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RESUMEN

Un modelo de tres componentes, algo m4s general que el propuesto recientemente por Loreng; se estudia con el propésito de
ilustrar las posibilidades de la interaccién casi-resonante entre ondas largas baroclinicas y el forzamiento térmico de tipo mongén.
Se demuestra que el modelo es capaZ de exhibir una “resonancia plegada”, retrato de equilibrio sugerente de lo que aparece
como un requerimiento para explicar la bimodalidad observada de la amplitud de las ondas largas atmosféricas. Uno de los modos
est4 asociado con una onda estable y equilibrada, térmicamente forzada, mientras que el otro est4 asociado con un ciclo limite estable
alrededor de un equilibrio inestable. Este ciclo limite es activado en invierno y conduce a fluctuaciones vacilantes caracterizadas
por una larga permanencia en un estado de alta amplitud y fase fija que puede corresponder a uno de los dos modos observados.

ABSTRACT

A three component model, somewhat more general than a recent model of Loreng, is studied in order to illustrate the possibilities for
quasi-resonant interaction of long baroclinic waves and thermal-monsoonal forcing. The model is shown to be capable of exhibiting
a “folded resonance” equilibrium portrait suggestive of that which seems to be required to account for the observed bimodality of
the atmospheric long-wave amplitude. One of the modes is associated with a stable, equilibrated, thermally forced wave, while
the other is associated with a stable limit cycle about an unstable equilibrium. This limit cycle is activated in winter, leading to
vacillatory fluctuations characterized by a long residence in a state of high amplitude and fixed phase that may correspond to one
of the two modes observed.

1. Introduction

Statistical analyses of observations show that the largest scales of planetary atmospheric flow possess
a bimodal wave amplitude probability structure (Sutera, 1986; Hansen, 1986), that the two modes
are baroclinic (Hansen and Sutera, 1986; Hansen, 1988), and that in winter there tends to be quasi-
periodic major outbreaks of cold continental air apparently associated with the high amplitude mode
having a most probable period near 20 days (e.g., McGuirk and Reiter, 1976; Schilling, 1987).

Our aim here is to explore the degree to which these features can be accounted for, at least
qualitatively, within the framework of simple 3-variable low-order dynamical model driven only by
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seasonally varying heating (i.e., by thermal-monsoonal, as opposed to orographic, effects). As a
basis for this model in the next section we first outline the derivation of a more general 8-variable
dynamical system including as special cases not only our present model, but nearly all low-order
models studied to date that exclude wave-wave interactions.

2. A generalized low-order, quasi-geostrophic model

The fundamental quasi-geostrophic equations can be written in the form (e.g., McWilliams and Gent,
1980)

E+u£+vé—§—f0vx_Fz:0 (2.1)

ov ov dv B .
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with boundary conditions,
w=0 at p=0 (2.6)
ws = —psg(Vs - Vh),
(7z 5 7y)s = psC*(us , vs) at p=ps (2.7a,b)

where (z, y) are the Cartesian zonal and meridional distance coordinates, p is pressure, (v, v) and
(uy, vy) are the zonal and meridional non-divergent (quasi-geostrophic) and irrotational components
of the wind, respectively, T is temperature, ¢ is geopotential, w = dp/dt, ¢ is the rate of heating per
unit mass, (Fz, Fy) = —v(u, v) = —g(%(rz, 1y), v is a Rayleigh friction coefficient, (7z, 7y) are the
viscous stresses, C”* is the surface friction constant, fo is a representative middle latitude Coriolis
parameter, 3 = 8f/dy, g is gravity, R is the gas constant, cp is the specific heat at constant pressure,
Sp = —T0_160/6p (6 = potential temperature), h is the topographic height, and the subscript s
denotes surface values.

Let us now do the following:

1. Define a vertical average (A) applicable in the mid-troposphere (~ 500 mb), a zonal average

( Y=( )-( ),and aglobal average ( ~ ),
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2. Apply the system to a B-channel of width D, and periodic zonal wavelength L representing
a continent-ocean scale (k = 27 /L, | = n/D), with no topographic variations (h=0), ground
surface temperature T, basic radiative heating R(y), and a compatible “shape assumption”-
wave structure of the forms,

Ts(z,y) = Tso — Bsoy + Cso sin 2ly + Cyg cos kz sin ly (2.8)
R(y) = R(0) — Roy (2.9)
9(z,y) = (V1 sin kz + V, cos kz)sin ly (2.10)
t(z,y) = (Uo — Uy cos 2ly) + %(Vl cos kz — V3 sin kz) cos ly (2.11)
T(z,y) = (To — Boy + Co sin 2ly) + (C; sin kz + Cy cos kz)sin ly (2.12)
T
(—a—y') = Bo — B cos 2Iy 3 B = 2ICO (2.14a,b)
_ . P2
w(z,y,p) = Oz, y)sin ;p+we(x,y)v(p—s) (2.14)

