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RESUMEN

En el tercer y tltimo articulo de la serie sobre la estructura relativa de las ondas atmosféricas transitorias consideramos
un modelo de atmésfera con una continua especificacién del viento zonal y de la estabilidad estética en el estado bésico. Las
variaciones verticales de los pardmetros en el estado bésico (excepto la estabilidad) y en las perturbaciones estardn representados
como desarrollos en serie de funciones apropiadas a la variacién vertical del pardmetro de estabilidad estdtica.

Para la estabilidad consideraremos dos casos. El primero es una estabilidad estitica constante en todo el modelo, y el
segundo es un caso en el que la estabilidad varia inversamente proporcional al cuadrado de la presién. En el primer caso
podemos usar funciones trigonométricas para describir las variaciones verticales. En el segundo caso derivamos las funciones
de estructura apropiada, pero resulta que para satisfacer la condicién en la frontera superior es necesario suponer que en dicha
frontera la atmdésfera tiene una presién mayor que cero.

La estructura relativa se obtiene en cada caso como una solucién de las ecuaciones estacionarias para la amplitud relativa y
el 4ngulo de fase relativo. Tales soluciones se obtienen directamente en casos simples, pero en casos mdas complicados mediante
integraciones numéricas llevadas a cabo hasta que se llega a un estado estacionario.

ABSTRACT

In the third and final paper in the series on the relative structure of transient atmospheric waves we consider a model atmosphere
with a continuous specification of the zonal wind and the static stability in the basic state. The vertical variations of the
parameters in the basic state (except the stability) and in the perturbations will be represented as series expansions in functions
appropriate to the vertical variation of the static stability parameter.

For the stability we shall consider two cases. The first is a constant static stability in the whole model, and the second is a
case where the stability varies as inversely proportional to the square of the pressure. In the first case we may use trigonometric
functions to describe the vertical variation. In the second case we derive the appropriate structure functions in the paper, but
it turns out that to satisfy the upper boundary condition it is necessary to assume that the top of the atmosphere is located at
a pressure larger than zero.

The relative structure is in each case obtained as a solution to the stationary equations for the relative amplitude and
the relative phase angle. Such solutions are in simple cases obtained directly, but in more complicated cases by numerical
integrations carried out to a point where an asymptotic steady state is obtained.

1. Introduction

In the first two papers, called I and II, we have considered the relative structure of transient
atmospheric waves for the two -and three- level baroclinic models. The purpose of this paper is to
generalize these studies to the purely baroclinic case with continuous vertical stratification. Such
a study requires a specification of the vertical variation of the various parameters. The essential
parameter in this connection is the static stability because it enters the equation determining the
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vertical structure functions in quasi-geostrophic theory (Wiin-Nielsen, 1971). The first problem is
therefore to adopt a specification of the variation of the static stability parameter with pressure.
For a given specification we are required to seek a set of orthogonal functions which are solutions
to the vertical structure equation. The general procedure thereafter is to develop the parameters
in series of the orthogonal functions, to insert these series in the relevant equations, and to derive
the equations for the time-dependent coefficients in the series of orthogonal functions. From these
equations we can then proceed in a way analogous to the technique developed in I and II.

The main goal is to obtain the relative structure for the transient baroclinic waves. The
advantage of the proposed procedure is that it will permit an arbitrary variation of the zonal
wind in the basic current. The study will thus supplement other studies of the quasi-geostrophic,
baroclinic stability problem, normally formulated as an eigenvalue problem which under these
more general conditions will lead to extensive numerical calculations. The proposed methodology
is not inexpensive in computations because the required relative structure should be obtained
as a steady state of the equations for the relative amplitudes and phases of all the components.
For a general situation with many components it is very difficult, if not impossible, to determine
these steady states directly even by numerical methods due to the non-linearity in the governing
equations. As areplacement it is proposed to integrate the equations in time to investigate whether
or not an asymptotic steady state can be obtained. There is no guarantee that this will be the
case for all parameter sets such as all wind-profiles and all wavelengths because the asymptotic
solution may be oscillatory. However, if an asymptotic steady state is obtained we may be assured
that it is stable, and the corresponding relative structure will consequently be observed.

In section 2 we start by considering a particularly simple case where the static stability para-
meter is constant. In that case the orthogonal functions are trigonometric, and this fact makes
the evaluation of the interaction integrals completely straight forward. Section 3 will contain a
general discussion of the structure equation and the possibilities to obtain orthogonal solutions.
Section 4 will be the case where the static stability parameter varies as inversely proportional to
the square of pressure, and Section 5 will treat a comparison between the continuous case and
truncated case. Section 6 will be the concluding remarks.

2. The baroclinic case with constant static stability

I and II contain the most simple purely baroclinic cases, i.e., the two and three level, quasi-
nondivergent models. In this section we shall reconsider the purely baroclinic case with a higher
vertical resolution. It is known from baroclinic stability theory that the mathematical treat-
ment becomes rather cumbersome if we include the vertical variation of the static stability
o = —a(dinf/dp). From data studies conducted by Gates (1961) it is known how large this
variation is. Jacobs and Wiin-Nielsen (1966) have used a basic state of the atmosphere charac-
terized by a constant lapse rate. In this case one finds that ¢ = o(p+), p+ = p/po varies as
o =0 p:’\ where A is a positive number which is less than 2 for realistic values of the lapse rate.
The vertical variation of ¢ will have an influence on the vertical structure of the transient waves,
but it is to be expected that the main feature of the structure may be obtained if one assumes
that o is constant with respect to pressure. In this case, as will be seen from this section. one
may obtain results using elementary functions.
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The quasi-nondivergent equations are:

9 Jo Ow p
V V = — _=
etV VG =25 pe= 25 po = 100kPa
a,dy ¢ .  opo
at[a 1+ [ap*1+ fow_o (2.1)
with the boundary conditions that
w=0at pe =0, ps =1 (2.2)

We shall also in this case need a reference state, and we select the vertical mean flow, also called
the barotropic mode. For this purpose we introduce the definition:

One= [ Oan

Or=0)-0)m (2.3)

where the thermal flow, also called the vertical shear flow or the baroclinic component, is defined
as the deviation of the total flow from the barotropic component. The definitions have been used
extensively in the study of atmospheric energetics (Wiin-Nielsen, 1962).

