possibility is again ¢s = 0 in which case
we obtain:

l[C_R ¢
2 Ur q2 + k2

k<gq, ©s=0 re12 = + D'/ (3.3)

It is, however, seen from (3.3) that these steady states exist only when the radicand is positive.
This requirement leads to the condition that Ur is restricted to values satisfying the inequality

2
q

(g% — k)12 (3-4)

1
UT < §CR



sufficiently small.
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value of rs would be computed from

1
rs =

These two steady states, both characterized by a non-sloping structure, exist only when Uy is
Cr
and it is seen from (3.5) that rs > 0 cannot be satisfied.

1 Cr_ ¢
2 UT q2+k2

One must investigate the possibility of @5 = 7 also in the case of k < q. However, in that case the
+ D'/?
The last possibility to satisfy (2.10) when s is different from 0 and 7 is to have

k<gq
in which case we obtain from (2.7) that

2 2
k
ro = (4

(3.5)
q2_+k_2)1/2

1C
cosps = ~ZR

(3.6)
2
q
. 3.7
2UT q4_k4)1/2 ( )
20 T T
2 STEADY STATES
SEE (3.6),(37)
1S +

2 STEADY STATES
SEE (3.1},(3.2)

2 STEADY STATES

SEE (3.3)

10
6
1,107 m
Fig. 1. A summary of the regions in which the various steady states exist including references to the appropriate equations.
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Since cosps < 1 we can use (3.6) only when

Up > lop— 9l (3.8)
T 2 R(q4 _ k4)1/2' )

When (3.7) is satisfied we obtain two values, ps and —s, from (3.7) each for the same value of
rs as given in (3.6).

The existence of the various steady states are shown in Fig. 1. We obtain a total of six steady
states, two in each of the three regions of the diagram where the curve corresponds to an equality
sign in (3.4) or (3.8).

It should not go unnoticed that the curve and the asymptote in Fig. 1 is identical to the critical
curve in the stability problem using the two-level, quasi-nondivergent model. In our case, the curve
represents the division of a region with sloping steady state and one with a non-sloping vertical
structure. In the stability study the curve separates a region of instability from another region
of stability. It is not surprising that the same curve should appear in both problems because a
distinguishing factor in the stability problem is that the amplifying waves tilt westwards enabling
them to transport heat from south to north.

4. The stability of the steady states

The stability of the six steady states is investigated using a linearized version of the equations (2.7)
and (2.10). If (rs, @s) is an arbitrary steady state, and (r', ©') a small deviation from the steady
state, we can derive the linear perturbation equations. They are:

dr' — kU . ! 2, k2—¢? '
—d—t = — T[2T3$1n(,037' + (7'3 + m)cosps . So]
;j = kUp[(1 + ——1% 2)cosg03r’ —rs(l— g q2 2 )sings - ©']. (4.1)

in obtaining the system (4.1), it has been assumed that cosp' = 1 and singp’ = /. We can easily
investigate the stability of the first four steady states because they are characterized by having s =0
or s = 7. In both cases (4.1) reduces to the following equations:

dT ]C2 — q2 ]
= kU (& g )eospep
dy' 1,9, kK —¢ !
= :“I\:UTE(”J + P Jeospsr (4.2)

where cos ¢ = 1, or -1.

We look for solutions of the form (r', ¢') = (r§, v4) exp (vt) and find from (4.2) that
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K —q¢* 2
m) COs s — 0 (4.3)

1
v? + (kU7)* 5 (e +
Ts
It is obvious from (4.3) that o is a purely imaginary number regardless of whether cosps = 1 or
cosps = -1. The frequency is
s 1,2 K -¢%1/

where r;s is obtained from (3.2) or (3.3). We conclude therefore that the four steady states having
ws = 0 or s = 7 are stable. Deviations from a steady states will in these cases result in oscillations
around the steady state.

We proceed next to the steady states for k < g described by (3.6), (3.7) and (3.8). Since

2 ¢ -k
= 4.5
T AR (45)
in this case, we find that
!
‘Z—; = —2kUpsinpsr’
dSOI . '
o —2kUrpsinps ¢ (4.6)
or
v = —2kUpsingpsg (4.7)

Assuming that Ur > 0 as it is in the troposphere we conclude from (4.7) that the steady state
having 0 < s < 7 is stable (v < 0) while the other steady state with —m < s < 0, is unstable
(vr > 0).

We have thus shown that of the six steady states only one is unstable for Up > 0. Of the remaining
five steady states one represents a wave for which ¢ = 8. — p > 0 meaning that the temperature
field is lagging behind the geopotential field, or, equivalently, a westward slope with height. It is
this stable steady state which is the asymptotic state of the amplifying baroclinic wave created by
the growth of infinitesimal disturbances on an unstable zonal current. The remaining four stable,
steady states have no slope in the vertical direction. In the cases where ¢, = 0, we have obviously a
geopotential wave of the form

¢+ = dscoskz, ¢1 = ¢reoskz (4.8)

resulting in

¢1 = (¢» + ¢r)coskz, ¢3 = (#« — ¢r)coskz (4.9)
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In the other case where ¢s = m, we have
#s = pucoskz, ¢ = ¢A>Tcos(kx + 1) (4.10)

which results in a wave with no slope, but with a decreasing amplitude with height because

$1 = (¢« — dr)coskz, ¢3 = (¢+ + dr)coskz (4.11)

These four steady states correspond therefore to waves with an equivalent barotropic structure.

