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RESUMEN

Representaciones gréficas de esparcimiento vertical de la pluma o, requiere de digitalizacién, en la implementacién de calculos
numéricos del esparcimiento de la pluma. La representacién grafica actual para estas curvas {desarrolladas a partir de las curvas
originales de Pasquill-Gifford-Turner) se centra en la determinacién de regresiones de mejor ajuste junto con otra evidencia empirica.
Aqui se propone para la cuantificacién de las curvas de PGT en condiciones neutras y estables, un modelo conceptual, validado
observacionalmente, y basado en la teoria de mezclado turbulento.

ABSTRACT

Graphical representations for the vertical plume spread parameter, o,, require digitisation for implementation in numerical cal-
culations of plume spread. Current algebraic representation for these curves {developed from the original Pasquill-Gifford-Turner
curves) centres on determining a “best-fit” regression together with other empirical evidence. Here an observationally validated
conceptual model based on turbulent mixing theory is proposed for the quantification of the PGT curves for neutral and stable
conditions.

1. Empirical (algebraic) representations for o,

Although the Pasquill-Gifford-Turner (PGT) curves for the lateral and vertical plume spread rate
parameters, oy and oz, have been much criticized, they are still in common regulatory use (see e.g.,
Irwin, 1983). The original curves (Pasquill, 1961; as modified by Gifford, 1961 and Turner, 1967) were
constructed graphically and were useful for hand calculations. However with the advent of digital
computers it has become necessary to represent these observational curves with algebraic formulae.
Much effort has been placed into “best-fit” representation, and to the extension of the range of
applicability of the original curves to take into account varying topography/roughness length, release
height etc. (e.g., Smith, 1972; Briggs, 1973; Irwin, 1979a) in order to satisfy the regulatory agencies’
requirements for a “working model”.

However relatively few attempts (e.g., Hogstréom, 1964) have been made to relate these curves to
a conceptually derived model; as will be undertaken in this paper by relating the vertical spread
rate parameter, oz, to eddy diffusion coefficients using assumptions compatible with the limitations
inherent in the original data sets.
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Fig. 1. Curves for o, for PG stability classes based on Pasquill (1961) and Gifford (1961) {29 = 0.03 m) (redrawn from Turner,
1970) plus best-fit curves from equations (1-4). [PG = Pasquill-Gifford; B = Briggs; BNL = Brookhaven National Laboratory;
H = Hosker].
The original oz curves (Pasquill, 1961; Gifford, 1961) (Fig. 1) were for non-buoyant ground level
releases, for distances to only 1 km downwind and for a surface roughness of 0.03 m. Representations
for these curves have been attempted by use of a power law expression:

O, = cz? (1)

(e.g., Weber, 1982, p117; Pasquill and Smith, 1983, p338). The values of the coefficients were first
estimated specifically for surface-based releases, and modified by Smith (1972) to take into account
different roughness lengths (Table 1). F. B. Smith’s (1972) graphical method may also be quantified:

Table 1. Values of constants for equation (1) (with z in km) (after Pasquill and Smith, 1983)

Stability
Category Coefficient ¢ Cofficient d
Zo = lcm 10 cm 1m lcm 10 cm 1m
A 0.102 0.140 0.190 0.94 0.90 0.83
B 0.062 0.080 0.110 0.89 0.85 0.77
C 0.043 0.056 0.077 0.85 0.80 0.72
D 0.029 0.038 0.050 0.81 0.76 0.68
E 0.017 0.023 0.031 0.78 0.73 0.65
F 0.009 0.012 0.017 0.72 0.67 0.58
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a well-known analytical “best-fit” expression is that of Hosker (1973):

a:z:b

oz :H—C‘sz(Zo,fC) (2)

(although better algebraic fits are possible: F. B. Smith (p.c., 1985)). In equation (2) the values of
a, b, ¢, d (Table 2) depend on stability and F (2o, ) is a function of roughness length:

[ In{fzf(1 + (hz?)"Y)], 2,>0.1m
Flzo,2) = {ln{f:cggl + 511:7))_1],)] 2, < 0.1m ()

and f, g, h, j (Table 3) are functions of roughness length only.