(2.3) is applied to the first equation in (2.1) and using the boundary conditions (2.2) we find

a
;jtw+ VM Vi + Vr-Ver)u +8Var =0 (2.4)

The vorticity equation for the baroclinic component is obtained by substracting (2.4) from the
first equation in (2.1) with the result that

ow
-+ VM Ver+ VT Vem+ VT Ver — (VT Vor)m + BVr = gap
(¢ *

osT
at

(2.5)

The vertical velocity in (2.5) may be eliminated in the usual way using the second equation
in (2.1) and employing the assumption that ¢ = & = const. We note that the stream function
) appearing in the thermodynamic equation may be replaced by 7 since s by definition is
independent of pressure. Introducing the potential vorticity

¢’T s f2
ér =¢r +4¢° = 2.6
apt 0’p(2, ( )
we obtain
a2
€T+ Vs Vép+ VT Ver+ VT Vép — (VT Ver)am +B8Vr =0 (2.7)

ot
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In agreement with the treatment in the preceeding papers we specify the stream functions in
the form

Yar(x, v, t) = —Upry + Apg(8) cos kz + Bpg(t) sin kzx

!L‘T(X, Y, Pxs t) = _UT(p*)y+AT(p*’ t) cos kI+BT(p*’ t) sin kz (2'8)

The next question of concern is how we shall specify the pressure dependence in Up, Ar and
Br. Going back to (2.6) it is obvious that we can use a trigometric function. From the second
equation in (2.1) we note that at the boundaries (p« =0, ps = 1) we get

ﬁ[a‘/’ﬂ + i{?ﬁ’l] _ Our 9y

=0 =0 =1 2.9
at' dps* Yoz dp. ' Ops Oz » Py » P (2:9)

It is thus seen that (2.9) will be satisfied if we select a cos-dependence for Up, Ar and By or,
specifically:

Ur(ps) = > Ur(q) cos (qmps)
qg=1

oo
Ar(ps, 1) = Ar(s, t) cos (s7ps)
§=1

o0
Br(ps, t) = ZBT(S, t) cos (smps«) (2.10)

s=1
We note that the functions cos (gmps) are orthogonal over the interval 0 to 1 because
1 o g#s
/ cos(qrps) cos (smpe)dps = { (2.11)
o 1/2 q=s

As a result of (2.11) it is for example seen that

(UrAr)pm = % > Up(n)Ar(n) (2.12)
n=1

and the corresponding relation for Bp.

After the specifications we proceed by substituting (2.8) in the equations (2.4) and (2.7).
Following the same procedures as used in the previous papers and representing the amplitudes in
the form
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Apr = Rpp cos Opp, By = Rpyp sin Opg

Ar(n) = Rp(n) cos 8p(n), Br(n)= Rr(n) sin ér(n) (2.13)
and finally
r(n) = E#, 8(n) = 0pr — Op(n) (2.14)

we may derive equations for dr(n)/dt and dé(n)/dt. The procedure outlined above is cumbersome,
but elementary from an algebraic point of view. The details will not be reproduced here. It will
suffice to give the final result. The following notations will be used:

2
_ .29
A=nm k_2
2
n“A
mn) =
(n) = 1—n?A
T T T R2A
_1—n(2s—n)A
73(”7 S)_ 1+n2A
_1+4n(2s+n)A
1a(n, 8} = — "5y (2.15)
The equations are then:
dr(n) . 1 ¥ .
9 —kvy2(n)Up(n) sin 6(n) — —iksz_zl Ur(s)r(n)r(s) sin 6(s)
1 n—1
+5k{2 ~v3(n, s)Up(s)r(n— s) sin [6(n — s) — é6(n)]
s=1
N
+ Y w(n, 8)Ur(s)r(s —n) sin[é(s —n) — 6(n)]
s=n+1

N-1
+ Z v4(n, $)Ur(s)r(s+n) sin [6(s + n) — 6(n)]} (2.16)
8=1
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dé(n)
dt

= —ken()Cg ~ kra(m) TR cos 6(n) + kZUT(s) cos 6(s)

1 n—1 ( s)
‘5’“{821 m(n, )Up() 5 cos [5(n = 9) = 5(r)
3 r(s — n)
+ E ~v3(n, s)Ur(s) oy cos[6(s — n) — 6(n)]

s=n+1

5 i, s)UT(s)’("( ) *) cos [5(s+ ) - 5(n)]} (2.17)

s=1

The various terms in these equations may be categorized as follows:

1. The first term in (2.16) and the first two terms in (2.17) give the contribution from
component n on its own changes.
2. The second term in (2.16) and the third in (2.17) measure the interaction between the

barotropic and baroclinic component.

3. The three sums in each of the two equations measure the interaction between component
n and the other components which can interact, i.e., those components having an index
which give sums or differences of n as for example s + (n — s) = n.

It is obvious that the system (2.16) and (2.17) is so complicated that it would be out of the
question to calculate all steady states in the general case. On the other hand, in the most simple
case where we include one vertical component only we find no contribution at all from terms of
category 3 and only one term from category 2. This case is analogous to the one considered in,
the two level case. If we therefore want to use the system (2.16) and (2.17) we should either
integrate it numerically to a stable steady state or design a case in which one may obtain steady
states directly.

The latter possibility is used in the following example. For U = U(p+) we select a linear profile:

Ulps) =Us +Us(1 — ps); U =U(1) (2.18)

Calculating the Fourier coefficients from the first expression in (2.10) we obtain

0 n even
UT(")*{:g;z n odd

If we further restrict the representation of the waves to odd components (i.e. r(n) =6(n) =0, n
even) which are asymmetric around ps« = 7, we observe that all terms in category 3 vanish because
s—n, n—s, n+s all are even, when n and s are odd. Consequently, we have contributions only
from terms of categories 1 and 2. Restricting the number of vertical components to two we find
the following equations:



ON THE STRUCTURE OF TRANSIENT ATMOSPHERIC WAVES. PART III 79

drd(tl) — kv (1)UF(1) sin 6(1) — %kUT(l)r(l)z sin 6(1) — %kUT(3)r(1)r(3) sin 6(3)
El% = —kv2(3)Ur(3) sin 6(3) — %kUT(l)r(l)r(S) sin 6(1) — %I«:Ur_p(3)r(3)2 sin 6(3)
i%(ti) — k7 (1)Cr - k72(1)[rj((11)) cos 6(1) + kU7 (1)r(1) cos 6(1) + ZKUp(3)r(3) cos 6(3)
@d(ti) = —k~1(3)CR — qu(s)’{'(g) cos 6(3) + %kUT(l)"(l) cos 6(1)

+%kUT(3)r(3) cos §(3) (2.20)

The system (2.20) corresponds to a model with three levels. In this case it is possible to solve
the steady state problem by setting all four time-derivatives to zero. The solution requires a
process of elimination, which is quite elementary. The results are:

o [A-1 (9A — 1)(A +1)
r(3)" = 2[m - '(1)2] "OAF1)(A - 1)

