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RESUMEN

En esta segunda parte de un estudio de la estructura relativa de las ondas baroclinicas transitorias se presenta un andlisis del
comportamiento de las ondas en un modelo casi no divergente de 3 capas. Los procedimientos en el andlisis son una extensién
directa de los usados en la parte I en la que un modelo de 2 capas fue usado. El aumento de trabajo algebraico requerido en el
caso de 3 capas se disminuye algo en el dominio complejo con respecto a las fases y amplitudes relativas, manteniendo la misma
metodologia. Sin embargo, el uso del dominio complejo hace posible obtener los estados estacionarios como las raices de ecuaciones
cibicas en las que las raices complejas indican ondas inclinadas. Ademés, con el nuevo procedimiento, se facilita el andlisis de
estabilidad de los estados estacionarios derivados.

En vista del descubrimiento de estas ventajas, se consideré que vale la pena reconsiderar el caso de 2 niveles cuando es posible
resolver el problema en una forma cerrada en su dependencia en el tiempo (Seccién 2).

La Seccién 3 que contiene el anilisis del caso de los 3 niveles permite no solamente los cambios verticales de estabilidad estatica
sino también en desviaciones con respecto a un perfil de viento lineal. Mientras que los resultados en el caso de un perfil de viento
recto son una extensién natural del caso de 2 niveles. Se encuentra que aumentando los esfuerzos tangenciales negativos del viento
en la capa superior, desestabilizard las soluciones de estado estacionario.

ABSTRACT

In this second part of a continuing study of the relative structure of transient baroclinic waves an analysis of the behavior of waves
in a three-level, quasi-nondivergent model is presented. The procedures applied in the analysis are a straightforward expansion of
those used in Part I in which the two-level model was used.

The increased algebraic work required by the three level case is eased somewhat by working in the complex domain with respect
to the relative amplitudes and phases, but otherwise the methodology is maintained. However, the use of the complex domain makes
it possible to obtain the steady states as the roots to cubic equations where complex roots indicate sloping waves. In addition, the
stability analysis of the derived steady states goes easier in the new procedure. In view of the discovery of these advantages it was
considered worthwhile to reconsider the two-level case where it is possible to solve the time-dependent problem in a closed form
(section 2).

Section 3 contains the analysis of the three-level case permitting not only vertical changes of the static stability but also deviations
from a linear windprofile. While the results in the case of a straight windprofile are a natural extension of the two-level case, it is
found that increasing negative windshears in the upper layer will destabilize the steady state solutions.

1. Introduction

The structure of transient baroclinic waves in a two-level, quasi-nondivergent model was investigated
by the author (1989), hereafter refered to as I. The procedure was to use the vortical mean flow as
a reference and to investigate the amplitude and the vertical slope relative to the wave in the mean
flow which in this simple model is at the 50 kPa level. Time-dependent equations for the relative
amplitude and the relative phase were derived, stationary states were determined, and the stability
of these states were decided by linear perturbation analysis.
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While the two-level model applied in the above study contains the essentials of large-scale dynamics
it is also somewhat restricted because only linear profiles of the basic zonal winds are permitted, and
a single standard value of the static stability factor is used. It is thus desirable to expand the study
to include a higher vertical resolution. In this paper we shall extend the study to the three-level
model which permits two static stabilities and can distinguish between different windshears in the
lower and the upper half of the atmosphere.

However, before we turn on attention to the three-level model, we shall, in section 2, briefly return
to the two-level model. The reason is that it turns out that the stability investigation of the steady
states is unnecessary because the time-dependent equations can be solved directly in a closed form.