We shall assume that L and D are of magnitudes that are identifiable with the major long-wave
systems over a sector including North America and the adjacent portions of the Atlantic and Pacific
oceans. In addition, we make the following further assumptions,

3. that the poleward eddy momentum transport, due to wave structure and wave-wave interac-
tions not explicitly represented in this model, is of the form

u'v’ = M(0) — Moy + M; sin 2ly, (2.15)

4. that we can neglect the effects on atmospheric temperature of vertical motions driven by
viscosity, and

5. that the heating due to short and long wave radiation, vertical convection, latent heat release,

and small and cyclone-scale diffusion can be parameterized in the simplified form,

~ 27 ~
§ o°F . af
— =R K— Ts — ayT —_— 2.16
o (y) + oy +onTs — T + ag—— + ay (2.16)

where R(y) is the absorbed shortwave radiation, K is a diffusivity for the effects of shorter cyclone-
scale baroclinic waves, (a1Ts — a2f) measures the effects of all subsynoptic modes of convection and
longwave radiation under zonal-mean cloud conditions, the fifth term is meant to represent the effects
of latent heat release and cloud-induced long wave radiative warming along storm tracks associated
with the planetary-wave structure (e.g., Ramanathan, 1987), and o4 is a constant.
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With these approximations, we obtain the following 8-variable dynamical system:

dV; k
d_tl = k(Uo + AU )V — ﬁﬂVz + A1(Bo + 20 B)C1 —vVy
dv, k
= = kU + AUV + ;ﬁﬂ‘ﬁ + 21(Bo + X0B)C; — vV
dcC 1 1
d_tl = k[Uo + 2(1 = 22)U1]C2 — A3C3 + [MaBo + 3 (A2 + Ag) BV1 — £1Cy
dCy 1 1 *
= = —k[Uos + 5(1 — A2)Uq|C1 + A3C1 + [A4Bo + §(>\2 +X)B]Vy —51C3 + §

dU; . R
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dB
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dB
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#2 — k2 +12
7

2
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the source functions are given by

9 — 01032
(14 yu?)

M = 2IM;

_ alc,go
F= (1 +2v12)

72) = —OllBso

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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and the coefficients are
K1 = ag/(1+ 4%
K = (e + 42 K) /(1 + 2l7)
v* = gC*/RT;
Xo = (k% — 31%) /34

A = (REKRP) /310

A = 4%y/(1 + ~u?)
A3 = k(v8 + az)/(1 +~u?)
A= (1—9ph)/(+p?)

xs = 12/(1 + 21%)

Each of the above eight equations can be made more realistic by adding terms representing stochas-
tic forcing (e.g., Egger, 1981). Although the above system excludes all possibilities for ageostrophic
behavior (e.g., frontal formation) and for explicit wave-wave interactions, it does allow for strongly
nonlinear interaction between a single finite-amplitude planetary broclinic wave and a zonal mean
thermal and wind state described by two spatial modes. The inclusion of heating and viscosity
permits the system to exhibit multiple steady-states that can be stable or unstable and hence be
capable, in principle, of giving first order representation of all the observed phenomena described in
the Introduction. As noted in the Introduction, the model can be specialized to yield many of the
previously considered low order models: Note that these quasi-geostrophic equations can easily be
rewritten in terms of a streamfunction, e.g., u = —3v/dy, v = 9y /dz, where ¢ = ¥ + k~1(V, sin
kz — Vi cos kz) sin ly. For example, if we set Up = B, = 0 and postulate that (V1, V3, U) ~ (Ch,
Cq, By), we obtain the simple 3-variable baroclinic model of the type recently discussed by Lorenz
(1984).

In the present study we shall enlarge upon this latter Lorenz model by allowing (i) for a richer
variability of the zonal mean state by allowing U, ~ Bo # 0 in the spirit of the Rambaldi - Mo (1984)
barotropic study, (ii) for the effect of 3 on the thermal field, (iii) for an additional free internal heat
source if ag # 0, and (iv) for implicit dynamical effects that tend to drive the system toward an
equivalent barotropic state.
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3. A thermally-driven three-variable, baroclinic model

We reduce the system (2.17) - (2.24) by assuming that the wind field is related diagnostically to the
thermal field by the relationships:

Up = %Bo (3.1)
U = mB;B (3.2)
Vi = 8C; — UG, (3.3)
Vy = 8C, + UG, (3.4)

where m, ®, and ¥ are positive constants.