2A-Cg - r(1) [1 ~ Wf_—lr(3)2]

cos 6(1) = (2.21)
Up(1){(6 +1)r(1)? +2(4 - 1) + B1OD, 2]
, _o A-DEA+) ()
sin 6(3) =9 A )ea = 1y r(n) 7 *W
agr(1)® + agr(1)* + agr(1)? —ao =0
where
_ 3242
%6 = (A " 1)(81AZ — 1)
_ 8A%(9A-7)
M A (81AT - 1) (2.22)
(A1 Up(3)? 16A° (A — 1)(9A + 1) Up(1)?
ag = (A~ ){ ck  (A+1)%200A-1) (A+1)(9A-1) C% }

_,(A-1° (9A+ 1) Ur(1)’?
TR TDE 9A-1) Cl
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Solutions are obtained by solving the sixth degree equation for r(1) using numerical methods
and searching for positive real roots only. In practice, the equation is solved as a cubic equation
in r(1)2. #(3), 6(1) and 6(3) are then obtained from the first three expressions in (2.21). From
the first equation it is seen that such solutions can be obtained only if A > 1. Since r(3)2 shall be
positive, it is also required that

A-1

2

(2.23)
This condition is used to limit the search for the roots in the cubic equation. In addition, we
note from the expression for cos §(1) that the right hand side must be numerically less than 1.

The first problem was to determine the region of sloping waves in a region with the wavelength
as abscissa and the total windshear as ordinate. This was done experimentally by solving the
system (2.21), (2.22) for selected values of the two paramenters L and Us. For a constant value
of Us the minimum and maximum value of L, for which the equations (2.21) have a solution,
was determined. On the basis of these calculations Fig. 1 was constructed. It shows that non-
sloping waves exist for sufficiently small wavelenghts for all values of Us. For larger values of the
wavelengths we find sloping waves for sufficiently large values of Us. We can equally well say that
the region of sloping waves, is the region of growing waves on the basis zonal current.

A
Us. ms™

140+

1201

T

1001
cos?d £ 1.

60

401

20

1 -

5 10 15
Lx10™°m

Fig. 1. The region marked cos2® < 1 is the values (U,, L) giving sloping waves.

The structure of various waves is illustrated in Fig. 2 and Fig. 3. The upper part of Fig.
2 shows a case corresponding to summer conditions. We note the westward sloping wave with
a total slope of only 40°, while the relative amplitude increases from a very small value at the
ground to substantial values at the top of the atmosphere. In the remaining figures we have used
a value of Us = 40 ms_l, corresponding more t winter conditions. The value 1 = 4 (L = 4000
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km) is close to the short wave cut-off. The vertical slope which is in general westward has the
opposite slope in the middle of the atmosphere around p: = 0.5. The slope is less complicated for
somewhat luuger waves as shown in Fig. 3. The resulting structures are thus qualitatively correct,
but they are naturally influenced by the fact that we have included only two vertical components
in the system. We may look at more complicated cases by integrating the time-dependent system
(2.16) and (2.17) to the point where it arrives at a steady state. This has been done in a number
of cases using more realistic wind profiles, and we shall show some results.

L=45

U; = 20 ms™!

Px

0.5+

10 a——— i N -
12 3 -0 0 10 20 30 40
5

Us=40 ms™’

Px

0.5+

10 — E— RS WU S, N S
12 -20 -10 0610 20 30 40 50

Fig. 2. The relative amplitude and the phase as a function of normalized pressure for L = 4.5 x 10® m and U, = 20 ms~—! and
L=4%10%°m and U, = 40 ms™!.
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o
L =5
U, =40ms™
Px
0.5+
Wor—d LA e
vy .2 3 -30-20-10 0 10 20 30 40 50 60
r o}
0
L= 6
Us= 40ms™’
P
05+
1.0 t t t 4 4 + + t + t + ; 3
12 3 -20-10 0 10 20 30 40 50 60 70 80
Y r 8

Fig. 3. As Fig. 2, but with L = 5 x 10%, U, = 40ms—? (upper part) and L = 6 x 10%m, U, = 40 ms~? (lower part).

Fig. 4 shows the vertical profile of the zonal wind taken from Lorenz (1967) at 30°. The vertical
mean wind has been removed from the data before plotting. We note the usual jet-maximum at
about 25 kPa. This profile was used to calculate the Fourier coefficients for Us(ps+). The amplitude
ratio r(p«), obtained after a steady state for the system (2.16), (2.17) has been reached, is shown
in Fig. 5. There is a minimum at about 70 kPa in r, but the maximum in r is located close to the
maximum in Us. Note also the rapid decrease in r above the maximum, i.e. in the stratosphere.
Fig. 6 shows the relative phase angle § = §(p«) for the same case. A westward slope is obtained
from the ground to the level of the maximum wind, while an eastward slope is present in the
stratosphere in good agreement with observations.
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Fig. 4. U = U(p.) as obtained at 30°N from Lorenz (1967) . The vertical mean has been removed.
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Fig. 5. The amplitude ratio, r, obtained as an asymptotic steady state for the wind profile in Fig. 4.
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Fig. 6. The relative phase angle as a function of normalized pressure for the case in Fig. 4.

The sensitivity of the steady state for r and é to the slope of the vertical wind profile is
investigated in the following. For this purpose we use the following expression

Umax o g’
U(ps) = N, " (1-p)’; N(a, )= #ﬁ (2.24)
in whicha>1,8> 1.

One may easily verify that the maximum wind occurs at the level p. = /(o + 3). As a first
example we select a case in which the position of the maximum wind varies. For the four curves
in Fig. 7 we have used o = 2 and the following values of 3:

Curve A: p=14, ps,max=0.125
? B: pB=6, p+,max=0.25
” C: $=10/3, p+,max=0.375
” D: B=2, ps,max=0.5
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0.2

0.3
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Px 05

0.6
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0.8

09 i

10 | | I x ! 1 ; ! ! 1 ! !
-20-15 -10 -5 0 5 10 15 20 25 30 35
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Fig. 7. Four vertical wind-profiles drawn using equation (5.24) . All four profiles have o = 2 while 8 has the following values:
A:B=14;B:4=6;C: 8 =10/3and D: § = 2.

The corresponding curves for r = r(p«) are shown (for curves A, B and C) in Fig. 8. It is seen
that the maximum values of 7(p«) is found at a lower value of ps if the wind maximum occurs at
lower values. Fig. 9 contains the corresponding curves for § = 6(r«) showing a westward slope up
to the wind maximum followed by a reversed slope along the wind maximum.