It is of interest to look at the relative structure of the various wave types. All calculations are
carried out with parameters for 45°N. Fig. 2 shows rs as a function of wave length for the cases
s = 0 and ps = 7 up to a wave length corresponding to k = ¢ or Li =2n/q=~ 42X 10%m = 4200
km. Up = 5m~! has been used. For small values of L we find rs close to unity, while the wave with
©s = 0 approaches the value 0.7 as k approaches g. We may verify this result from (3.1) which for
k = q gives

[y

_1 8
2Urq?

Ts =0.72

For the case ps = 7 we find from (3.2) that rs is zero as can also be seen from Fig. 2.

1 | i 1

UT=5ms'I

1,10%m

Fig. 2. The relative amplitude as a function of wavelength for the short waves (L < 2x/q) for the cases of the phase angle being 0
and . Up = 5m s~ 1,
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Fig. 3 shows for the same value of Up = 5 m s7! the two aplitudes for 3 = 0. The value corres-
ponding to the minus sign in (3.3) remains small for increasing values of the wavelength indicating

T [ 1 1 |

Fig. 3. The relative amplitudes as a function of wavelength for long waves (L2/) with

phase angle o, = 0.

0.5

5 6 7 8 9 10

1 i 1 l ! ]

Ur=20ms™

1 1 ! 1 i !

5 6 7 8 9 10

|,|O6m

subcritical windshear (Up = 5m s™!) and

Fig. 4. The relative amplitude as a function of wavelenght for long waves (L > 27/q) with supercritical windshear (Ur=20m

s~1).
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that the amplitudes at the upper and the lower levels are of the same order of magnitude. On the
other hand, corresponding to plus sign in (3.3) rs increases with increasing wavelength and attains
values larger than unity when L > 5000 km corresponding to a phase difference of 7 between the
geopotential at the upper and lower levels.

Fig. 4 depicts rs as a function of wave length for U = 20 m sl and ps > 0. ry < 1 for all

wavelength. The phase difference ¢, > 0 is shown in Fig. 5 as a function of wavelength for the same
case.

T T T T T T
15 | U;=20 ms™ .
B
- 10| -
-
05 |- .
| Il 1 1 1
5 6 7 8 9 10
1,10%m

Fig. 5. The phase angle ¢, = §, — 61 as a function of wavelength for the same case as in Fig. 5.

We show finally a few time integrations of the nonlinear equations (2.7) and (2.10). Fig. 6 shows
the stable oscillation of r and ¢ for a case where Upr = 20 m s7! and L = 2000 km starting from a
state of r = 0.8 and ¢ = 0.05. The period is 1.46 days. Fig. 7 gives the oscillation in ¢ for a case of
Ur=4m s7! and L = 5000 km. The period is very close to 11.88 days.
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Up=ioms?!
L=2
0.05 T=1.46 days

0.0

-0.05 .
05 10 15

t,days

Fig. 6. The curves p(t), r(t) for a time integration of the nonlinear equations. Uz = 10 m s~1, L = 2000 km, period = 1.46 days.
@ -scale on the left and r -scale on the right side.

Up=4ms’
O 05 L =5000km ]
) 0 1 ] i ! 1 L 1, days i
o 2 \4 6 8/10
-0.05 - .

Fig. 7. Same arrangement as in Fig. 6 but, for a case with Ur = 4 m s~ !, L = 5000 km. The period is a little less than 12 days.
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The remaining case refers to the waves with a significant vertical slope. A case with Up = 8 m™!

and L = 5000 km was selected. It has steady states with r; = 0.4186 and s = +0.5. Fig. 8 shows
© = @(t) for an initial state of ro = 0.4186 and pp = —0.45, i.e., close to the unstable steady state.
The curve shows that ¢ approaches the phase angle s = 0.5 after an integration over more than 20
days. The variation of r = r(t) is almost insignificant in this case. On the other hand, if one starts
on the other side of the unstable steady state, say ro = 0.4186 and ¢¢ = —0.55, we find again by an
integration of the equations that solutions after approximately 20 days is close to the stable steady
state as shown by the curve ¢ = ©(t) in Fig. 9.

0.5 - _
0 L L . L t, days —
3 5 10 i5 20 Y
f
U =80ms™
L =500Ckm
-05 |- -

Fig. 8. The phase angle  as a function of time for the case ro = 0.4186, pg = —0.45, Uy = 8 m s~ !, L = 5000 km. The unstable
steady state has y, = —0.05, while the stable steady state has ¢, = 0.05.

Fig. 9. As Fig. 8, but with starting values of ro = 0.4186 and wo = —0.55. The asymptotic value is ¢ = —5.78 corresponding
—5.78 + 27 = 0.5.
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Conclusions

The main conclusion from this study is that there exists a stable steady state with a westward slope
with height in the region for which a zonal flow with a sufficiently large thermal wind is unstable.
A steady state with the opposite slope is unstable. This result gives a natural explanation for the
observed structure of the transient waves in the atmosphere as described by data studies. For the
sake of completeness, we have also found the steady states in the other parts of the (L, Ur) diagram.
They are stable, but will in general have either a slope of half a wavelength or no slope at all, but
the significance of the latter results is smaller because no mechanism in the model will create these
disturbances.

The approach to the problem has deliberately been held in the most simple terms employing not
only the two level, quasi-nondivergent model, but also very simple zonal currents and waves. The
study could in all likelihood be expanded to become more general. One could, for example, consider
waves on a zonal current with horizontal as well as vertical wind shear and thus consider a mixed
barotropic-baroclinic problem. Heating and dissipation could be added to the present study without
difficulty. It may also be possible to consider a model with a continuous variation in the vertical
direction of both the zonal current and the waves.
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