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RESUMEN

Este articulo describe la capacidad del modelo espectral global de la Universidad Estatal de Florida (FSU) en el drea
de prediccién de la precipitacién en los trépicos.

Se hacen resaltar los resultados para la resolucién T106 en el 4rea del monzén y para la resolucién T170 de
prediccién de tifones. Un ejemplo de un pronéstico de precipitacién de un modelo global de muy alta resolucién,
destaca bandas de lluvia de huracdn detalladas y sugiere la necesidad de mayor aumento en la resolucién de los
modelos globales. La parametrizacién de ciimulos se describe en el apéndice de este trabajo.

ABSTRACT

This paper describes the capabilities of the Florida State University (FSU) global spectral model in the area of
precipstation forecasting over the tropics. Results for the resolution T106 over the monsoon area and for resolution
T170 from typhoon forecasts are highlighted. An example of a precipitation forecast from a very high resolution
regional model highlights detailed hurricane rainbands and suggests the need to further increase the resolution of
global models. The cumulus parameterization is described in the Appendix of this paper.

1. Introduction

With the improvements in resolution, physical parameterization and data analysis techniques,
global models have displayed considerable improvement of skill in recent years. Operational
weather centers - the European Centre for Medium Range Weather Forecasts (ECMWF), U.
K. Meteorological office, the National Meteorological Center (NMC) Washington and the Japan
Meteorological Agency - have participated actively towards this progress. The most striking im-
provements in the medium range have been evident north of 30°N over the Northern Hemisphere.
The lack of observations has been a major factor for the lower skill over the Southern Hemisphere
and especially over the tropics.

The FSU global spectral model was basically developed as a research model, Pasch (1983) and
Krishnamurti et al. (1984, 1989). The model is outlined in Appendix I. This model has been
improved considerably in recent years in the areas of initialization and physical parameterization.
The impact of resolution (and its corresponding orography) on the predictability of monsoon
phenomenon, typhoons and explosive cyclogenesis have been addressed.

This paper examines the precipitation forecast from the FSU model over the tropical latitudes.
The convective and the nonconvective components are included.

A list of acronyms is given in Table 1.
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Table 1. List of Acronyms

DMSP Defense Meteorological Satellite Program

ECMWF European Centre for Medium Range Weather
Forecasts

FGGE First GARP Global Experiment

FGGE Ilc FGGE climate data, includes surface based
precipitation data

FGGE IIIb Gridded analyzed FGGE data

FSU Florida State University

NMC National Meteorological Center

TRMM Tropical Rainfall Measuring Mission

WWW World Weather Watch

2. Prediction of monsoon rainfall

In order to assess the quality of monsoon rainfall prediction it is necessary to map the ‘observed’
distribution of rainfall. Although several future programs, such as TRMM, have been proposed
to provide reliable measures of the observed rainfall rates, at the present time we need to rely
on polar orbiting and geostationary satellite radiances and raingauge based estimates. Arkin
et al. (1989) have proposed a histogram method to stratify polar orbitor satellite brightness
estimates to calibrate rainfall rates. This method appears to be fairly reliable for the estimates
of monthly rainfall rates. However for the verification of daily rainfall for numerical weather
prediction, methods based exclusively on satellite based brightness are not entirely satisfactory.
Martin (1983) has developed regression methods to utilize the notion of anvil expansion, over
tropical cloud clusters, to obtain rainfall estimates from IR brightness using geostationary satellite
data sets. This appears to provide somewhat more reliable estimates for daily fields, however
tropical radiance data from several geostationary satellites at intervals of every 15 to 30 minutes
are required for these computations and these are usually not properly archived for research.
Furthermore these types of data are not available for the operational stream in the near real time.