Table 2. Coefficients a, b, ¢, d for use in equation (2)

PG stability

category a b c d

A 0.112 1.06 5.38 x 10—+ 0.815
B 0.130 0.950 6.52 x 10~4 0.750
C 0.112 0.920 9.05 x 10~ * 0.718
D 0.098 0.889 1.35 x 1073 0.688
E 0.0609 0.895 1.96 x 10—3 0.684
F 0.0638 0.783 1.36 x 103 0.672

Table 3. Values of coefficients f, g, b, j for equation (3)

Roughness

length

(m) ! g h j
0.01 1.56 0.0480 6.25 x 10~4% 0.45
0.04 2.02 0.0269 7.76 x 10~* 0.37
0.1 2.72 0 0 0

0.4 5.16 -0.098 18.6 -0.225
1.0 7.37 -0.0957 4.29 x 10% -0.60
4.0 11.7 -0.128 4.59 x 10* -0.78

However, it should be noted (NRPB, 1979) that this numerical scheme can only be used for a
specific subset of possible values for roughness length; although these values are not stated explicitly.

In order to estimate the corresponding coefficient values for elevated releases, M. E. Smith (1968)
analysed the 108 m (non-buoyant) release of the Brookhaven National Laboratory (USA) (BNL) data
set to derive coefficients valid in the range 0.1 to 10 km for 4 stability classes (Table 4). Many other
workers have attempted to derive coefficients from various data sources - a more detailed assessment
of the historical development of these differing approaches is to be found in the excellent review of
Gifford (1976).
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Table 4. Values of constants for equation (1) {with z in meters}(after Hanna et al., 1982)

Stability category Parameter
Brookhaven Equivalent PG [ d
B2 B 0.41 0.91
B1 C 0.33 0.86
C D 0.22 0.78
D F 0.06 0.71

Furthermore, several attempts at rationalisation have been made. Briggs (1973) proposed a series
of algebraic interpolation formulae based on a wide variety of data sources (including the BNL data)
containing surface and elevated sources with a range of initial buoyancies:

o, = byz(l+ baz)° (4)

The coefficient values were derived for both rural and urban terrain and are given in Table 5. It is
worth noting that, in neutral conditions, from equation (4) for small values of z,0, a z; and at large

distances oz « 21/2 4 range of exponent values encompassing the values given in Tables 1, 2 and 4.

Table 5. Parameter values for equation (4) (after Briggs, 1973)

PG stability

category

a) Open country conditions b) Urban conditions

b ba c by ba ¢
A 0.20 0 - A-B 0.24 0.001 0.5
B 0.12 0 -
C 0.08 0.0002 -0.5 C 0.20 0 -
D 0.06 0.0015 -0.5 D 0.14 0.0003 -0.5
E 0.03 0.0003 -1 E-F 0.08 0.00015 -0.5
F 0.016 0.0003 -1

In order to provide a baseline against which to test theoretically derived value of o, (Section 2 et
seq.), these algebraic representations of the various graphical methods have been plotted in Fig. 1
along with the original PG curves. The power law expression, equation (1), as evaluated by F. B.
Smith (see Pasquill and Smith, 1983, p338) is noted to underestimate (by 10%) at 0.1 and 10 km

and to overestimate (by 5%) at z = 1 km. Furthermore, comparison of Hosker’s curves with M. E.
Smith’s (1968) (despite being for a completely different data set) reveal strong similarities and only

differ significantly at distances of = 5 km. Briggs’ (1973) values (equation (4)) tend to underestimate
(as compared to Hosker’s values) at a similar distance range. It should also be noted that the curves
of F. B. Smith relate to near-surface releases, whereas M. E. Smith’s, Hosker’s and Briggs’ relate to
higher level (~ 100 m) releases.
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2. 0z in terms of eddy diffusion coefficients