The sensitivity of the wave structure to the sharpness of the jet can be investigated by keeping
the ratio a/8 constant. We have used o/ = 1/3 which results in p«, max = 0.25. The profiles
in Fig. 10 have Umax = 40 ms ™! in all cases. Specifically, we have used:

Curve A: o= 2, B=6
? B: a =4, B =12
? C: a = 6, B =18
7 D: a =8, B =24
? E: a = 10, B =30

We get then an increasingly sharper jet as shown in Fig. 10. The amplitude ratio r(p«) is
shown in Fig. 11. The maximum value of r occurs always at the same value of p« as the wind

maximum. The relative phase is shown in Fig. 12. Again we note the westward slope to the level
of the wind maximum followed by the reserved slope above it.
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Fig. 8. The amplitude ratios for cases A, B and C.
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Fig. 9. The phase angles for cases A, B and D.
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Fig. 10. Five vertical wind-profiles (eq. 5.24) having the same location of the maximum (p. = 1/4). The values of « and 8
are: A: (2, 6); B: (4, 12) ; C: (6, 18); D: (8, 24); E: (10, 30).

0.0

0.2—

03—

05—
Px L
06—

0.7+

0.8—

1 | | ] !
15 20 25 30 35 40
r

Fig. 11. The amplitude ratio for the five cases in Fig. 10.
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Fig. 12. The phase angles for the five cases in Fig. 10.

We may thus conclude that the relative structure of the wave is closely connected with the
slope of the wind-profile in such a way that for a typical wind-profile with a maximum wind in
the upper troposphere we obtain a westward tilt and an increase in the relative amplitude up to
the wind maximum followed by a reversed slope and a decreasing amplitude above the maximum.

3. The vertical structure functions

The equation determining the vertical structure is well known (Wiin-Nielsen, 1971). We write it
in the form

d [fo2 dF

ot MF=0 3.1
('J'pO2 dp*] + ( )

dp*

for quasi-geostrophic motion. If o were a constant we would get trigonometric functions as solu-
tions. It is this case which is treated in Section 2.

According to Gates (1961) one may approximate the vertical variation o by the expression:

o= — 3.2
p? (3.2)

where o, is the value of & for ps = 1 (p = 100 cb). We may try to find solutions to (3.1) with the
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boundary conditions:

dF
dp*

=o for ps =pp and ps =1 (3.3)

where pr is a pressure level at which w = 0. Denoting

2
[ = 2ok (3.4)
/o
we find that the following functions satisfy (3.1), (3.2) and (3.3)
D(n) . 3 3
Gn(ps+) = sin (nr-=>) — 2u(n) cos (nwr——=— 3.5
n(p+) N ( g ) ~2m(n) cos (nm o) (3.5)
where
1
n(n)* = LIN*(n) ~ 5 (3.6)
giving
A(n)? = i(l + (n)2> = i(l + "2”2) (3.7)
Z\s " *# 2\1" & '
We determine next D(n) in such a way that
1 2
Gn(p«)“dps =1 (3.8)
pr
with the result that
2 2
D(n) = { } 3.9
(T + u(mDer (59
The functions Gn(p«) form an orthogonal set because it is easy to show that
1 1 g=n
[ Gap)Galpe)ap. = { (3.10)
pPT 0 g#n
and it is also true that
1
/ Gn(p*)dp* =0 for all n (3.11)
PT

It is obvious that in this case it is a necessity to have p, > 0. The model has thus a “lid” at a
finite height. On the other hand, p; can be as close to zero as one wants. From the definition of
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the static stability parameter, i.e.

2
o= a2 _ __IE(QZ _ _IiT> = ZoPo (3.12)
dp p\dp Cp p
one may solve for the temperature as a function of pressure. We find
2
oopsC
T =T(p) = 2252 (1 - p/ %) + T, (3.13)

R2

With the selected parameters T will vary from 283 K at the surface to 85.3 K at p« = 0. The
lapse rates connected with (3.13) vary from 0.7 X 1072 km™! at p, = 1, 0.66 km™! at ps = 0.5,
0.60 km ™! at ps = 0.2 to 0 at p« = 0. This model atmosphere is thus isothermal at the top.

As will be seen in the next section it will be required to evaluate interaction coefficients which
will be defined by the integral

1
(g, r, §) = /p  Ga(p)Gr(p)Gi(pe)d (3.15)

For the evaluation of (3.15) there are several posibilities. The functions Gpn(p«) defined by (3.5)
are so elementary that it is possible to carry out the integration in (3.15) directly, and this is the
method used in the following section, but one could just as well use one of the standard numerical
integration formulas.

The specification (3.2) of the dependence of the static stability parameter on pressure is not
the only possibility. Jacobs and Wiin-Nielsen (1966) have solved the same equation for the case
where the thermal stratification is given by a constant lapse-rate. In this case one obtains

Oo
0= —ar (3.16)
2—-R
p’ 1/9
with
RT,
0o = —5>(va—") (3.17)
9Po

For a standard value of v = 6.5 X 1073 km™! we find that the exponent in the denominator
of (3.16) has the values 1.8 which differs from the one in (3.2) by only 10%. The solutions are in
this case Bessel Functions which may be written in the form

F = const. £ "Jn(2(n + 1)A(n)¢) (3.18)

where

n=--—-1 (3.19)
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and

1

¢ =pt*D (3.20)

The boundary condition dF /dp. at £ = 0, £ = 1 results in the expression

Jnt12(n+1)A(n)] =0 (3.21)

which means that the values of A(n) are determined by the zeroes of the Bessel function of order
(n + 1). The value of n is determined from (3.19). It is of course an advantage to work with
integer values of n. For n = 4 we find a value of v = 6.8 x 1073 km™!

For the functions (3.21) there is an orthogonality condition which according to Abramowitz
and Stegun (1964) is

1 0 :i#j
/ ETn(2(n + 1)A)Tn(2(n + 1)A;€)dE = {1 N (3.22)
0 z[In(2(n+1)X)2  i=j

It is thus seen that this family of Bessel functions can be used also as vertical structure functions.
We note especially that the functions (3.18) are well behaved for £ — 0 because for small values
of the argument we have

Tn(2(n + 1)X;€) =~ zin-%[?('“r )Ae]" (3.23)

and therefore

€T+ DAE) = 5o [2(n+ DA (3.24)

In addition, they satisfy the upper boundary condition automatically because

d
d¢

and the right side of (3.25) goes to zero according to (3.23) as ¢ approaches zero.

EInl2(n + DA€l = <200+ D€ T 20+ DA (3.25)

In the present paper we shall limit ourselves to the functions (3.5), but we hope at a later
occasion to use the functions (3.18).