The present study confines itself to experiments from the 1979 data sets. We have utilized
the FGGE Ilc raingauge data archives for 1979 along with the satellite radiance data sets to
develop a regression as a first guess followed by an objective analysis (of 1° latitude/1° longitude
averaged raingauge data) to obtain a mapping of 24 hourly tropical rainfall amounts. This was
done for the entire tropical belt for the winter and the summer monsoon periods. Basically this
analysis, Krishnamurti et al. (1983a), preserves the 1° averaged raingauge values over the land
areas; however over the oceanic areas the analysis is largely regression dependent and is found to
underestimate the rainfall by as much as 100%. The regression is developed from observed rainfall
amounts, most of which are light to moderate with a few heavy falls. The rainfall obtained from
regression relation therefore, has a bias toward lower amounts. At the present time we have not
been able to improve the oceanic rainfall over the tropics. For the verification of precipitation
forecasts we shall use these data sets with the aforementioned limitations in perspective. The
following is a list of experiments that were carried out at the resolution T106 for the summer
monsoon FGGE period.
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Starting Date

1. May 6 12 UTC
2. May 9 12 UTC
3. May 11 0UTC

4. June 20 12 UTC
5. July 1 12 UTC
6. July 24 0 UTC

7. July 27 12 UTC
8. August 2 12 UTC

All of these experiments were run with the 12 layer version of the FSU model described in
Appendix I. Perhaps some of the major areas of differences in our model and the one being run
operationally at various centers are in the treatment of the surface layer physics, the modified
Kuo scheme for deep convection and in the initial analysis of the moisture field. By placing a
second computational level above the Earth’s surface (¢ = 1) at the level o = v/.99 we were able
to enhance the evaporation over the tropical oceans, Krishnamurti et al. (1989a), Manobianco
(1988). This has been shown to have a major impact on the prediction of tropical cyclones
(hurricanes and typhoons) and explosive cyclogenesis off the North American east coast.

Improvements in cumulus parameterization came from the use of a modified version of the
Kuo’s scheme, Krishnamurti et al. (1983b, 1988). Here the moistening, heating and rainfall rates
were optimized with respect to observations over the global tropical belt. This is based on a
statistical regression method where the moisture and heat budget, following Yanai et al. (1973),
are carried out using the FGGE data sets (ECMWF analysis and the FGGE Ilc raingauge data).
Based on these ‘observed’ budgets it is possible to optimize the classical Kuo’s scheme. Appendix
IT describes this method. A comparison of the classical Kuo (1965) scheme with the modified
scheme was illustrated in reference to the prediction of the formation of the onset-vortex of the
FGGE year, Krishnamurti et al. (1984). The classical Kuo scheme underestimates the heating,
and the monsoon onset is not predicted. With the use of modified Kuo a realistic prediction of
the life cycle of the monsoon onset-vortex was possible.

Another important factor for the improvement of this forecast was the use of envelope orography,
Wallace et al. (1983). The humidity analysis, beyond what was available in the ECMWF’s final IIT
b data set, was felt necessary. There was a significant mismatch between the location of clouds, as
inferred from satellite IR data in tropical moist and rain areas. The physical initialization process
entails running a reverse Kuo-algorithm that provides a consistent humidity analysis for a given
precipitation field.

3. Prediction of monsoon rainfall at different resolutions

A monsoon depression formed over the northern Bay of Bengal on July 29, 1979, around 1200
UTC. In the following three days this storm moved very slowly westwards and stayed inland close
to the Orissa Coast (near 15°N). The prediction as a function of increasing resolution exhibited a
major improvement in the position of the depression. Fig. 1 shows the analysis at 850 mb for day
5, i.e. for August 1, 1979, 12 UTC. The observed storm may be seen over the northeastern coastal
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Fig. 1. 850 mb flow field for August 1, 1979, 1200 UTC. Based on ECMWF’s FGGE IIIb analysis (streamlines:

solid line; isotachs: dashed lines, units ms_l). The black dots denote the position of the center of the monsoon
depression predicted by the global model at the resolution T21, T31, T42, T63, T106 and T170.

area of the Bay of Bengal. The black dots on this diagram show the position of the storm on day
5 for the different resolutions. At T21 this storm is located over southern India; with the increase
in resolution (T31, T42, T63, T106 and T170), this storm is located successively northwards to
its correct position at T106 and T170. The position error is quite large at the resolution T21.