Equations (3.1) and (3.2), expressing the strong relation between the strength of the mean zonal
winds and the mean baroclinicity, derive from the steady state versions of (2.21) and (2.22). Assuming
the “negative viscosity” effect (M > 0) implied by the Saltzman-Vernekar (1968) parameterization
of u'v', it follows that we can reasonably set m =~ 1.2.

Equations (3.3) and (3.4) express the possibility for resolving the wave motions in terms of a
baroclinic part measured by ® (geostrophic streamlines 90 degrees out of phase with vertical mean
isotherms leading to a tilting of the wave motions with height), and an “equivalent barotropic” part
measured by ¥ (streamlines in phase with vertical mean isotherms at all levels and no tilting with
height). In the Lorenz (1984) model only the baroclinic component is considered (¥ = 0).

In essence, by writing (3.1) to (3.4) we are assuming that as a first approximation we can consider
the wind field to be geostrophically equilibrated to the thermal field by processes not being considered
explicitly. Although plausible, the question of the validity of this assumption requires much deeper
consideration than we shall provide here, where we shall simply adopt (3.1) - (3.4) as our working
postulates forming the foundations of our model as they are of the Lorenz (1984) model. At the
least, these relations are qualitatively consistent with the assumption that the thermal damping time
is larger than the viscous damping time for planetary waves (e.g., Hendon, 1986; Neelin et al., 1987).

Moreover, assuming that (A3/3)B is small compared to the basic baroclinicity B,, it can be
demonstrated from (2.17) and (2.18) that for long term mean conditions the eddy kinetic energy is

conserved, i.e., d(VZ +V;})/dt =0, if

_ _(RK)'B,
C3/3u(1 +€?)

where ) denotes a long time average, and ¢ = ¥/®.
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Using (3.1) - (3.4) we obtain the reduced system

dCy

51 = #1(Bo)Cy + pa BCy + 13(Bo)C1 + pge BCy (3.6)
dc,

5 = ~#1(Bo)C1 — u2BCy + 13(Bo)C2 + n4BC2 + § (3.7)

‘fi—f = _ea(CE 4+ CY) - KIB 4 F (3.8)

dZ" = Ro— a3Bo — %o (3.9)

where LR
p1 = (== — ¥Ag)Bo — A3
fo

B = %[’C(l - Az)m% — Uz + Aq)]

u3 = (84)Bo — i

1
pe = 32(A2 + A4)

The last equation states that the basic linear temperature gradient between the equator and pole,
By, is forced only by radiation and surface heating, independent of any coupling to the other variables,
Ci, C3 and B. Hence (3.9) can be solved separately to yield an expression for the annual variation
of By in the form,

2
Bo = Boo + Boy cos ——t (3.10)
lyr

where t = 0 corresponds to the maximum temperature gradient in mid-winter. Thus, we remain with
a 3-variable dynamical system governing Cy, C3, and B, with B, to be taken either as a seasonally-
varying parameter given by (3.10), or as a fixed constant if we choose to neglect the seasonal variation
(as might be appropriate for conditions within a fixed season).

We note that at the same time the north-south baroclinicity varies seasonally in accordance with
(3.10) it is to be expected that the east-west (i.e., continent-ocean) surface temperature profile
measured by C,q also varies seasonally in phase with B,. Consequently we can set

2
G =Go+ G1 cos l—;rrt (3.11)

where, again, t = 0 corresponds to mid-winter when the ocean is warm relative to the continent.
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Nondimensional forms - if we define

and

equations (3.8), (3.6) and (3.7), respectively, can be written in the nondimensional form,
X=-Y*-2%2_aX +aF (3.12)

Y =eXY -K) XZ+ KyY —K3Z+G (3.13)
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Z=eXZ+ KXY +KyZ + K3Y (3.14)

where () =d( )/dt* and the coefficients are given by

Ky = (b— e€)
Ky = [¢(Bo) — 1]

K3 = [(b* — €)c(Bo) — d]

The model treated by Lorenz (1984) is obtained by settinge =1and ¢ = d =€ =0 (i.e., K1 = b, K3
= -1, and K3 = 0). As discussed by Lorenz (1984, 1987) this simplified model already admits a rich
and interesting set of solutions, with meaningful implications for the theory of atmospheric motions.

We shall proceed to discuss some further consequences of the somewhat more general system (3.12)
- (3.14).