We finish this section with some comments on the boundary conditions. If we were to replace
the lower boundary condition with w = dz/dt we would obtain

dz _0¢

o2 V.V
9% "o $+w

"’ﬁ ()0 - 0o =0, p=po (3.26)

leading to

Pofo( (3.27)
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The thermodynamic equation employed at p = po is then

8 [fo, 09 = fo ,0¢ pofo 0¥, —
E[—O'_o 5};)0]4‘ V.V I:'U—o(—a—z;)o] + RTO(—é_t—)O =0, p="po (3'28)

but since the vertical structure functions apply to a resting atmosphere it follows from (3.28) that
at the lower boundary we have

aGg aop?,
G=0, p= 3.29
dpe | RTo » P=Po (3.29)
where
=900 01 (3.30)
-~ RT, '

The basic equation (3.1) and its general solution are still the same, but the integration constants
will have new values in view of (3.29). For the case of 0 = & = 0, = const., treated in section 2,
we find that u(n) = nll are replaced by the solutions to the transcendental equation

p tan [(1 - pr)u) = r (3.31)

The roots of (3.31) are obtained numerically. The following Table 1 contains the new and the
old values of u

Table 1 (& = const.)

n p(n), new p(n), old
0 0.3257 -

1 3.1762 3.1416
2 6.3006 6.2832
3 9.4364 9.4248
4 12.5751 12.5664
5 15.7150 15.7080
6 18.8554 18.8496
7 21.9962 21.9911

It is thus seen that in the case of constant o the values of u(n) do not deviate very much from
each other except for the basic mode (n = 0) which exists only with the new boundary condition.
We conclude that the structures will not change radically.

We turn next to the case where o's variation with v is given by (8.2). Considering first the
external mode we find a solution to (3.1) which is

1 1
o—3 -n-} 1 ,
F(ps) = C1PI7E 4 Cop "2, po =7 — Lido (3.32)

Applying the boundary condition (3.29) at p« = 1 and dF/dp« = 0 at p:+ = py we find that g,
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is determined by the equation

47"1,0

tanh + — =
(€T/l'0) 4%1'0 —1+2r

(3.33)
which has only one solution found by numerical methods to be

o = 0.369.

Finally, applying the same boundary conditions to the internal solutions it turns out that the
equation for u(n) is

4rp(n)

tanh (érp(n)) = 4/‘(”)2 +1—2r

(3.34)

The solutions can also in this case be found by standard root finding routines. We give the
results in Table 2.

Table 2 (6 = aop:z)

n p(n), new p(n), old = nIl /&7
0 0.369 0

1 1.395 1.364

2 2.746 2.729

3 4.105 4.093

4 5.466 5.458

5 6.829 6.822

6 8.192 8.186

7 9.556 9.551

We conclude also in this case that the two sets of values are sufficiently close to prevent major
changes in the structure of the waves. This result is explained by the small value of r. With the
adopted value of r we find that the function on the right hand side of (3.34) is zero at u(n) =0,
has a maximum of 0.12 at u = 0.44 and goes to zero as p goes to infinity. With this shape it is
clear that the intersections of this curve with the various branches of the tanh-function must be
close to the zeroes of this function, and it is of course the position of these zeroes which determine
the values in the third volume of Table 2.

4. A model with variable static stability

As mentioned in Section 4 we shall formulate a model based on a vertical variation of the static
stability parameter according to (3.2) resulting in the vertical structure functions (3.5). In the
formulation of the governing equations we make repeated use of (3.1). We assume from the
beginning that the zonal wind Up(p), which is defined as the deviation of the wind profile U(p)
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from its vertical mean Uyy, is given in the form

Ur(ps) = Y Ur(n)Gn(ps) (4.1)

n=1
The components Ur(n) are calculated by the integrals
1
Up(n) = | Ur(p«)Gn(p+)dps (4.2)
br
For the streamfunction ¢'(z, t, p:) we assume in a similar way:

[ o]

V'(z, t, ps) = Z(A(n, t) cos kz + B(n, t) sin kz)Gn(ps) (4.3)
n=1

where we shall follow the same methodology as in Section 2 meaning that

A(n, t) = R(n, t) cos 6(n, t); B(n, t) = R(n, t) sin 8(n, t) (4.4)
and that
rlny 1) = TR, 5n, 1) = 0(1) - 02(n, ) (45)

With these reminders we need to state only that the final equations are obtained using exactly
the same procedures as in Section 2. We write the final equations in the form:

N

Ug(n) sin 6(n) + ZUT(é)r(n) sin 8(s)

s=1

dr(n) 1— A(n)?
at k[1+,\( )2t

N 2
S Z:[1+,\ =) riy, s, NUp(s)r(l) sin (6(n) —6(1))”

s=11=1 1+ X(n)?
dé(n) _ ,[1—A(n)?Up(n) N
praa —k[l ) rfI&n) cos 6(n) — S__E_:l Ur(s)r(s) cos 6(s)

N 2 _\(s R(l
+§“§[1+33A )() I(n, s, DUp(s) ZE cos (6(n)——6(1))]

(4.6)
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where A(n) is given by (3.7), and where

1
I(n, s, 1) = . Gn(p+)Ga(p+)Gi(p+)dps (4.7)

An inspection of the system (4.6) shows clearly that a direct determination of the steady states
is not very likely. With the experience from the previous cases, especially Section 2 in this paper,
but also I and II, we may hope to obtain asymptotic steady states by integrating the system (4.6)
in time using a suitable time-integration scheme. Such an asymptotic steady state may or may not
be obtained by such a procedure. [t may for example happen that the solution is of an oscillatory
nature in which case no time-independent asymptotic solution is obtained.

The time-integration scheme has been Heun’s scheme which for a single equation

dz

~ =F 4.8
2~ (o) (48)
consists of computing a preliminary estimate
' = z(n) + At - F(z(n)) (4.9)
while the final estimate is
1
z(n+1) =z(n) + -2-At(F(x(n)) + F(z")) (4.10)

The application of the numerical scheme to the system (4.6) is straightforward.

The next question which will be considered is the vertical resolution necessary to resolve a given
wind-profile. For traditional reasons it is perhaps pertinent to consider first a linear profile for

UT (p*)a say

U(ps) _ 3(1+pr) —ps

Un —— (4.11)
For pr = 0.1(~ 10 kPa) we find the values of U(n) listed in Table 3.
Table 3
n 1 2 3 4 5 6 7 8 9 10
U(n) 0.2440  0.1017  0.05580  0.03117  0.02184  0.01445 0.01141  0.008252 0.006976 0.005318

From the values shown in Table 3 we may regenerate U (p*) from the original formula (4.1). The
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result is shown in Fig. 13 which shows a good fit to the straight line except close to p« = p7 = 0.1
and ps = 1. It is obvious that there will always be such a deviation because at the boundaries
dF /dp: = 0 while the straight line does not satisfy this condition.