The position error of the monsoon depression at the different resolutions seems to be closely
related to the forecast errors in the position of typhoon Hope over the western Pacific ocean. We
view a broad scale differential heating as an important aspect for the strength and position of
monsoon circulation over the Arabian sea and India. In this situation the heat source is defined
by the heavy precipitation of the typhoon, while the heat sink resides over the southern Indian
ocean near the South African Coast; with the increase in resolution, the heat source moves at
a more northerly position near Hong Kong. The zonal flow acceleration between the heat sink
and the source occurs at a more southerly latitude (near 7° to 8°N) at the resolution T21. On
the cyclonic shear side of the lower tropospheric zonal westerly flow, a cyclone forms near 10N
over southern India for T21. As the resolution is increased to T106 and T170 the zonal flow
accelerations between the heat sink (over the Mascarene high) and heat source (typhoon Hope)
occur much further north. A depression forms at the more correct position on the cyclonic shear
side of this accelerating zonal flow. Thus we find that the resolution has a strong impact on the
location of the typhoon and the broad scale monsoon current. Resolution errors are reflected in
both of these features that seem to be interrelated. This typhoon is discussed in section 7.

The predicted flow field at 850 mb for day 3, as a function of spectral resolution, is shown in
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Fig. 2. Predicted 850 mb flow field (streamlines: solid lines; isotachs: dashed lines, units ms”l) at different resolutions
of the global model on day 3.

Fig. 2. Here the results for the resolution T21, T31, T42, T63, T106 and T170 are shown. Of
interest here is the location of the monsoon depression and its shift to a proper location with
increasing resolution. The circulations were best described on day 3 at the resolution T106 and
T170. When we examine the velocity potential x (Fig. 3), at 200 mb for day 3, we note that a
divergent outflow center is located over southern India for T21; as the resolution is increased to
T170 this splits into two outflow centers. The northern one moves over the correct location of the
Bay of Bengal depression while the southern center moves over the Arabian sea. These shifts are
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Fig. 3. Predicted velocity potential at 200 mb on day 3 of forecast. Interval of analysis .12 x 107 m%s~ 1.

of the order of 1,000 km and show a significant impact of resolution on the forecasts. The three
day accumulated precipitation as a function of resolution is shown in Fig. 4. During this time
most of the heavy rain occurred over the Arabian sea coast of western India and the central Bay
of Bengal. This feature was resolved by the model at T63, T106 and T170. At the resolution
T21 the heaviest rainfall occurred over southern India. The heaviest accumulated 3 day rainfall
amounts over the depression for the resolutions T21 through T170 were 154, 190, 182, 198, 336
and 221 mm/3 days respectively.
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Fig. 4. Three day accumulated rainfall (nm/3 days) from the prediction of different resolutions T21 through T170.
The day O for this experiment is July 27, 1979, 12 UTC.

4. Ensemble average day 1, 2, 3, and 6 day predictions of monsoon rainfall (T106)

Here we shall show the skill of monsoon rainfall predictions of the FSU model at the resolution
T106 from ensemble averages of days 1, 2, 3 and 6 of forecast. The ensemble is based on 8
experiments during the northern summer of 1979 as listed in section 2. The ensemble average for
a day is the arithmetic mean of forecasts for that day for these 8 cases. In Fig. 5a through e, the left
panels show an ensemble based on observations, while the right panels show the predictions. Fig.
5a shows the ensemble average of one day forecast and the corresponding observations. All rainfall
rates are expressed in the units mm/day. As stated earlier the oceanic estimates of the observed
rainfall are too low and invariably the model predictions over the ocean are larger in comparison.
The ensemble of 1, 2 and 3 day rainfall shows a zonally oriented band of precipitation centered
along roughly 15°N. Heavy precipitation occurs along the west coast of India, the Burmese coast
of the Bay of Bengal, the Philippine sea and the western Pacific ocean. The model estimates,

although substantially larger over the ocean, are in close agreement with respect to the position
of the rainfall belt.
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Fig. 5a. Left panel shows the ensemble average of day 1 ‘observed’ rainfall for 8 experiments. The right panel shows
the ensemble average of day 1 predicted rainfall for 8 experiments.

Fig. 5b. Same as Fig. 5a for day 2.