2. The two-level model, revisited

In I there is a detailed description of the application of the two-level model in the determination
of the relative structure of the transient baroclinic wave. The most important equations describe
the time-dependent behavior of the relative amplitude, r and the relative phase, ¢. The following
quantities enter in the equation:

k =2m/L, k is the wave number, L the wavelength, Uy, the thermal wind,
Cr=2p8/ K%, C R, the Rossby velocity, 8 the Rossby parameter,

¢ = 2f3/(aP2), fo, a standard value of the Coriolis parameter, P = 50 kPa, 0 = —adIn8/dp, «,
the specific volume, #, the potential temperature, p, the pressure, A= q2 / k?

The two equations are:

dr Az—l 2. .
a = Hrlhagy s g
d¢ DL A2
TE = kUT[AZ T 1 +r ] COs ¢ — /\2—+ICR1' (21)

Replacing the determination of the stationary states of the system (2.1) and their stability we
propose to solve the system (2.1) directly. This can be done by introducing first the quantities

T=rcos ¢, y=r sin ¢ (2.2)
giving the equations
dz A2
— = —2kU kC
Y _ jrp(a? — 4?) — kO 1 kU L (2.3)
gt~ OTE Y RyT X1 '

An inspection of (2.3) shows that it is advantageous to introduce the complex variable

z=z+ 1y (2.4)
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resulting in the simple equation

dz . 2 A2 cp A1
=2 = ikUp[2? - bt 3 2.5
ikUr [z 2+ 1Up" peay (2:5)

(2.5) is easily solved by separation of variables. We may write the solution in the form:

for 05 o gy - 26)

in which z(0) is the initial value and

z4 = 2(r) +i2(2)

z_ = z(r) —1iz()

with
2(r) = 1 2 Cr (2.8)
2A2+4+1Up ’
2 —
2() = 55 - ()1} (29)

We notice from the solution (2.6) that it satisfies the requirement z = 2(0) for t = 0.

We remark also that z4 — 2 = 2i2(%) indicating that the argument in the exponential function is
real and negative provided Up > 0, which means that the wind in the basic state is increasing with
height. This means also that the exponential function goes to zero as t goes to infinity. It follows
that z approaches z4 in the same limit regardless of the initial state. On the other hand if Up < 0 it
is seen from (2.6) that z will tend to z_ for ¢ going to infinity. It should of course be stressed that we
have only considered the case in which the roots, corresponding to the steady states, are complex.
In the case of real roots, considered in I, we got an oscillatory motion from (2.5).

For the sake of completeness we shall point out that z; corresponds to a wave in which the thermal
wave is lagging behind the wave in the vertical mean flow, since both z(r) and z(%) are positive. We
have therefore

Yre(z) = 2(r) cos kx — 2(¢) sin kz = rq cos (kz + ¢a) (2.10)

with

Ta = (z(r)2 + z(i)z)% and ¢q = arc tan(z(i)/z(r)) >0

From (2.10) it is seen that the ridge in the thermal field is located at a negative value of z while
the ridge in the reference field by definition is located at =z = 0.
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It may be instructive to consider some examples of how the wave from a given initial state approach
the stable steady state z4. The various cases are obtained from (2.6) by solving for z and calculating
2(t).

Fig. 1 comes from a case where the initial state is 2(0) = (0, 0) corresponding to zero amplitude
in the initial state. This means that the initial state is equivalent barotropic. The trajectory z(t),
calculated with marks for every half day shows that the stable steady state for practical purposes is
reached in 4 days with the thermal field gradually falling behind the 50 kPa field (¢ positive). In this
and the following cases the values of Ur = 20 ms~! and L = 4 x 10m = 4000 km have been used.
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Fig. 1. The trajectory of a relative wave from the initial state (0, 0) to the stable steady state (marked by a circle). The marks
indicate time in days. (Ur = 20 ms~!, L = 4 x 10% m).