4. Steady-states and stability

If we set X =Y = Z = 0, and let the corresponding steady-states be denoted by X,Y and Z, we
have

V2 -Z'—aX +aF=0 (4.1)
[eX + Ky(c)]Y — [K1 X + K3(c)|Z = -G (4.2)
[eX + K3(c)]Z + (K1 X + K3(c)]Y =0 (4.3)
which can be solved to give
V= —[eX +PI2f2(C)]G (4.4)
- (K1 X -;)éfs(c)]G (4.5)

where P? = {[eX + K;(¢)]? + [K1 X + K3(c)]?} and X satisfies the relation

a(F — X)P? =G? (4.6)

Equations (4.4), (4.5) and (4.6) imply that the nondimensional steady-state thermal wave ampli-
tude is
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A= @y g:[a(F—X)]l/z (4.7)

and the phase angle between the thermal wave and the forcing represented by G is

a

f = arctan(Z/Y). (4.8)

In dimensional units the amplitude is given by

i B(g5)/?

A ¥+ 2312,

K

From (4.7) we see that the condition for quasi-resonance is P = P inimum, Which in the linear
case (X = F) implies that ¢ (resonance) = {(®* —¢)|d —(b—ee)F] —eF + 1}/{1+ (b* - e) }. Note
that if there is no monsoonal forcing (G = 0) we have A* =0 (or ¥ = Z = 0) and X = F (the
Hadley circulation). With monsoonal forcing (G # 0), however, a variety of equilibria are possible.

To illustrate the possibilities let us adopt the “reference values” of the basic parameters given in
Table 1.

Table 1 : Reference Values of Parameters

Basic Constants Value
g 9.8 ms™?2
R 287 m? s72 K!
& 10° m? s 2 K!
a 6.37 x 10° m
Model Parameters Value
fo 10—4 S_1
8 1.6 x 1071 =1 7!
Ps 1.2 kg m™3
P2 500 mb = .5 x 10° kg m~* 52
Ds 1000 mb = 10° kg m~! ™2
Sy 5% 107" K m s? kg™!
~ 28 x 101® m?
TJO 295 K
T, 288 K
¢ 4.5x 1071% m? s K2
L 9500 km
D 7500 km
v (4d)7!
I (6.4d) 71
K (3.2d)"1
0ms™!

X}

m 1.2

€ 1.2

Bo 4x107°Km!

F 134 x 1071 K m~! s
g 0.85 Kd!
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Corresponding to these reference values we have the nondimensional values: a = 2.000, b* =
3.927, b = 1.307, ¢(Bp) = 1.074, d = 1.405, e = 0.412, K| = 0.812, K,(B,) = 0.074, K3(B,) =
1.524, F = 1.000, and G = 0.700. From (3.5) we have ®(B,) = 0.684 m s~ * K~!. Note that for the
reference values, the basic baroclinicity By, the east-west thermal forcing G, and the thermal wave
amplitude A, are related to the nondimensional numbers ¢, G, and A*(= VY2 + Z2), respectively,
by the formulas,

Bo=372 ¢ (107°K m™)
=122 G (Kday™})

A=1783 A* (K)

Using the method described in Appendix Al we can obtain the fixed point (or steady-state) values
X, Y, and Z. In Fig. 1 we show the implied steady-state nondimensional values of the thermal wave
amplitude, A*, plotted as a function of the wave forcing, G, for three different values of ¢(B,) ranging
between the summer and winter values, 0.4 and 1.2 corresponding to B, = 1.5 and 4.5 x 107% K

m~! respectively. As noted by Lorenz (1984), only one steady state “Hadley circulation” can exist

30 T T i1 T T T

T T

oo
W
—

\ .
ST N U SR RTINS SN RS

T
o
I
o
. on
. 2
. Oh
A
v
!
/

1.2

il

Fig. 1. Steady-state values of the thermal wave amplitude A* as a function of the wave forcing G, for ¢ = 0.4, 0.62 and 1.2.
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when G = 0 (no monsoonal forcing). However, for non-zero values of G multiple steady zonal mean
states are possible depending on the value of ¢(By). For example, at our reference value, G = 0.7, we
find three steady states for ¢ = 0.62 (curve not shown in Fig. 1). We note also that this equilibrium
portrait bears much similarity to the one described recently by Yoden (1987) in his discussion of
stratospheric vacillations, particularly as regards the bifurcation properties to be described below.

In Fig. 2 (solid curve) we show the implied steady-state values of the eddy amplitude, A*, as a
function of the magnitude of the basic meridional temperature contrast ¢ for the reference atmospheric
parameters given in Table 1. The dashed curve represents the steady-states for the case in which
Y and Z are assumed to be small enough to justify neglecting (Yz + 22) in (4.1), so that X =
F. In this linear case the system admits a classical quasi-resonant steady state centered near ¢ —
0.27. The existence of quasi-resonant stationary long waves forced by heating has been discussed by
Smagorinsky (1953), Doos (1962), and Saltzman (1965) for a basic zonal atmospheric flow varying
continuously in the vertical, and by Derome and Wiin-Nielsen (1971) for a two-layer channel model.
However, when non-linearity is retained, with X satisfying (4.1), the resulting steady-state (solid)
curve is “folded” toward super-resonant values of ¢ admitting three steady states for values of ¢ in a
narrow range near 0.62. Such a non-linear resonance has been discussed in a barotropic context by