The ensemble of the day 3 of ‘observed estimates’ compared to predictions does not show any
particular bias or growth of systematic errors. The land areas were relatively dry with rainfall
amounts less than 10 mm/day; that feature was handled quite well in the day 3 forecasts. In panels
‘d’ and ‘e’ of Fig. 5 we show the 3 and 6 day average rainfall amounts for the same 8 experiments.
The ensemble of 3 day averaged (i.e. sum of days 1, 2 and 3) rainfall shows a close agreement in
the position of the belt over the eastern Arabian sea, the eastern Bay of Bengal, the Philippine
sea and the western Pacific ocean. It is of particular interest to examine the 6 day ensemble
average rainfall (Fig. 5e). The comparison of the ‘observed’ and the model predicted amounts
are reasonable. A narrow zonal belt of rainfall along central India separates the heavier rainfall
over the Arabian sea and the Bay of Bengal. All of these features are reasonably handled by the
model. Similarly the 6 day averaged rainfall over the western Pacific ocean is quite reasonably
predicted by the model. The model predictions do not match the observation near the Persian
Gulf and the southern Bay of Bengal. These may be related to deficiencies in the initial wind
analysis and the definition of sea surface temperatures. The predicted Somali jet at T106 was
somewhat stronger and was located a few degrees north of the observed position. The cyclonic
shear side of the jet was also displaced somewhat farther north over the Arabian sea where the
model predicted excessive convection. This discrepancy may also be related to the deficiencies
of the regression method for ‘observed’ rainfall analysis, since it systematically underestimated
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Fig. 5d. Ensemble Average precipitation for day 1 to day 3; left panel based on observations, right panel based on
forecasts.
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rainfall over the oceans.

Overall the predicted 6 day averaged rainfall over the monsoon region appears quite reasonable
for the 8 cases that were run at the resolution T106. It appears that, given the FGGE quality data
sets, monsoon rainfall can be predicted for a period of about one week. We have not examined
the forecasts beyond one week since not many cases were run for that long a period.

5. Tropical cyclone rainbands

In this section we shall show a comparison of experiments on tropical cyclone rainfall from T106
as compared to results from a very high resolution regional model.

Using a sophisticated high resolution regional model (horizontal resolution of the order of 45 km)
and updated real data ‘perfect’ boundary conditions, the prediction of the landfall of a tropical
cyclone was carried out to 72 hours. The detailed rainbands simulated by the model’s precipitation
were in close agreement to detailed band seen from satellite photographs. A number of sensitivity
experiments were carried out. The starting date for the series of experiments was May 11, 1979,
00 UTC. The experiments utilized a domain roughly between 45E and 115E longitude and 8S to
40N latitude. The following is a list of experiments that were carried out.

- Regional model forcasts at a horizontal resolution of 1.875°.
- Regional model forecasts at a horizontal resolution of 0.938°.
- Regional model forecasts at a resolution of 0.469°.

- Global model forecasts at a resolution T1086.

Furthermore, regional model forecasts at the resolution 0.469° were carried out with the fol-
lowing options:
- Perfect boundary conditions with an improved parameterization of the ground wetness.

- Perfect boundary conditions with a simple formulation of the ground wetness.

- Boundary conditions obtained from T106 forecasts with the improved parameterization
of the ground wetness.

- Time invariant boundary conditions.

The details of these experiments are described in Dastoor and Krishnamurti (1989). The FSU
regional model is described in Krishnamurti et al. (1989b). Here we shall summarize the main
findings of the study that are relevant to the issues of tropical rainfall prediction.

The parameterization of ground wetness was a simple function of a prescribed surface albedo
field and the surface relative humidity. The more sophisticated parameterization of the gound
wetness was based on the following procedure.

- Following Luo and Yanai (1984) we carried out daily budgets of heat and moisture, i.e.
Q1 and Q2 based on the ECMWF FGGE IIIb data sets.

- We calculated the vertical distribution of the rate of radiative heating Qg from our
radiation algorithms.
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- From the vertical integrals of Q9 and Q1 — Q2 — Q@ we determined the surface fluxes of
latent and sensible heat following Yanai et al. (1973).

- ‘Thus we generated a data set for the summer season, i.e. the surface fluxes over the
tropics.