A relationship for the plume standard deviation, oz, can be derived from equation 6.102 of Kao
(1984) by noting that for the term ezp[—az?"™""/b(2+m —n)%z] to be compatible with the normally
assumed ‘Gaussian plume model’:

g b(24+m—n)2z "™ (5)
2a

when the profiles of wind, U(z), and eddy diffusivity, K(z), are given by power law profiles:

K(z) = bz" (6)

and

U(z) =az™ (7)

and where z is the distance downstream from the source and z is the height above the surface. [The
corresponding equation for the oy component is not discussed here]. It should be noted that this
general result (equation (5)) is not restricted to ground level sources.

In the special case of m = n, this gives

0% = (2b/a)z = (2K/U)z (8)

which is equivalent to the Fickian diffusion approach in which, additionally, m = n = 0 (viz. K(2)

= constant = K and U(z) = constant = U). Hence, in this special case, 0, a z!/2. However, such
a functional dependence is not borne out in any of the empirical curves discussed above except at
large distances downstream (F. B. Smith, p.c., 1985).

A more realistic approximation to the K and U profiles requires the velocity profile to depend upon
both atmospheric stability and surface roughness length. This can be accomplished in several ways:
using the logarithmic profile or including such dependency in the coefficient a and/or m of equation

(7) (see e.g., Irwin, 1979b). The parameter a must incorporate a reference height; for example it is
common to refer values to those at a height of 10 m such that

U(2)/Uro = (2/10)™ (9)

However for the theory to be developed here, the reference value will be taken as the geostrophic
velocity, Ug, which is assumed to occur at the top of the boundary layer of depth, h, such that

U(2)/Uy = (2/R)™ (10)
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This is the “top down” profiling method of Moran et al. (1985). In a theoretical discussion (as
here) these two power law profiles should have identical slopes such that the exponent m in equations
(9) and (10) must be identical. However, it should be noted that if a single theoretical curve is fitted
to a set of real data it is usually only possible to ensure that the values of U and %g are in agreement
at a single height, z1, which becomes a factor in determining the value of m i.e., m is a function of
this reference height, z; (e.g., Gryning et al., 1983) as well as of the choice between top down and
bottom up profiling method.

Furthermore it is commonly assumed that K can be given by

K=K, f(R) (11)

where R; is the Richardson number and K, is the neutral value of the eddy diffusion coefficient given
by e.g., the “law of the wall” relationship (Mellor and Yamada, 1974)

K,=ku,z (12)

(where k is Von Karman’s constant, u. is the friction velocity and z the height), then equation (5)
can be rewritten as

02 = ku. (1 + m)?zz' "R 1 (R) /(2U,) (13)

Furthermore, since u« (which is a measure of surface roughness and therefore related to the rough-
ness length, 2zp) is proportional to the wind speed U, the value of 0z becomes a function of distance,
height and stability class, but only a relatively weak function of wind speed - via the mixing depth,
h. This independence of wind speed is one of the assumptions embodied within the Pasquill-Gifford-

Turner curves. However it should be noted that under several stability-typing schemes, there is
an implicit dependence on wind speed insofar as the Pasquill-Gifford (PG) stability class is itself
a function of wind speed. Such classification schemes incorporate both the variables (wind speed,
temperature gradient) which can be alternatively synopsised in the Richardson number, R;.

3. Pasquill-Giffo*d-Turner curves

Although equation (13) is the main conclusion of this analysis, it is considered useful to evaluate this
general formula for the Pasquill-Gifford-Turner (PGT) o2 curves for specific stability cases. This can
be done by substituting appropriate expressions for the boundary layer depth, A, and the Richardson
number, R;. Furthermore, for any given stability, the effect of varying roughness lengths can be
evaluated either directly in terms of different values of u« or by employing an (analytic) relationship
between us and the roughness length, 2o (e.g., based on the geostrophic drag law: Jensen, 1978;
Tennekes, 1982, p46).