-0.1
—0.2
~0.3

0.4

I ]
-05  -0.25 025 05 Uy .

Fig. 13. The circles are obtained by adding the contributions from 10 components as an approximation to the linear windprofile.

We may try next with a profile which does satisfy the conditions of a vanishing derivative for
p« = pp and p. = 1. For this purpose we design a wind-profile with a vanishing vertical mean
and a maximum Uy, at a certain pressure level pm. The resulting wind-profile is a modification
of the one given in (2.24) from which we have removed the vertical mean. The result is

— pp)%(1 — ps)P a!f!
Up(ps) = Um - .[(p* pr)*(1 = p+) 18! ]

(ai;?:+ﬁ ~ {etp+1)t (1= pr)**? (ar gt

(4.12)

A case with & = 3, B = 9 was selected. For the following figure we have also taken pp = 0.
The comparison between (4.12) {full curve) and the recomputed windprofile using 10 components
(circles) is shown in Fig. 14. The maximum deviation occurring at the wind maximum is 3%.
It would thus seem that about 10 components are sufficient to approximate the windprofiles, but
there is of course no guarantee that this number of components will suffice also for the wave
structure, since this will depend on the computed steady state, and on how fast the components
of the relative amplitude decrease as the vertical wave number increases. Only the results will
show.



ON THE STRUCTURE OF TRANSIENT ATMOSPHERIC WAVES. PART III

.

0.6
d 0.7
o
J -0.8
q
q 0.9
fe

I T T T T I
-0.50 -0.25 0 0.25 0.50 0.75 1.00 U/Um

Fig. 14. Similar to Fig. 13, but for the jet stream profile.

We return to the integration of the system (4.6) using Heun’s numerical time-integration scheme.
To carry out a single integration it is necessary to specify the wavelength L and the profile of
the wind in the basic state given by the components U(n); n = 1, 2, ..., N. For the linear profile
(4.11) it is seen that the coefficients U(n) are proportional to Up. For a given value of Up which
is the total windshear from p+ = 1 to p« = pr, we obtain the coefficients U(n) by multiplying the
values in Table 3 by Up. It is thus natural to present the results in a (L, Ur)-diagram. The total
calculation has therefore consisted of a large number of separate calculations, each corresponding
to a point in the (L, Ur)-plane. For each time-integration we define a convergence criterion. It is

|r(n+1) —r(n) |[<e and |§(n+1)—6(n)|<e€ for all n (4.13)

where € is a small number, normally set to 1076,

If convergence is obtained, we have as a result an asymptotic, stable, steady state characterized
by the two sets: rs(n) and 85(n). Assuming that 85, = 0 and thus Rps = A, we find that

N
a(p’) =1+ Z r(n) cos §(n)-Gn(p*)
n=1
N
b(p*) = — Z r(n) sin 6(n) - Gn(p*) (4.14)
n=1

From (4.14) we may then compute amplitude and phase angle in the usual way. These two
quantities will be used to illustrate the wave structure.

97
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It turns out as one would expect that the results in this case are quite similar to those presented
in Section 2. The reason is that the new vertical structure functions are modified forms of the
trigonometric cos-function used in the earlier section. Since the figures, given earlier, illustrates
the structures quite well, we shall be satisfied by giving a couple of examples. Fig. 15 shows the
relative amplitude and phase for a case when the wavelength is 4000 km and the total windshear
90 ms~ . The maximum amplitude occurs at a lower level in the atmosphere than in Section 2,
and, while the wave is still sloping westward, there is a reversed slope in the upper level. Both of

0.1+ &
0.2 0.2
0.3 —0.3
0.4 ~0.4
A ¥
0.5 05
0.6 0.6
0.7 0.7
0.8 —0.8
0.9 —7
1.0 T r T T T T 5T T
0 1 2 3 -0.4 -02 0 0.2 0.4

Fig. 15. The relative amplitude and phase for a wavelength of 4000 km and a maximum speed of 90 ms™?! in the basic current.

0.1 (01
0.2 l-0.2
0.3 -0.3
0.4~ 0.4
0.5 L 05
5 B

0.6 - 0.6
0.7 0.7
0.8 - 0.8
0.9+ 0.9
1o ] T T T T T T T

© 5 0l 15 20 4 382 4 0

Fig. 16. The relative amplifde and phase for a wavelength of 11000 km and a maximum speed of 50 ms™? in the basic current.
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these features are presumably due to the increase of the static stability with height, while, as we
recall, the stability parameter was constant in the case treated in Section 2.

Fig. 16 shows an extreme case where the wavelength is 11000 km and the total windshear 50
ms~ . As we shall see later this wave is only very slightly unstable (Its e-folding time is 10 days).
It has a very large increase of the relative amplitude with height, containing two maxima. The
slope is only very slightly westward in a lower and a higher section with a very rapid transition
around 60 kPa. The total slope is about half a wavelength. The structure, presented in Fig. 16,
is typical of all the structures where the instability is very slight, i.e. very small growth rates.
This feature makes the waves rather uninteresting.

Fig. 17 and Fig. 18 have been prepared in such a way that they are directly comparable to
the two parts of Fig. 3. This has been accomplished by including the same components in the
two cases. We notice that the vertical variation of the static stability parameter makes quite a
difference. The larger values in the upper part of the atmosphere of ¢ removes the maximum
relative amplitude from the upper boundary, and it is now found at a level of about p: = 0.2.
The total slope has also become smaller, and there is in Fig. 17 a reversal of the slope close to
the upper boundary.

0.17

0.2

0.3

0.4+ 0.4

0.5 0.5

B, A

0.6+ 0.6

0.7 0.7

0.8 0.8

0.9 0.9

1.0 | T T I I T ] T

o 2r 3 6 04 -02 0§ 02 04 06

Fig. 17. Relative amplitude and phase L = 5000 km, Uz = 40 ms™1, Only 3 vertical components.
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0.19 \041 -
0.2 0.<
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Fig. 18. Relative amplitude and phase. L = 6000 km, Uy = 40 ms~1, Only 3 vertical components.