- Using the surface similarity theory as a framework we deduced a ground wetness para-
meter consistent with the latent heat fluxes. A data base for the ground wetness was
generated for the summer months. Given the surface fluxes, a data base for the ground
temperature was also prepared using the surface energy balance.

- The above ground wetness was next regressed as a function of the past 24 hour rainfall,
soil indices, surface albedo, ground temperature and relative humidity.

- This regression determines a parameterization for the ground wetness in the prediction
model.

Surface fluxes based on this parameterization at ¢ = 0 match closely those deduced from
diagnostic budgets of @Q; and Q3. In contrast, the fluxes implied by the simpler formulation of
ground wetness show a poor agreement.

In reference to realistic simulation of rainbands the following results were obtained from the
above experiments.

- The time invariant boundary conditions, based on the initial boundary values, failed to
produce realistic bands. The forecasts of the fields had the largest errors.

- The best results on the simulation were obtained when the so called ‘perfect boundary
conditions’ were used with the improved parameterization of ground wetness. Although
the simpler parameterization does not distort the rainbands, it contributed to a slightly
slower phase speed of the tropical cyclone. That was a consequence of drier soil condi-
tions in the simpler parameterization of ground wetness which did not take into account
the past rainfall. The slightly increased phase speed (100 km/day) from the improved
parameterization places the bands over the land area of southern India in much closer
agreement to those seen in the satellite imagery and the raingauge records. Figs. 6a and
b illustrate the rainbands as seen from the DMSP satellite for hours 12 and 36. The best
results are shown in Figs. 7a and b. These show the banded structure of the rainfall to-
tals (mm/day) for hours O to 24 and hours 24 to 48 respectively. The satellite imagery is
roughly centered in time with respect to these rainfall rates. In this experiment when the
resolution was decreased to 0.938° and 1.875° the bands deteriorated. The T106 global
forecasts simulate a rain belt in the correct position but fail to show banded structure.
That was also true for the regional model at the highest resolution when the boundary
conditions from the global forecast at T106 were used.

Basically we have learned that much higher resolution and improved surface processes are
needed to describe the tropical cyclone during its landfall. The boundary condition problem for
the regional model remains unsolved at the present time. The use of perfect boundary conditions
provides much superior simulation when compared to the use of high resolution (T106) boundary
conditions from a global model. The resolution of the transform grid at T106 is around 100 km
while the regional model resolution was around 45 km. This raises the possibility that we might be
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Fig. 6a. Satellite imagery (DMSP); May 11, 1979, 12 UTC.

better off using global model resolutions such as T230 and avoid lateral boundary conditions. This
would require formidable computations with presently available computers but seems necessary
because of the importance of the hurricane landfall problem.

Not mentioned in the discussion above is the issue of data sets. We have worked with the final
FGGE IIIb analysis produced by the ECMWF. Their product for the global experiment includes
a four dimensional data assimilation followed by a multivariate optimal interpolation. The quality
of the delayed data from the global experiment does seem quite impressive. The results, in general,
were quite poor when we used operational data sets, Krishnamurti et al. (1989a).
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6. Rainfall prediction - easterly waves

In a recent analysis on the performance of the ECMWF’s operational model (run at T106), Reed
et al (1987, 1988) examined the prediction over the west African - tropical Atlantic regions. They
noted that the analysis captures the basic structure of the African and the tropical waves. The
prediction up to days 2 and 3 resolves the horizontal flow field quite accurately. However, they
concluded that the precipitation forecasts do not agree with observations even at days 2 and 3.

We have examined numerous examples of developing and non-developing easterly waves for the
FGGE period utilizing the FSU T106 predictions. The data coverage during the FGGE period
includes the 2 to 3 years of delayed collection of marine, WWW, commercial aircraft and cloud
winds; this coverage is somewhat superior to the operational real time data coverage of the middle
1980’s that were used by Reed et al. (1987, 1988). The current operational data coverage is equally
poor over west Africa, Bengtsson and Shukla (1988).