As two examples of the applicability of the analysis undertaken in Section 2, in Section 3.1, equation
(13) will be considered for neutral (PG class D) stability in which R; = 0 and f(R;) = 1 and in Section
3.2 stable cases (f(R;) < 1) will be discussed.
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3.1 Neutral stability case (PG class D)

In the case of a neutrally stable boundary layer, further relationships are known which can be used
to simplify the expression for o, (equation (13)). The neutral boundary layer depth can be related
to the surface friction velocity, us (e.g., Shir, 1973):

h=u./4f (14)

where f is the Coriolis parameter. Secondly the value of the Richardson number is unity and f(R;)
is also unity (i.e., K = K,). With these substitutions, equation (13) is rewritten as

o2 = kult™(1 + m)?z2tT™ /20, (41)™) (15)

z

Furthermore, values of the exponent, m, are known as a function of z,, for specified height ranges
(e.g., Irwin, 1979b). For a typical surface roughness length of ~ 0.1m, m is frequently taken as 0.14.

With this value and a value of f = 10_43_1,0,2, can be written as

02 = 1.943kul1*2%% 2 /U, (16)

For neutral conditions, the value of the friction velocity, u«, is related to the roughness length z,,
and the geostrophic velocity, Uy, by

w, = 25U, (17)
In (Uy/(20f))

(Jensen, 1978).

Values of 0, calculated using equation (16) for zo = 0.1 m are compared in Table 6 with the range
of values derived from the analytic-fit curves of Fig. 1 (viz. derived from equations (1-4)). It can be
seen that there is excellent agreement in the downwind range of ~ (500-5000 m).

However, in contrast to Fickian diffusion where o, « zozl/z, equation (16) leads to the result that

g,z x 20.431:1/2 . (18)

At large distances, z is approximately constant and o is, as anticipated, proportional to 212,
However, the value of 0 is now additionally a function of 2: viz. the stack height for non-buoyant
plumes described by the Pasquill-Gifford curves. [This height dependency should also permit future
investigation (beyond the scope of this present paper) of differential diffusion rates of the upper and
lower portions of the plume as a consequence of the non-constant value for K].
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Table 6. Comparison for neutral stability (D) from Fig. 1 of empirical values of o, (m) (zo = 0.1 m) and

calculated values (equation (16)) for reference heights of 50 and 100 m for two wind speeds.

z(m) = 100 500 1000 5000 10000 100,000

i)Ranges for 5-8 15-30 30-40 100-200 150-250* 480-700*
empirical values

from Fig. 1

(z0=0.1 m)

ii)Calculated

values Ug=2 m

s~ 1(2=50 m) 8.1 18.0 25.5 56.9 80.5 254.6
{4y = 0.0819 m

s~1)

(2=100 m) 10.8 24.3 34.3 76.7 108.5 343.0
Ug=6m

8~ 1(z=50m) 8.3 18.5 26.2 58.5 82.8 261.8
u,=0.2255 m

s71)

(2=100 m) 11.2 24.9 35.3 78.9 111.6 352.8

* The upper values here neglect the much larger estimates of the BNL curves.

3.2 Stable cases (PG class E, F, G)

In terms of the eddy diffusion coefficient formulation proposed here for the evaluation of o, the
inclusion of a non-neutral atmosphere is only possible where o scales with the friction velocity. Hence
the approach is likely to be useful for the stable categories, E, F, G; but not useful for the unstable
categories when the dominant diffusion mechanism is convection. In such unstable situations, scaling
appears to be with the convective velocity (e.g., Pasquill, 1985); consequently the unstable case willl
not be discussed here.