The next case is one in which the initial value of z(0) is selected close to z_, i.e., the unstable
stationary state which is (0.08, -0.18). The first starting point is (0.08, -0.17). From here ¢ increases
steadily until the state (0.08, 0.18) is reached. On the other hand, with a starting point at (0.08,-0.19)
we find that the trajectory z(t) goes the opposite way around approaching the stable steady state
from the opposite direction. Similar long trajectories can be obtained for other starting positions as
shown in Fig. 3 where the initial state is (1, -1).
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Y

Fig. 2. The trajectories starting close to the unstable steady state, marked by a circle, and both ending in the stable steady state,
marked by a cross. (Ur =20 ms™!, L = 4 x 10° m).
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Fig. 3. As Fig. 1 with start in (1, -1).
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Quite large values of r(t) can be obtained in this adjustment to the stable steady state. An
example with the initial value (0, -1) is shown in Fig. 4. The starting point correspond to a relative
amplitude of 1 and a situation where the thermal field is 90° ahead of the geopotential field. The
relative amplitude attains values as large as 11.5 at a time when the thermal field and the 50 kPa
geopotential differ by half a wavelength. Note, also that the first part of the process goes fast, while
the final approach to the stable steady state is considerably slower.

Y
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05

Fig. 4. As Fig. 1 with start in (0, -1).

3. The three-level model

The quasi-nondivergent, three-level model has been described in several papers (Charney and Phillips,
1953; Cressman, 1961 and Wiin-Nielsen, 1961). It represents the lowest vertical resolution which
permits deviations from a linear windprofile in the basic state and a vertical variation of the static
stability parameter. It is therefore worthwhile to study the expansion of the procedures used in I to
this somewhat more general case. In view of the earlier treatments of the model it will suffice to give
the equations for the model and explain the notations. We shall use seven vertical levels denoted
by subscripts: 0, 1, *, 6. The corresponding values of pressure are (i/6)p,, with po = 100 kPa and
1=20, 1, -, 6. We introduce also the subscripts:

Or=0)1-0)s

(JB=()3-()s (3.1)
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Otherwise the notations are the same as in section 2 and in L

The basic equations are the quasi-nondivergent vorticity equation applied at levels 1,3 and 5 and
the thermodynamic equation applied at levels 2 and 4. It is assumed that the boundary conditions are
wo = 0 and wg = 0, and that heating and friction are neglected. The two thermodynamic equations
at levels 2 and 4 are used to eliminate the vertical velocities appearing in the vorticity equations. As
a final step we used (3.1) to form two thermal vorticity equations, one for the layer between levels 1
and 3, and one for the layer between levels 3 and 5. The result is the following set of three equations:

J

En i1 — 20397 + 43¥ ) + V3 o Vier — 2¢34pp + gavp] + Vr e V(ss +¢r) + AVp =0

o
5{[5‘3 ~ 2¢59p + G vr) + Vs o Vicg — 2¢2vp + grr] + Vg e V(s — ¢g) + Vg =0

a
5;193 — 4i¥p + a19r] + Vs o Vies — givp + ddur] + AV =0 (32)

In the calculation of the coefficients in (3.2) it is necessary to specify the static stability at levels
2 and 4. This is done by assuming that the layer below level 3 (50 kPa) has a constant lapse rate

7B, while the layer above level 3 is characterized by the lapse rate vp. For a layer with a constant
lapse rate it can be shown (Jacobs and Wiin-Nielsen, 1966) that

adld R2To P —(2—Rv/g)
“oap - gz e (3.3)

where R is the gas constant, g the acceleration of gravity, «4 the dry adiabatic lapse-rate and T, and
Po the temperature and the pressure at the bottom of the layer. With these assumptions one may
calculate o4 and o9 with the result that

R*T, Pt —(-r
o1 = =2 (yg — )| =T~ Fm/9) (3.4)
9Dp Po
and
R*T, P’ —(-r 3 R(vp —
o2 = =2 (9~ r) -7 C /) o (B8 R ) (3.5)
aby Po Po
One may then proceed to calculate
2
2 2f§
¢ = P2 (3.6)
at the levels 2 and 4, and from these the two parameters
2 2 -
=5, ot (3.7)
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The disturbances to be introduced in (3.2) shall have the form