AN S B S D A S S N R A (N S S B AN AL B SR S

2.0

0.5

o T L U U U B BN

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

C

Fig. 2. Steady-state wave amplitude A* as a function of the basic externally-imposed baroclinicity ¢, for linear (dashed curve)
and nonlinear (full curve) cases. On the nonlinear “folded resonance™ curve, S denotes a stable equilibrium, U; denotes an
exponential instability, and Uz denotes an oscillatory instability.
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Trevisan and Buzzi (1980), Malguzzi and Speranza (1981), Rambaldi and Mo (1984), and Speranza
(1986) for example. In Fig. 3a, b we show that this folding can be made more striking, for example
by increasing the value of the wave forcing, G, or by decreasing € (the ratio of the non-advective to
the advective part of the eddy wind field), both of which tend to make the system more nonlinear.

] ‘ ' i ' T T T
3 r |
3
2+ |
2
(‘<ﬂ (n<n
Lr G=30 1 B N,
2.0
P L
1.0 e
0 _’Egig ol *»—i\_l‘fsf_‘z‘;,jg 76 0.3
1 s H i { . 1 ) l ) ) . | A
-1 0 _ ]
(a) 1 2 1 0 1 2 3
¢ c (b)

Fig. 3. Steady-state values of the nondimensional wave amplitude A®, as a function of the nondimensional basic baroclinicity ¢,
(a) for G = 0.3, 0.7 (the reference value}), 1.0, 2.0 and 3.0, and (b) for € = 1.5, 1.2 (the reference value), 0.9, 0.6, and 0.3.

The phase angles given by (4.8), for the reference steady state solutions shown in Fig. 2, are shown in
Fig. 4. We note the marked change in phase near the quasi-resonance, with the high - ¢ (winter-like)
unstable equilibria leading the wave forcing by about 100 degrees. Thus, according to this model
we should expect that in winter the presence of a very low-amplitude wave in which the thermal
trough is near the east coast of the continent should be a rare event, owing to the instability of this
configuration.
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Fig. 4. Steady-state phase angles 5, as a function of ¢, corresponding to the amplitudes shown in Fig. 2.

Stability

The behavior of the system near the above steady-states depends on the eigenvalues of the stability
matrix of the system evaluated at these steady states. We obtain these eigenvalues by the method
described in Appendix A2. If all eigenvalues have negative real parts the steady-state is stable and
will tend to be the attractor for a probability maximum, while if one or more of the eigenvalues have
a positive real part the steady-state is unstable and will tend to coincide with a probability minimum.
In Fig. 2 we represent our results of such an eigenvalue analysis by denoting spirally-stable portions
of the steady-state curve by “S”, and unstable portions by “U”. In all the stable regions two of the
eigenvalues have imaginary parts and are therefore the “spiral” type. The unstable equilibria can
be further subdivided into those at which the eigenvalue has no imaginary part (purely exponential
amplification) denoted by Uy, and those at which there is an imaginary part (indicative of the nearby
Hopf-type bifurcation) denoted by Uj. at which we can expect a stable limit cycle (or vacillatory
behavior).

We note again from Fig. 2 that for our reference parameters there exists only a small band of
values of ¢ (near 0.62) for which two stable equilibria separated by an unstable equilibrium are present.
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When the fold is greater, as in the cases shown in Fig. 3a,b, we find that for a given value of ¢ the
upper stable equilibrium is usually complemented not by a lower stable equilibrium point but by
a spirally-unstable equilibrium point (U3) that can give rise to a stable limit cycle attractor. In
both cases the possibility exists that some form of bimodal wave-amplitude probability distribution
can be generated corresponding to a unimodal probability distribution for ¢, as suggested by the
observations. However, as noted by Benzi et al. (1987), difficulties arise in accomplishing these
transitions in a realistic manner without the presence of additional wave-wave interactions that are
not included in our present model.

5. Time dependent behavior: summer monsoon and winter vacillation

From the equilibrium portrait, Fig. 2, we see that for the parameter values adopted, when ¢ <
0.61 the system has only a single stable equilibrium and hence cannot exhibit any sustained time
dependent variations. However, when ¢ > 0.61 (which represent baroclinicities characteristic of more
winter-like conditions) multiple equilibria are present some of which are unstable, or a single unstable
equilibrium is present admitting the possiblity of sustained variations. We next discuss the nature
of this response assuming a fixed winter-like value of ¢ and then we discuss the case in which we
apply a prescribed seasonal variation of ¢ and G implied by (3.10) and (3.11). All time-dependent
calculations were made using the fourth order Taylor-series procedure employed by Lorenz (1984),
to whom we are grateful for the numerical code.

a. Fized winter mean conditions

In Fig. 5 we show the time dependent response of the model wave amplitude A* = VY ? + 2?2
(which is proportional to the poleward heat transport and conversion between zonal and eddy avai-
lable potential energy) and zonal mean state, X, when a strongly baroclinic basic state, ¢ = 1.2,
is prescribed. As shown in Fig. 2, for this value of ¢ the system admits only one spirally-unstable
equilibrium. The response is clearly periodic, representing a near-20 day amplitude vacillation. The
phase angle of the eastward progressing, vacillating, wave is shown in the last panel.