Although the first purpose of this investigation is to determine the relative structure of transient
waves it turns out that the procedure of finding the stable steady states for r = Rp/Rps and
6 = Opr — 07 actually permits a determination of the growth rate and the phase speed for the
sloping waves which are the baroclinically unestable waves. We start by recalling that in a steady
state we have dr/dt = 0 and d§/dt = 0. From the first condition and the definition of r it follows
that

dRp _ o, dRy _

g T =0 (4.15)

or

idRT_ 1 dRps
Rr dt ﬁRM dt

(4.16)

On the other hand, if we were to make a standard stability analysis we would assume that

¥ = D F ) (4.17)
from which we would get
ke t, 2 2 41
Rpp = €3 (Ygr + ¥ri)? (4.18)
or
dBy _ ke;Rag (4.19)

di
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It follows then that

ke; = RL d?y =k 2 Ur(r)r(n) sin () (4.20)

where the last expression is obtained from an equation for dRys/dt. We write finally
N
= Z Up(n)rs(n) sin 8:(n) (4.21)
n=1

where the subscript s indicates that (4.21) is valid in the steady state only. For the phase angles
we have in the steady state

dé _ dopr  dop

=4 L 4.22
dt dt dt 0 ( )
and calculating the phase angle from (4.17) we find
—0M = _kCrt (4.23)
and, consequently,
do
D _ ke, (4.24)
giving
_ 1doyy
Cr — & —dt—— (4.25)
and, from the equation for dfs/dt, the final result
N
Cr—Up=—cp+ Z Ur(n)rs(n) cos &(n) (4.26)
n=1
Finally, the e-folding time Te can be obtained from
Te = (ke;) ™! (4.27)

We shall make use of (4.21) and (4.26) to find ¢; and ¢,. This numerical method to determine
the real and imaginary part of the phase speed is new. It is similar to the method employed
by Brown (1969) because he performs a time-integration of the linear pertubation equations in a
two-dimensional grid, but he does not make use of the relative amplitude and the relative phase.
The method contains also some similarities to the investigation of Kasahara and Tanaka (1989)
because they make use of vertical structure functions in much the same way as this study. On
the other hand, their solution of the eigen-value problem uses a matrix method, and the structure
functions employed by them satisfy a more general boundary condition at the lower boundary
than the condition w = 0 employed in this study.
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The advantage of the method in this investigation is that the structure and the phase speed
can be obtained directly once the steady state solution to the system (4.6) has been obtained.
On the other hand, the steady state solution may require extensive calculations unless the initial
guess, i.e. the starting position, is close to the steady state. In this study we have employed the
technique of solving the system (4.6) in a two-dimensional grid with coordinates (L, Us;) where L
is the wavelength and U, is a measure of the vertical shear. It turns out that the convergence is
most rapid when the instability is large. The first point in which a calculation is attempted should
thus in general have a large windshear and a moderately small wavelength. When the solution
has been obtained in the first point, it may be used as the initial condition for the solution in a
neighboring point. It pays as a matter of fact to obtain all solutions for a given L, i.e. a vertical
column in the diagram. Each of these solutions can then be used to generate the solutions in the
horizontal rows.

While the method used here may be new it cannot give results different from those already
obtained by other methods. We shall therefore restrict ourselves to some examples. As a first
example we take the wind-profile shown in Fig. 13 in which 10 components U (n) were used. This
profile is of course an approximation to a linear increase of the basic current, but it is not indentical
to the linear wind-profile. As a matter of fact, the linear wind-profile cannot be obtained in the
limit of infinitely many structure functions because all structure functions have zero-derivatives
at the two boundaries, while this is not the case for the linear wind-profile.

Fig. 19 shows the most important aspects of the stability diagram. The curves show the growth
rate in the unit: days‘l. The lower curve is the neutral stability curve. No attempt has been
made to map the weak instability for very long waves. Fig. 20 contains the isolines for Ups —cr
in ms™}. The isolines are in both cases restricted to the region L > 1000 km. Thus no attempt
has been made to determine whether or not a short-wave cut-off is present. This problem as well
as the very long wave weak instability have been disregarded since they are treated in detail in

many other investigations as for instance Kasahara and Tanaka (1989) and Green (1960).

Ug.ms™!
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Fig. 19. The growth rate (days—!) for a linear basic wind-profile approximated by 10 vertical components in a diagram with
wavelength and maximal windshear along the horizontal and vertical axes.
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Fig. 20. A measure of the phase speed (Unt — cr) in ms™?! for the case described in Fig. 19.

It shoud be stressed that the diagrams in Fig. 19 and Fig. 20 apply to the wind-profile in
Fig. 13 as indicated by the dots and not to the linear wind-profile. The values of the growth rate
and the phase speed will vary with the number of components included in the series expansion
of U(ps). This can be seen from Fig. 21 and Fig. 22, in which the growth rate and the phase
speed are plotted as a function of the number of components. It is seen that both quantities are
increasing functions of ns although the slope becomes steadily smaller as ng increases. The curves
apply to a single point in the diagram with L = 1000 km and Us; = 40 ms~!. One conclusion
is that the structure functions employed in this study are not very efficient in approximating a
straight line.

g=KC;j. days"!

i T T T T
10 5 20 Ng 25 30 35

Fig. 21. The growth rate (days ') as a function of the number (r4) of vertical components.
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T l T T T
10 15 20 Ng 25 30 35

Fig. 22. (Uprs — cr), ms™!, as a function of the number (ns) of vertical components.

Concerning the windprofiles there is, however, a much more important question. It is related
to the comparison between the model described in this and one of previous sections. These will
be considered in the following section.

5. Comparison with the continuous case

Charney and Stern (1962) made a detailed analysis of the stability of internal baroclinic atmospher-
ic jet streams . The model which they used is somewhat more general than the cases treated in this
paper because the zonal current is a function of both latitude and height. We can, however, easily
reproduce the essential argument for our model, which is governed by the conservation of quasi
-geostrophic, potential vorticity. Considering the zonal current U = U(p+) and perturbations of

the form

¢ = ¢ exp (ik(z — ct)) (5.1)
we find the frequency equation

g — 4 (L4 dU
dpqx E'pg dP-t

U-c

_d_[fo2 du‘)]_kzm Y5—o (5.2

dp. lop} dps
which in this investigation is to be solved under boundary conditions

ﬂ:o for p. =pp and p« =1 (5.3)
dpg
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Writing ¢ = ¢y + ic;, multiplying (5.2) by the complex conjugate of ¢ and integrating from pr
to 1 we find using (5.3) that

d (f2 qu
12 2, 2 2] /1ﬂ"dp-(ap3dp‘) ~ 12 _
k dp. dp: =0 5.4
/p[ R P [ Tz |91 ap (5.4
24U
18- dP-(ap de) 212
ic; P [*dp =0 5.5
/PT (U - r) +Ci v (5:5)
where
|9 *=4 -9 (5.6)

From (5.5) it is seen that, if ¢; > 0 it is required that the quantity

H(P*)—ﬂ—gp—*

opl dp.