¥ = §(t) exp (ikz) (3.8)

(3.8) with the piroper subscripts are substituted in (8.2). It is then a straightforward matter to
determine equations which contain the time-derivatives of i3, ¥y and ¢g. These equations are
linear, and by a simple solution for the three time-derivatives we obtain the following equations

di ) . . .
% = —ik[g3v3 + gr¥T — 9BV B]

dy L A X
2B — iklngds ~ hrvr + hpis]

—2 = —ik[s3h3 — s7¢r + spYp] (3.9)

di3
dt

in which the nine coefficients are expressed in the parameters of the problem, i.e., U3, Up, Ug, )\%
and )\2. The details are given later in this section.

We continue the development in analogy with the procedures used in I, and the next step is to
obtain the equations for the rate of change of the amplitudes. These are most easily obtained by
noting that the following relation holds:

12)0112: %(A—iB)O%(A—f—’lB):%RZ (3.10)

where ( 7 ) indicates the complex conjugate.

It is thus straightforward to derive equations for dR/dt by finding the complex conjugates of the
three equations (3.9) and proceed in accordance with (3.10). The result is

% = —klgsR3 sin ér + gpRp sin (6 — ér)]
df% = —k[h3R3 sin ég — hp Ry sin (6 — 67))
dR
d_t3 = —’C[STRT sin 6T - SBRB sin (53] (3.11)

in which the relative phase é is defined by

§=03—90 (3.12)

where @ is the absolute phase angle.

To close the system it is necessary to obtain equations for the rate of change of the phase angles.
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Using the expression for ¢ and its complex conjugate (see 3.10) we obtain that

tan 0 = i¥—¥ (3.13)
v+
From (3.13) we obtain by differentiation with respect to time
dd . -dp dy
R2Z = 24[¢=r — =L 3.
ar =W V) (3.14)

Using (3.14), (3.9) and the complex conjugates we obtain:

do
R} = =L = klgsRsRy cos 67 + g7 RE — gpRrRp cos (65 — or)]
0
R}’;dd—f = k[hgR3Rp cos g — hy Ry Ry cos (65 — ér) + hpRp)
2df3 2
R3E = k[s3R3 — sy RpR3 cos 67 + sgRpR3 cos ép] (3.15)

Still following the analogy to I we introduce the quantities

R R
rr = EE; rg = —Rf-; ép =03 —0r; ép =03 —0p (3.16)

It is then possible to obtain the equations for the rate of change of the two relative phases by
combining (3.11), (3.15) and (3.16). We get:

ﬂi;_tT = k[(sTr% — g3) sin 67 — sgrgry sin g — ggrp sin (6p — ér)]
dé
er—{ = k[—(sTr% +g3) cos é7 + sgrpry cos 6p +ggrp cos (6 — é7) + Crrr) (3.17)
drp . 2 . .
- = k[sprgrp sin 67 — (sprp + h3) sin 8p + hprp sin (6p — é7)]

dé
’B”ﬁ = k[—sprgrr cos o7 + sBr%; — h3) cos g + hpry cos (6 — é7) + Cprp|

in which

Cr =s3 —gt, Cp =53 — h3 (3.18)

It is possible to solve for the steady states of (3.17) as the system is formulated, but the calculations
are rather cumbersome. We shall therefore follow the same ideas as with the two level model and
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consider the two complex numbers
Zp =zp+iyp =rp cos ég +irg sin ép
Zp = zp +iyr = rp cos ép +irp sin &p (3.19)

Using these definitions and the system (3.17) we may by elementary derivations obtain the following
two equations

dz .

d—tT = ik[Cp 21 + s7 2% — g3 + spZr Zp + 93 2]

dZg . 2

e =1k|CpZp +spZg — h3 +s7ZrZp — hpZyp] (3.20)

where the constants are defined in the following way:

A= (1+223)(1+ 22 — A2\2
o2 2 2 2 2
Ao O = [223(1 + A3) — (1 + 2X9)]Ur — 205(1 + A\3)Up
o2 2 2 2 2
AeCp =2X3(1+ AU — [204(1 + A7) — (14 2X3)|Up
2 2 2
Aesp =X3(1+X5)Ur; Aegp=2AiUp

Aesp =2 1+22Ug; Aehp=2Up
B 4

Aegs=[(1-223)(1+223) + 2 2\qur + Z223up

Aehy=[(1+22})(1 —22]) + 22\3jUup + 2x}Up (3.21)

It would naturally be desirable to solve the two coupled differential equations in (3.20) in a closed
form, but a method of solution is unknown to the author. However, it is possible to find the steady
states of these equations. We may then afterwards determine the stability of the various steady
states. This procedure will lead to a cubic equation for the steady states obtained by eliminating
one of the variables from the two equations for the steady states. For example, we may decide to
eliminate Zr. Since the second steady state equation is linear in Zp we find

_ CpZp-+spZ% — hs
B hp —srZp

Zr (3.22)

This equation for Zp is introduced in the steady state equation obtained from the first equation
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in (3.20). After evaluation we obtain the cubic equation:

A3ZH + Ay ZE + A1 Zp + Ao =0 (3.23)

with
A3 = spsp(Cp — C1) + gpsr + hr155
Az = hrsp(Cp + Cr) — hgspsp + s7Ch — g3s% — sp(CpCr + 2g3h7)
Ay = Cr(hrCp + sTh3) + 2S1(93hr — Cphs) + hr(gphr — sgha)

Ao = sph} — Cphphg — gshk (3.24)

The solutions of (3.23) are obtained by using the classical formulas for the cubic equation. It is seen
that we shall in general obtain three values of Zg, of which one will be real because the coefficients
A, all are real. To the real value of Zp corresponds a real value of Zp obtained from (3.22), while
complex values of Zp in general will give complex values of Z7p.

The next question is the stability of the computed steady states which we shall denote with an
overbar. Let Zg, Z7 be an arbitrary steady state. The linearized perturbation equations are then:

dzy . _ _ —

d—tT = ik[(Cr + 2s7Z1 + spZg) 21, +(spZr + gB)Z5H]

dZé? . 7 ! 77 7 ! \
5 = kl(s7Zp — hr)Zr + (Cp + 2spZp + s7Zr) 2] (325}

The perturbations, denoted by a prime, will be of the form
Zr = Zp exp (—ivt), Zg = Zp exp (—ivt) (3.26)

With the assumption (3.26) for the perturbations it is seen that if v is complex with a positive
real part we shall have instability because

exp (—i(vr +iv)t) = exp (vit) exp (—ivrt) (8.27)

Otherwise, the eigenvalue problem presented by (3.25) is a standard problem leading to a quadratic
equation in v which may be solved directly.

Regarding the interpretation of the results we are helped by the fact that the two solutions to
(3.23) which may be complex are also complex conjugates. This means that rg is the same for the
two solutions while the phase angle §g is numerically the same, but the signs are opposite. It is also
seen from (3.22) that if Zp is replaced by its complex conjugate then Z7 will be exchanged with its
complex conjugate.
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4. Results

The equations derived in the previous section have been used to calculate some examples of the
vertical structure of baroclinic waves in their relative steady state together with an investigation of
the stability of the steady states. The procedure starts with a solution of (3.23) giving Zg as the three
roots of the cubic equation. For each Zp we obtain Zr from (3.22). The stability of a given steady
state may then be obtained from calculating the eigenvalues from (3.25). The expression (3.27) shows
that if the eigenvalue is real we shall have a neutral stability connected with an oscillatory solution,
while »; > 0 indicates instability and v; < O stability. Note, that while the solutions for Z p and
Zr come in conjugate pairs, this is not the case for the frequencies determined as eigenvalues from
(3.25) because the coefficients are complex in this case. For stability it is thus necessary to require
that the imaginary parts of both solutions are negative, while a single positive value of v; indicates
instability.