In Fig. 6a we show the limit cycle trajectory of the solution in the A* - X plane; the dots are
separated by equal time steps, showing by the closeness of the dots where the system tends to reside
longer. In order to describe the motion of the vacillating wave in an alternate way to that shown
in Fig. 5, we present in Fig. 6b the trajectory of the solution in the Y - Z plane. Noting that the
phase angle @ is given by § = arctan Z/Y¥, this figure indicates that the wave progresses eastward,
but slows down considerably and is near maximum amplitude when @ =~ 90°, when the cold trough
is near the east coast of the continent and the warm ridge is near the west coast as is often observed.
The maximum growth of the wave occurs when there is both near maximum zonal baroclinicity,
measured by ¢, and the wave is in phase with the heating, i.e., when there is a strong cooperation of
instability and forcing. The decrease in amplitude occurs more slowly because this is accomplished
mainly due to forcing alone as the thermal wave becomes ~ 180° out of phase with the heating,
e.g., as cold air moves out over the warm ocean and the warmer air over the colder continent. The
vacillatory progression is schematically illustrated in Fig. 7. While observations suggest that there
is indeed some tendency for a near-20 day period vacillation in winter (e.g., McGuirk and Reiter,
1976; Schilling, 1987), such behavior is only intermittent, is clearly not of the regular form pictured
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in Figs. 5-7, and is not associated with progressive phase changes due to wave movement (i.e., the
waves are nearly staticnary). Many factors not considered in this model, however, would act to upset
the regularity of the vacillations pictured, e.g., wave-wave interactions, and the blocking effects of
mountain ranges that could prevent the eastward progression of warm and cold air masses shown in
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Days

Phase (deg)

Fig. 5. Time dependent, vacillatory, solution of the system (3.12) - (3.14) for ¢ = 1.2 and G = 0.7 with all other parameters at
their “reference” values. Top panel: free zonal wind structure, or baroclinicity, measured by X; middle panel: wave amplitude,
A*; lower panel: phase angle of the wave, measured by § = arctan Z/Y, showing with dots separated by equal time increments
that the wave progresses eastward but slows considerably when near § = 90°.

Fig. 7 particularly with regard to the movement of warm Pacific air masses over North America.
Moreover, with sufficient folding of the resonance curve the upper stable equilibrium point will serve
as a strong attraction for the system to depart from the limit cycle corresponding to the Uy unstable
equilibrium.

In Fig. 8 we show that with a change in parameters (¢ = 1.0, G = 1.5), bringing the system
closer to the Hopf bifurcation shown in Fig. 3a, the vacillation can occur with a lower amplitude
than the reference case (Fig. 5) and in a more nearly stationary position (roughly 90 degrees out
of phase with the heating). In this Figure the dotted lines correspond to the forced “upper” stable
equilibrium, while the periodic fluctuations represent a limit cycle (vacillation) about the “lower”
unstable equilibrium. We may entertain the possibility that this upper stable, forced, equilibrium
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Fig. 6. Trajectory of the time dependent periodic solution shown in Fig. 3 in (a) the A* — X plane and (b) the Y — Z plane. The
dots are separated by equal time intervals, showing by the closeness of the spacing the relative residence time in various regions
of the phase planes. The waveforms corresponding to points 1-4 on part (a) are shown in Fig. 7.

Fig. 7. Vacillatory eastward progression of the thermal wave relative to the fixed (oceanic) warming and (continental) cooling
distribution (shaded), demoted by W and C respectively, starting from the low amplitude point 1 on Fig. 6a. T* is the

nondimensional temperature departure defined by T = AT*.

corresponds to one of the modes of Sutera (1986) and Hansen (1986), while the other quasi-stationary
wave state which the system prefers during the vacillation corresponds to the other mode. While it
is likely that, as shown in Fig. 8, the high amplitude mode II is associated with the upper stable
branch and the low amplitude mode I is associated with the high residence point on the limit cycle,
it is conceivable that the reverse may be true for parameter values that can lead to an amplified limit

cycle.
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Fig. 8. Same as Fig. 5, but for parameter values ¢ = 1.0, and G = 1.5. Dotted lines represent the forced “upper” stable equilibrium,
while the periodic fluctuations represent a limit cycle around the “lower” unstable equilibrium.

b. Seasonal forcing

As noted in Section 3, we assume that seasonal radiative forcing induces an annual periodic varia-
tion only in the basic linear part of the north-south surface temperature variation measured by By,
and hence in ¢(By), as represented by (3.10). In addition, a simultaneous annual periodic variation in
the east-west (continent-ocean) distribution of surface temperature measured by C,3 occurs, leading
to the variation in G represented by (3.11).