Our results, with the FGGE data, in general show that African waves can be tracked across
the Atlantic ocean for time periods of the order of 4 to 6 days. The circulation forecasts are
remarkably good on this time scale. Some of the forecasts are excellent even on the medium
range time frame of 6 to 7 days. Here a typical example of an African wave prediction at T106 is
illustrated that shows a remarkable prediction of the rainfall following the wave to 72 hours. The
passage of this wave was reasonably predicted through day 6 of the forecast.

Here we shall consider a three day period starting on August 30, 1979, 12GMT. The observed
and the predicted wind fields at 850 mb over this domain for day 1, 2 and 3 of forecasts are shown
in Fig. 8. The panels 8a, b, ¢ and d show the 0, 24, 48 and 72 hour prediction. The trough line
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Fig. 8a, b. Observed (left) and predicted (right) wind field for hours 0 and 24 for T106 global model t = 0 is at 12
UTC on August 30, 1979.
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Fig. 8c, d. Same as Fig. 8a, b for th hours 48 and 72.

of the observed and the predictea waves are identified by a heavy dark line. The prediction of
the vortex to the north of Venezuela is handled extremely well by the model (at the resolution
T106). Two other easterly waves near 55°W and 10°W are reasonably handled by the model.
The phase speed of the latter was somewhat too fast compared to the analysis at 48 hours. The
major disturbance that is located near 70°-75°W eventually became hurricane Frederick by day 3
of forecast, Krishnamurti et al. (1989a).

Fig. 9 illustrates the rainfall prediction at the resolution T106. As stated earlier, the ‘observed’
rainfall amounts, based on regression methods over the ocean are highly underestimated. The
discrepancy is evident for three of the Atlantic waves. Between hours 24 to 48 the ‘observed
maximum rainfall’ for the three waves were around 34, 27 and 10 mm/day. The corresponding
predicted values are 70, 38 and 108 mm/day. The frontal rain along the east coast of North
America was also mostly convective. These oceanic rainfall amounts were also not adequately
described by the satellite regression; however, the predicted axis closely corresponds to a sharp
cloud line that was discerned in the satellite photograph for September 1, 1989 (hour 48). The
resolution of the basic IR data, 2.5° latitude/2.5° longitude, did not adequately resolve this
feature. Heavy rainfall amounts around 23 mm/day over the land areas of South Florida were
based on raingauge observations. The model predicted value over the region was of the order of
32 mm/day.



270 T. N. KRISHNAMURTI et al.

0BSYD DAILY PCP ENDING 24HR AFTER 08/30/73 07 INTs 10.0 358 24HR CuM PCP T106 FCST 24HR AFTER 08/30/79 02 INT= 10.0
~7

3asN

0BSYD DRILY PCP ENDING 4BMR RFTER 08/30/79 02 INT= 10.0

1SN

EQ T EQ
90K 75W 60K 45H 30W oW

Fig. 9a, b. These diagrams, respectively, show the observed (left) and the predicted (right) precipitation totals,
mm/day, for hours 0 to 24 and 24 to 48.

7. Typhoon rainfall

Here we shall illustrate the prediction of the rainfall rates as a function of resolution for typhoon
Hope. The details of the typhoon prediction are given in Krishnamurti and Oosterhof (1989). At
the T170 resolution a reasonable structure, phase and wind speed were predicted through the life
cycle of the supertyphoon. This forecast degraded as the resolution was decreased to T106, T63,
T42, T31 and T21.

There was a marked difference in the structure of the supertyphoon between the resolution
T170 and T106. The track prediction is illustrated in Fig. 10. Here we show the observed best fit
track, the track from the multilevel global model at resolution T21 and T170. Also shown here
is a track from a vertically integrated spectral shallow water model. Basically the best results
on track forecasts came from the multilevel physical model at the highest resolution. For further
details, reference should be made to Krishnamurti and Oosterhof (1989).