For stable cases, the value of the exponent m, the depth of the surface boundary layer, h, and the
functional form of the Richardson number, f(R;), will be different from the neutral case. The depth,
h, of the stably stratified boundary layer can be represented by

h=04(u,L/f)/? (19)

(see e.g., Zilitinkevich, 1972, 1975; Hanna, 1982) where L is the Monin-Obukhov length scale. One
particular parametrisation of the stability function in terms of the Richardson number (Henderson-
Sellers, 1982) gives K as

K = K,(1+37TR)™! (20)
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The atmospheric boundary layer observations by Ueda et al. (1981), upon which this formula is
based, show that turbulence is not exterminated totally at a critical Richardson number (of ~ %);
although the value is severely damped. The continued existence of turbulence at Richardson numbers
in excess of 41 is also supported by observations in aquatic boundary layers by e.g., Thorpe (1969),
Mortimer (1974).

Writing the appropriate stable value of the exponent m as m!, equation (13) becomes

02 = kult™/2(1+ m!) 22z "™'0.4™ L™ /12(1 4 3TR2)Y/(2U, f™/?) (21)

z

Results for stable cases can either be derived from direct evaluation of equation (21) or can be
expressed by the ratio of o in stable cases to the value of ¢; in neutral conditions. In this latter
case, dividing equation (21) by equation (15) gives

o, (stable) [u£1+m’/2) <1 +m'

ulht™ \1+m

S 4™ L™ /2(1 + 37R?) 14 '"""'/2} (2
o.(neutral) g ' : / (22)

where m is the neutral value of the exponent and subscript n denotes neutral. For stable conditions,
equation (17) must be replaced by a geostrophic drag law for non-neutral conditions e.g.,

%= {2y - 4} + 87 23

(e.g., Tennekes, 1982, p46) which gives an implicit relationship between u, and 2z, for known Uyg. The
constants A and B in equation (23) are empirical functions of stability. Typically %— = 0(0.6).

As an indication of the potential usefulness of equation (22), the ratio oz(stable)/oz(neutral)
will be evaluated using typical values for the parameter values (which themselves may often be the
state variables of a larger air pollution model). Taking L = O(20m) (Hanna, 1982), and m' = 0.54
(stability class: F), m = 0.16 (for a zo = 0.1 m) (e.g., Irwin, 1979b) together with a corresponding
value for the Richardson number of ~ 1.25 (Sedefian and Bennett, 1980), gives a value for this ratio
of

0.635

— Yx -0.19
0. (stable)/o,.(neutral) = 0.396 w0580 z (24)

Values derived from equation (22) for a typical value of us«n = 0.2255 (corresponding to Uy =6 m
sland 20 = 0.1 ms™ ! as before) [and hence assuming us+ = 0.1353] and for three different heights
are compared in Table 7, for two distances downstream (1 km and 10 km), with the power law
representation of the PGT curves using coefficient values of F. B. Smith and M. E. Smith (the latter
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specifically for elevated sources in the distance range of 0.1 to 10 km) as given in Pasquill and Smith
(1983, p338). It is seen that the agreement with M. E. Smith’s values are good for the high level

releases, whilst the surface-release based coefficient values of F. B. Smith, which are much larger,
are underestimated by the near-surface calculation (2 = 10 m) which gives a ratio value of 0.17 in
comparison with Smith’s value of 0.26 for the same roughness length.

Table 7. Ratios of o, in stable (class F) conditions of o,
in neutral conditions (in part, after Pasquill and Smith, 1983)

SURFACE RELEASES ELEVATED RELEASES
F. B. Smith M. E. Smith

Empirical calculations (equation (1))

z=1 km 0.32 0.12

z=10 km 0.26 0.11

Calculated ratios from equation (22)

z2=10m 0.17

2=100 m 0.11

2=200 m 0.10

4. Discussion

It is, perhaps, worth noting that the validity of the above argument relies on the representation of U
and K as power law profiles. However such functional forms are monotonic increasing with height.
Since observations suggest that such values will reach a maximum at some height in the atmosphere,
Zmaz, and thereafter decrease, several functional forms for K have been proposed to permit this
phenomenon to be modelled more accurately. For example, Shir (1973) proposed that

K = 04u.z ezp(—4fz/us) = 0.4u,z exp(—z/h) (25)

In contrast to the law of the wall which gives a zero value for K, at the interface and a value
monotonically increasing with height, equation (25) gives a maximum at a height above the interface
of z = h: a height which varies with wind speed (see also figure 9 of Kundu, 1980 and figure 8.3
of Hanna et al., 1982). [This functional form is also supported by theoretical work in the aquatic
boundary layer by Henderson-Sellers (1985)].