As an illustration we choose the values [co(Boo), ¢1(Bo1)] = (0.8, 0.4) and [G(Go), G(G1)] = (0.2,
0.5), retaining all other values given in Section 4 for the coefficients of (3.12) - (3.14). We note from
Fig. 2 that this annual cycle for ¢ will tend to move the system across the main bifurcations in the
fold as the system moves between winter and summer. The results are shown in Fig. 9, the top panel
of which gives the general forms of both seasonal forcing functions ¢(t) and G(t). The response of
the wave amplitude, A*, to this forcing is shown in the second panel, and observations of a related
quantity, the conversion of zonal available potential energy to eddy available potential energy C(Az,
Ag) obtained by Krueger et al. (1965), is shown in the next panel. The model seems capable of
reproducing qualitatively the emergence of the kind of winter vacillatory variations that are observed.
Note also that because of the folded nature of the steady states the response shown is asymmetric
with respect to the purely sinusoidal forcing; such an asymmetry is consistent with the discussion
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Fig. 9. Time dependent solution of the system (3.12) - (3.14) when forced by the annual cycle of ¢ and G represented by (3.10) and

(3.11), respectively, with (co, c1) = (0.8, 0.4), (Go, G1) = (0.2, 0.5), and all other parameters at their reference values. Variations
of forcing functions ¢ and G in nondimensional units (top panel); variations of the wave amplitude A*, which is proportional
to the meridional heat transport (second panel), to be compared with observations of a related quantity obtained by Krueger
et al., 1965 (third panel). The last panel shows the time-variations in the phase angle of the wave, §, snowing summertime
stationarity with the warm atmospheric ridge in phase with the warm continent and wintertime eastward progression with
prolonged residence when the cold air is over the east coast of the cold continent.

of Kraus and Lorenz (1966) and with observations of the seasonal cycle of quasi-stationary thermal
waves (e.g., Oort and Rasmusson, 1971, pp. 114-115). From the phase evolution shown in the last
panel we see that in summer the low amplitude wave is nearly in phase with the continent-ocean
heating distribution, and in winter the vacillating wave moves eastward but slows down considerably
when the phase is such that the cold air is over the east coast of the continent perhaps, as discussed
above, constituting one of the two preferred modes. As also noted above, this vacillatory mode is
vulnerable to attraction by the forced stable steady state that may constitute the other mode. When
wave-wave interactions are included, as suggested by Benzi et al. (1987) and Hansen (1988) for
example, a more realistic time evolution might be expected including the mode to mode transitions
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and the relative phase stationarity of the two modes.

6. Conclusions

In this study we have formulated a three component, non-linear dynamical system aimed at modelling
aspects of the thermally forced dissipative, baroclinic, planetary middle latitude flow. The model can
be viewed as a slightly more general form of the Lorenz (1984) model. In this connection it is well
known that such a 3-component system already potentially contains great complexity in the form of
periodic and aperiodic behavior (Lorenz, 1984) and is worthy of detailed further study before adding
too many additional components.

Specifically we have ilustrated a long-wave dynamical scenario involving thermal forcing and sea-
sonal eycle effects in the absence of any orographic forcing, the main properties of which arise from
the existence of multiple equilibria associated with a “folded resonance” as a function of the basic
forced baroclinic state. This folded kind of equilibrium structure is suggestive of the type needed to
account for recent observations (Sutera, 1986; Hansen, 1986) showing that the planetary waves are
baroclinic and have a bimodal amplitude structure corresponding to a unimodal basic zonal wind.
To the extent that this model is valid, one mode might be viewed as a baroclinically-amplified,
thermally-forced quasi-vacillatory wave having a long residence time at the observed phase relative
to the continents. On the other hand the other mode might be identifiable with the non-amplified
diabatically-maintained wave constituting the upper stable equilibrium in our model. As a conse-
quence of this equilibrium structure, as the external forcing maintaining the basic temperature gra-
dient is varied the system can undergo an interesting sequence of bifurcations in a realistic baroclinic
domain showing the wintertime emergence of an asymmetric quasi-vacillatory behavior qualitatively
similar to that reported by Krueger et al. (1965) and studied numerically by Kraus and Lorenz
(1966).