[ s dU] (5.7)

must change sign somewhere in the interval from pr to 1. If this is not the case, we can conclude
from (5.5) that ¢; = 0. We can thus say that a sufficient condition for stability is that H(ps) is of
one sign in the interval from pr to 1. On the other hand, if H(p:) does change sign we have the
fulfillment of a necessary condition for instability.

Let us start with a linear wind-profile, say

U 1
U )=U T 1“1 - 5.8
(") M+1_pT[2( + pr) — P+ (5.8)

and with
& = oops 2 (5.9)
We find that
f2
H(p«) =B+ 5 “2ps >0 (5.10)
OoPo 1—

which shows that the linear wind-profile is stable, when we consider the continuous case. However,
in this paper we have all the time been dealing with a representation

U(ps) = )_U(q)Gq(ps) (5.11)
g=1
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in which case
Q
H(p) =B+ M) U(g)Gq(p+) (5.12)
g=1

For a given truncation, i.e. for a specific finite value of Q, it is no longer obvious that H(p«)
does not change sign in the interval from pr to 1. H(p:«) can as a matter of ..ct change sing as
one can see by calculating

Q
H(1) =B~ X)’U(qg) - D(q) - 21(q) (5.13)
q=1
and
H(pr) =B - f: 20200 2D 2u(g) cos (q) (5.14)
q=1 vPT

If H(1) and H(pr) are of opposite sign, there is at least one zero of H(p*) between them. (5.13)
and (5.14) have been calculated for various values of Q using the fact that for U(g) we have

U(q) = Uru(q) (5.15)

where u(q) are the coefficients for Up =1 ms~}. For each truncation Q we have used values of
Ur satisfying

1 < Ur <100 (5.16)

It turns out that for Q > 10 we find for all values of Uy > 1 (but not Ur = 1) that H(1) <0
and H(pr) > 0. The result is thus that for a given truncation and U > 1 the necessary condition
for instability is satisfied. The actual, steady state solutions found by numerical integrations of
the system (4.6) shows empirically (in view of (4.21) and (4.26)) that instability is also in fact
present. The qualities H(1) < 0 and H(pr) > 0 for sufficiently large Ur can be made plausible
by writing (5.13) and (5.14) in the form

Ur S, + Ur

H(PT):ﬂ—\/ITT— N

So (5.17)
in which

Se= Y. 2X(q)*u(gq)D(g)n(9)

g=even

So= Y. 2X(9)*u(q)D(q)n(9) (5.18)
g=odd
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For a linearly increasing basic current all u(q) > 0, and it is thus seen Se > 0 and S, > 0. It
is therefore obvious that H(1) < 0 for sufficiently large values of Up. Since Se ~ S, for a given
truncation, it is plausible that H(py) > 0. The example shows the difference which may exist
between a continuous case and a case with restricted vertical resolution.

The linear wind-profile is of course a very special case. It may therefore be of some importance
to consider more general cases. For this purpose we may reconsider the wind-profiles from section
2, i.e. eq. (2.24). For this definition we may calculate H(ps) which becomes

13 Un__pulpe = pr)* (1= po)~?
oopt N(a, B) (1—pr)ath h(p+) (5.19)

H(ps) = Bs —
where

h(ps) = (a+ B)(a+ B+ 1)ps — 2(a + Bpr + 1 + pr)p?

+{(e + Bpr)(e + Bpr + 1+ pr) + 3pr (e + B)]pe — 2pr(a + Bpr) (5.20)

We notice that when a > 2 and 8 > 2 then H(p:) = B« for p« = pr and ps = 1. Fig. 23
shows H(p«) for Um = 4 which is the smallest value for which the function changes sign twice.

— 0.75

| 1 | | | | I |
-20  -10 0 10 20 30 40 50 60

10% xH(p*)

Fig. 23. The curve is the meridional derivative of the absolute, quasi-geostrophic, potential vorticity. The dots are obtained
by adding the contributions from 30 vertical components.
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The function has the same general shape for larger values of Uy;. We may thus conclude that the
jet-shaped wind-profile satisfies the necessary condition for instability. On Fig. 23 we have also
included values of H(p«) as calculated by the spectral representation, i.e.

30
H(ps) =B+ D> Ma)®-U(q) - Gq(ps) (5.21)
q=1

These values indicated by dots on the figure show that the representation (5.21) is quite good
although as expected it does not represent sharp maxima and minimum exactly.

6. Concluding remarks

The main topic of this and the previous two papers has been the determination of the structure
of transient baroclinic waves. In the present paper we have concentrated on a continuous vertical
distribution as determined by a set of vertical structure functions. For these functions, and thus
for the parameters developed in a series representation of them, we have adopted the simplified
lower boundary condition of w = 0 corresponding to a vanishing value of the vertical derivative
at the boundary. It is not necessary to do this, and we could just as well have used the boundary
condition of a vanishing vertical velocity as done for examply by Kasahara and Tanaka (1989).
However, some simplifications in the equations are obtained by the adopted boundary condition,
and any significant change is in the basic mode only.

Steady state solutions are obtained to equations describing the time development of the relative
amplitude and the relative phase angle by a time-integration scheme. We stress once again that
this does not mean a description of stationary waves, but a determination of the asymptotic
structure, because in the steady state the ratio of the wave amplitude at an arbitrary pressure
level and the same quantity for the vertical average does not change. The same can be said for
the difference in phase angle at an arbitrary level and the same quantity for the vertical mean.

The process described above will converge only for baroclinic, growing waves. However, once
a steady state solution is obtained, it can be used to determine both the real and the imaginary
part of the phase speed. The procedure is therefore another way of solving a baroclinic stability
problem for an arbitrary windprofile U = U(p). In this regard, the procedure has the distinct
advantage that the phase speed is determined in a unique fashion, and we are therefore finding
the structure and the phase speed for the dominant component.

The vertical variations of the relative amplitude and phase vary greatly with the horizontal
wavelength and with the related degree of instability, but the result is in general agreement with
the conclusions from other related studies using different procedures. It turns out, however, that
the real part of the phase speed and the growth rate are sensitive to the number of vertical
structure functions used in the truncated system. On the other hand, the relative structure is
rather insensitive to the truncation as long as a reasonable number of these functions are used.

The procedure used to describe vertical variations (the structure functions) require a finite
number of functions. This feature leads to a comparison between the truly continuous case and
the approximation to it by the use of a finite set of functions. It is shown that distinct differences
may exist between the two cases.
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