It is also interesting to note that a truncated version of this formula (equation (25)) has already
gained some acceptance (see e.g., Nieuwstadt, 1980; Pasquill and Smith, 1983):

K = ku,z(1- z/h) (26)

The correspondence with equation (25) is most easily seen by undertaking a series expansion for
the exponential:
(__ l)i—lzi

K = ku, Z(l/h)‘"l—(-'.—;——l—ﬁ— (27)
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and then rewriting equation (26) in a similar format as
K = ku.(z - zz/h)

= ku, Z(l/h)f—l%!i' (28)

=1

The disadvantage with this truncated version is that it is symmetrical about a maximum at
z = h/2, with a zero value at z = h. However many observations and models (e.g., Brost and
Wyngaard, 1978; Hanna et al., 1982) suggest that there is likely to be a strong asymmetry (skewness)
in the vertical profile of the eddy diffusion coefficient, K. Furthermore, the extent of the mathematical

reanalysis that introduction of such modifications (equations (25) or (26)) would require in order to
derive an analytical solution to the diffusion equation so that a relationship between o and z, z
etc. analogous to equation (16) can be derived is beyond the scope of this present paper and will
potentially provide detail in excess of the degree of accuracy inherent in the original PGT curves.
Qualitatively it can be seen that since these modified forms for K describe a smaller value at greater
height than the law of the wall equation (equation (12)), the moderation of values of ¢ in e.g., Table
6 are likely to result in decreases (probably marginal).

_ 1000~

T T 1
0.1 1 10 100

Distance downwind (km)

Fig. 2. Curves for o, for PG stability classes D and F (approximate Richardson numbers following Sedefian and Bennet, 1980)

derived from the analytical expression derived here equation (13) plus Hosker’s best-fit curves (equation (2)) and the original
PG curves.
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5. Conclusions

Graphical representations for the vertical plume spread parameter, oz, required for digitisation in
numerical calculations of plume spread must be superceded by analytical expressions. Current al-
gebraic representation for these curves (developed from the original Pasquill-Gifford curves) centres
on determining a “best-fit” regression together with other empirical evidence. An observationally
validated conceptual model has been developed here for the quantification of the PG curves based on
turbulent mixing theory - leading to a new algebraic equation (equation (13)) in which the stability
class is expressed in terms of the Richardson number. For neutral values (PG stability class D = R;
= 0), o can be deduced using equation (15) and stable values for o given either by equation (21) or,
as a ratio, by equation (22). For ease of visual comparison, the curves thus derived (for PG classes
D and F) are shown in Fig. 2 (for 2 = 100 m and Uy = 6 m s~ !) for Richardson numbers equated to
Pasquill-Gifford stability classes D and F following the scheme of Sedefian and Bennett (1980). (Also
plotted in this figure for comparison are the best fit curves of Hosker (1973): equation (2) and the
original PG curves). It should be noted that for stable atmospheric conditions, this new approach
is not appropriate for heights above the boundary layer; neither does it show the lower growth rates
distances in the range 1-10 km, as in for example the Briggs’ curves for open country (equation
(4) and Table 5). This is related to the fact that such curves implicitly contained an assumption
regarding the depth of the boundary layer, which for stable cases is assumed to be < 800 m (see, for
instance, Table 2 of NRPB, 1979). Hence, although there are more variables within this new con-
ceptual approach, this added flexibility, derived by consideration of the turbulent mixing processes
in the atmosphere and not by simple curve fitting to specific data sets, should render equation (13)
appropriate for a wide variety of cases of atmospheric dispersion.
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