The dependence of maximum 24 hourly rainfall (between hours 48 and 72) as a function of
spectral resolution is shown in Fig. 1la. Rainfall rates show a marked increase with resolution.
This illustration covers the period of the most intense development of the storm. A geographical
distribution of the maximum rainfall (between hours 48 to 72) is shown in Fig. 11b. In this
illustration the intervals of analysis vary from 10 mm/day for T21 to 100 mm/day for T170. A
dramatic increase in the rainfall occurs as the resolution is increased from T106 to T170. Between
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Fig. 10. Barotropic (T170) and spectral (T170, T21) forecasts are compared with the best fit tracks. Days of forecast
are indicated on the side of the tracks.
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Fig. 11a. Maximum rainfall amount between hours 48 and 72 as a function of resolution.

hours 48 and 72 when the supertyphoon formed the maximum rainfall for the resolution T106
was around 260 mm/day; while at T170 the rainfall amounts approached 460 mm/day. With
this increased rainfall, the storm circulation increased in intensity and approached the observed
supertyphoon intensities by day 5. In contrast, the maximum rainfall at the resolution T21 was
around 24 mm/day between 48 and 72 hours. The sequence of 24 hour predicted rainfall for the
T170 forecast is shown in Fig. 12. This contains the sum of the convective and nonconvective
components.
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maximum rainfall between hours 48-72 is around 460 mm/day.
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While the maximum value of condensation heating increases rapidly with the increase of hori-
zontal resolution, the amplitude of the radiative cooling in the storm environment increases only
slightly. The differential heating between the storm rain area and its environment inceases rapid-
ly with resolution. That results in a rapid growth of the divergent circulation with resolution.
The divergent kinetic energy is rapidly transferred to rotational kinetic energy, i.e., the azimuthal
circulation of the storm.

Figs. 13a and b show the rate of transfer of divergent kinetic energy to the rotational kinetic
energy on day 5 when the storm had its deepest pressure and strongest intensity. These two
panels, respectively, show: a) this energy exchange at the resolution T170 during the life cycle
and b) as a function of spectral resolutions for day 5. The calculation of the energy exchanges
shown here cover a 10° latitude/longitude square centered on the storm and the computations
procedure follows Krishnamurti and Ramanathan (1982).
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Fig. 13a. Energy exchange from divergent to rotational kinetic energy for T170 storm at day 0, 1, 2, 3, 4, 5, 6.

Fig. 13b. Energy exchange from divergent to rotational kinetic energy as a function of spectral resolution at day 5.
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The storm intensity, track and structure are quite sensitive to cumulus parameterization. We
have noted a major deterioration of these features as the model physics (especially the cumulus
parameterization) is degraded. We feel that the present model has improved considerably in
describing the entire life cycle of a supertyphoon - i.e., from the depression stage to its eventual
landfall when it is weakened.

8. Concluding remarks

We have presented a brief review on the rainfall prediction with the FSU global model at different
resolutions. The lack of reliable observational estimates of rainfall (especially over oceans) is a
problem that will hopefully be faced with the microwave satellite technology of the next decade.
The model needs to address the cumulus parameterization more critically than has been done in
the past. The global cumulus parameterization was derived from the FGGE data sets for a resolu-
tion T42. The resolution dependence of cumulus parameterization requires further observational
field projects. Results thus far have used the ECMWZF’s FGGE IIIb data base. Experiments based
on these data sets suggest that rainfall prediction, up to about 5 or 6 days, over certain regions
of the tropics, seems quite promising. With further improvements in data coverage and analysis
procedures much further improvement in precipitation prediction can be expected in the coming
decades.
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Appendix I

BRIEF OUTLINE OF THE GLOBAL SPECTRAL MODEL

The current tests of the cumulus parameterization were carried out on the FSU global spectral
model which includes the following features:

a. Independent variables: (z, y, o, t),

b. Dependent variables: vorticity, divergence, surface pressure, vertical velocity, temperature
and humidity.

c. Horizontal resolution: Triangular 21, 81, 42, 63, 106 and 170 waves. These correspond
respectively to about 600, 400, 300. 200, 100 and 75 km distance resolution at the equator.

d. Vertical resolution: 12 layers between roughly 100 and 1000 mb.
Semi-implicit time differencing scheme.

Envelope orography (Wallace et al., 1983).
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g. Centered differences in the vertical for all variables except humidity which is handled by
an upstream differencing scheme.
h. Fourth-order horizontal diffusion (Kanamitsu et al., 1983).

[
.