Fig. 5 shows the relative phases §; and 65 for wavelengths less than 12000 km for a case with
Ug = Ur = 15 ms™! and YB = 7 = 6.5 x 1073 km~!. This case corresponds to a low order
representation of the Charney-solution (1947). The figure indicates that sloping waves are present
as stationary states for 3000 km < L < 11000 km. The other solution will have the opposite signs
of both é; and 5. However, the solution shown is the westward sloping solution because é5 > 0 and
61 < 0. A typical slope for, say, L = 5000 km is about 1.3 rad or 75° corresponding to 20% of the

wavelength. It can also be seen that the slopes become larger than a quarter of a wavelength for the

6
3! 8,

5 10 /5 [,10°m

Fig. 5. The relative phase-angles (§; and §5) as a function of wavelength, measured in 10° m, for Ug = Up = 15 ms ~} and
18 =71 =6.5x 1073 km—1,
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short and the long wave part of the interval. Fig. 6 shows the corresponding relative amplitudes r;
and r5. For short waves we find the larger relative amplitude at the lower level (i.e., rs > r1) while
the opposite is the case for long waves. The imaginary parts of the two frequencies can be seen in
Fig. 7 using a unit of days"l. We note that the structures shown in the two previous figures are
stable for 3000 kin < L < 8800 km. This result shows that with the additional degree of freedom in a
three-level model as compared to a two-level model we cannot necessarily conclude that a west-ward
sloping wave as a stationary state is also stable.

251

n
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5 L10°m 10 5

Fig. 6. The relative amplitudes (ry and r5) as a function of wavelength for the case in Fig. 5.
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1

J,day

10 1,10°m

Fig. 7. The two frequencies measured in days—! as a function of wavelength for the case in Fig. 5.

In addition to the waves described in Figs. 5-7 it turns out that the sloping waves are present
also for 14000 km < L < 28000 km. The limit of 28000 km is selected because the number is
approximately the length of the 45° parallel. Fig. 8 shows the phase angles for the west-ward sloping
wave. The slope is quite large, almost half a wave length in most cases, which is in agreement with
observations for the transient very long waves. The relative amplitudes are given in Fig. 9 where the
values at level 1 in all cases are larger than at level 5. Finally, Fig. 10 shows that these configurations
are stable.
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2
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_2 4
Fig. 8. As Fig. 5, but for wavelengths larger than 10000 km.
r
10 t "
5 1 2
15  [1I0'm 20 25

Fig. 9. As Fig. 6, but for wavelengths larger than 10000 km.
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J,days’
15 1,10°m 20 25
0 ——— +
-02 ¢ m—

Fig. 10. As Fig. 7, but for wavelengths larger than 10000 km.

In the next serles of calculations we have kept the wavelength constant at L = 5 x 10%m. Similarly
Up = 15 ms™ " in all calculations while Up has been varied from -30 ms™! to +30 ms~! with an
interval of 5 ms™! With this arrangement we find that the wave at level 5 is in front of the wave
at level 3 in all cases, or, in other words, the wave is sloping westward in the lower part of the
atmosphere. The westward slope is contlnued in the upper layer as long as Up > —5 ms™ . However,
for Up < —5 ms™ ! the slope in the upper layer is eastward reaching quite larger values when Ur is
negative and numerically large. Fig. 11 shows 6; and &5 as a function of Uy, and it is on the basis
of this figure that the description above has been given.

)
1.5
101
5,
051
0
-25 20 -15 -10 10 15 20 25 30
o}
0S5t

Fig. 11. The relative phase-angles (6; and 65) as a function of the windshear Ur in the upper layer with Ug=15ms Y and L =
5000 km.
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We turn next to the relative amplitudes. Fig. 12 shows r; and rs as functions of Ur in an
arrangement similar to Fig. 11. As we can see from Fig. 6 r5 > r; for L = 5 x 10% m where
Ug = Up = 15 ms™!. This relationship holds as long as Up > 15 ms~!, but if Ur < —15 ms™ ! we
have r; > rs.