While these results are of interest, suggesting the potential relevance of the physical mechanisms
included, other lines of evidence concerning the wave-wave energetics (Hansen and Sutera, 1984) and
other theoretical considerations (e.g., Held, 1983) tend to raise questions concerning quasi-resonant
mechanism as a full explanation of the observations. However, some new ideas put forth by Benzi et
al. (1986a,b, 1987), and Speranza (1986) involving the potentially critical role of baroclinic wave-wave
interactions encourage the hope that a more acceptable minimum model to account for the observed
bimodality and transient properties, harmonizing all of the previous results, can be constructed.
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APPENDIX A
Determination of the fixed points and their stability
Al. Steady states

In the study of nonlinear dynamical systems analytical solutions for the time dependent behavior,
as well as determination of steady states and their linearized stability (eigenvalues) are impractical.
Such is the case for the thermally-forced baroclinic wave model described in this paper. In order
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to gain an idea of how steady states and stability vary as a funtion of changing a parameter of the
model one must resort to numerical computation. The model in nondimensional form, given in the
text by equations (3.12) - (3.14), was reduced to a single equation (4.6) for steady state values of X

of the form

a(F — X){[eX + K2(Bo)]® + [K1 X + K3(Bo))*} = G*.

Substituting into (4.6) for K3 and K3 in terms of ¢ (i.e., K = [¢(Bo) —1] and K3 = [(b* —€)e(Bo) —
d]) and expanding gives the following cubic in X:

[—aK? — ael] X3 + [aFK? — 2a(c(b* — €) — d)K; + ae’F — 2a(c — 1)¢] X2
| S —
A B

+ [2a(c(b* — €) — d)FKy + 2a(c — 1)eF — a(c(b* —¢€) ~d)® —a(c —1)*| X
c

+a(e(t* —€) —d)?F +a(c—1)’F - G| =0 (A1)
D

The solutions to this equation for X along with substitution back into equations (4.4) and (4.5)
to obtain the corresponding values for Y and Z give us the steady states for any given set of model
coefficients. Since only real steady states have physical meaning we need not concern ourselves with
complex solutions and so to solve equation (A.1) we will first check to see whether it has only one
real root or three. Define Q and R in terms of 4, B, C and D as follows (Press et al., 1986):

and

2 —_
g = (/A7 =3¢/

2(B/4)% —9(B/A)(C/A) +21(D/ A)

R =
54

When Q3 — R? > 0 all three roots are real and may be found by calculating ¥ = arccos (R/\/Q3)
and substituting along with @, £ and B into

X1 = -2V cos (3) - (B/A)/3

Xy = -2v eos (2220 — (8/4)/3
X3 =-2v/Q cos (0—;41r) —(B/A)/3.

However, if Q3 — R? < 0 then only one root is real and is given by

e - (1/3) Q _
%= sgn[(\/R'l @+ | RO +(\/RT__Q§+‘R|)(1/3)} (B/4)/3
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Due to the fact that numerical round-off may be significant in the calculation of X we will take
these solutions as an initial guess, and then use a standard Newton-Raphson method to converge to
a more accurate estimate of the steady states. When we substitute our calculations for X,Y,and Z
back into the original equations for X, Y, and Z they are each satisfied to at least o(10™ l7)

A2. Stability

The stability of these steady states can then be determined by calculating eigenvalues. This is done
by linearizing the system in the v1c1n1ty of the steady state and then finding solutions of the form
7 e where ) is the eigenvalue and 7 the corresponding eigenvector. In matrix form the problem
we must solve is 51mp1y J - AI) r = 0, J being the Jacobian matrix and I the identity matrix. This
can only be true for 7 % 0 (i.e., non-trivial solutions) if det (J - A I) = 0, which for equations (3.12)
- (3.14) means

—a— A -2V -2Z
eX—KI? €X+(C—1)—A —KIX—[(b*—G)C—d] =0
eZ+ K1Y K X+ —e€)c—d (c—1)+eX -2

The numerical solution of this determinant is then found using EISPACK subroutines (Garbow et
al., 1977). As a check we then expand the determinant and use the fact that Y2 + 22 = o(F — X)
to obtain a cubic equation in A of the form

A4 {a—2[eX + (c - D)IAE+
{(eX + (¢ — 1))2 + (K1 X + ((b* - €)c — d))%+
2a[e(F — X) — (eX + (c — 1))} +
{a[(eX + (¢ — 1))® + (K1 X + (b* — €)c — d)?]—-

2a(F — X)[e(ef(—{— (e—1))+ Kl(K1X +(b* — €)c — d)]} =

into which we can then substitute the eigenvalues found using EISPACK.
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