-25 -20 -15 -10 -5 0 S 10 15 20 25 30
U,
Fig. 12. The relative amplitudes (r; and r5) as a function of U for Ug = 15 ms™! and L = 5000 km.

The structures shown in Figs. 11 and 12 are steady states. In Fig. 13 we show the imaginary part
of the frequencies. As we recall, both of these frequencies have to be negative to secure the stability
of the steady state. It is seen that the states with Uy < 5 ms™! are unstable, while the stationary
states with Up > 10 ms™! are stable.

The wavelength used in Figs. 11 to 13 is a typical scale for baroclinic disturbances. The main
conclusion is that large negative values of Ur will destroy the stability of the steady states. We may
investigate this statement for other wavelengths. In Fig. 14 is shown the regions in the (L, Ur)-plane
in which a stable relative steady state is found. We notice two regions. For the standard baroclinic
waves (2000 km < L < 8000 km) we find a band of wavelengths (2000 km < L < 4000 km) where
stable steady states are found for all values of Uy, i.e., - 30 ms™! < Ur < 30 ms ~!. For 4000 km
< L < 7500 km we see the destabilizing effects of the negative wind shear, and in the upper part
of this interval only large positive values of Up will result in stable structures. Another region of
stable structures are found for L > 8000 km, but also here we notice the effect of numerically large,
but negative values of Up. Note, that the stable steady states in Fig. 14 do not necessarily have a
westward slope.
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Fig. 13. The two frequencies as a function of Uy for Ug = 15 ms~! and L = 5000 km.
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20}
10
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5 w 15 18
-10
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-30 ¢

Fig. 14. In the (L, Uy)-diagram are shown the regions of stable steady states for Ug = 20 ms—! and standard lapse rates of
6.5%x 1073 km 1.
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5. Concluding remarks

The main results in the investigation are those related to the three level model which is the minimum
model permitting vertical variations of the static stability parameter and deviations from a linear
windprofile in the basic state. As in part I the main distinctions are between sloping and non-sloping
waves, where the former correspond to truly baroclinic waves.

In our examples we have concentrated on cases in which the lapse rates in the upper and lower
layers are identical and equal to 6.5 X 1073 km~!. It is known (Wiin-Nielsen, 1989) that a three
level model is quite sensitive to these lapse rates, in particular if one of them should approach the
adiabatic lapse-rate. Such a stratification is not typical of the normal basic states, but they may occur
in special circumstances, when the lower layer is modified rapidly by air-sea interaction processes
as it happens when an arctic airmass moves out over a relatively warm ocean. It turns out that
when ~pg is close to the adiabatic lapse rate one finds a new region of sloping baroclinic waves with
a wavelength of maximum amplification of a few hundred kilometers. These cases are important in
connection with the formation of the so-called polar lows, and the behavior of the three-level model
in the extreme situations is described in the paper cited above.

In the more normal cases, treated here, we find for a linear profile of the basic current in the
vertical direction that the stable states for the structure of the sloping waves have a westward slope,
while the unstable steady states slope eastward with height. These results were expected as a natural
extension of the two-level case. However, deviations from a linear profile of the wind in the basic
state changes the stability in such a way that an increasing negative windshear in the upper layer
will eventually destabilize the computed steady state as described in section 4 containing the results.
It is also found that the three-level model gives a region of stable sloping waves of a long wavelength,
but these waves do not have a westward slope in all cases.

While the methodology in this paper by and large is the same as in I it has been found that
the calculations go a little easier if the relative amplitude and the relative phase are expressed as a
complex number. The recent discovery has made it possible to treat the two-level case again in a
brief manner (section 2).
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