Kuo-type cumulus parameterization (Kuo 1965, 1974; Krishnamurti et al., 1983b, 1988).

j. Shallow convection (Tiedtke, 1984).

k. Dry convective adjustment.

1. Large scale condensation (Kanamitsu, 1975).
Surface fluxes via similarity theory (Businger et al., 1971).

n. Vertical distribution of fluxes utilizing diffusive formulation where the exchange coeffi-
cients are functions of the Richardson number (Louis, 1981).

o. Long and shortwave radiative fluxes based on the band models (Harshvardhan and
Corsetti, 1984; Lacis and Hansen, 1974).

pP- Diurnal cycle.

q. Parameterization of low, middle and high clouds based on threshold relative humidity for
radiative transfer calculations.

r. Surface energy balance coupled to the similarity theory (Krishnamurti et al., 1987).

8. Physical initialization (Krishnamurti et al., 1984).

t. Dynamic normal model initialization (Sugi, 1986).

Appendix II

CUMULUS PARAMETERIZATION

Following Krishnamurti et al. (1983b, 1988) we shall define large-scale moisture supply by the
expression,

Pr
I, = l/ w@dp. (1)

We shall next introduce mesoscale convergence by 7, so that the total supply of moisture is
expressed by,

I=1I (1 +n). (2)

The maximum amount of moisture supply, following Kuo (1965) to produce a grid square cloud
is expressed by

_ 1 [PBgs—¢q
Q—Qq“i"Qe—'g‘_/PT A7 dp (3)
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L1 /'PB CpT(8s —0) = CpT 86

1 Za
g Jp, ST Y1 ap/%P (4)

The above two terms respectively denote the supply needed for moistening and heating of a
unit column extending from cloud bottom (Pg) to cloud top (Pr).

We next introduce a moistening parameter b following Kuo (1974). The rainfall rate R and the
total moistening M are expressed by the relations:

R=I(1-b)=1I(1+n)(1-b) (5)

M =1Tb=IL(1+n)b (6)

We shall next introduce two parameters ag amd aq by the relation,

_I(1-b) _ I(1+n)(1-b)
Qo Qo

ag

_I6 _ I.(1+n)b
Q¢ Qg

The first law of thermodynamics and the moisture conservation are expressed by

aq

o0 a0 1 po,R/C
— =V .V _— = - PH, 9
3t +wop Cp[p] c (9)
dq q
9 . y. 9 _p_
6t+ V‘I—Huap E - R, (10)

where Hc denotes heating by deep convection, the other forms of heating are not considered for
the present. The R is rainfall rate and E the surface evaporation rate.

Following Krishnamurti et al. (1983b), we shall next express the above two equations using ay
and aq in the form,

By a8 0, —6 39 ,
Cv.ove+wll = Al 1
ot T tug =l A7 Tz (11)
ae _ qs — ¢q
2t TV Va=a—. (12)

Thus far the parameterization is not closed since we still have two unknowns namely b and 7
(or ag and ag). We shall next write down expressions for the apparent heat source Q7 and the
apparent moisture sink Q3 in terms of the proposed modification of the scheme of Kuo.

Q1=—+4+V - VS+w— (13)
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T (65 — 6) Tao
07 o7
Qy = —L[a—‘t’+v-va+w£] (15)
— _a_‘
=~ Lot —wg) (16)

Here Hp denotes the radiative heating. The two unknowns ay and aq are related to the apparent
heat source and the moisture sink via the relations

g, (Ps— PT) Co fPB THde

1pr szr[ +wa—]

ag =

(17)

(18)

where Q;, Q, denote the vertical averages of Q1, Q2 between Pp and Pg. At this stage we shall
introduce nondimensional net moistening and rainfall by the relations

M _ (Q/L+]1)

— 9
I i (19)
R _ Q- CpT/8HpR
I I (20)

We now make use of atmospheric observations to define a closure for the two unknowns using
a multiple regression approach. The previous study was based on GATE observations where
the time series of M/I; and R/Ij were first constructed from the GATE A/B scale ship array
of data. These series were next subjected to a multiple screening regression with respect to
the time series of several large-scale variables. Among these, the 700 mb relative vorticity and
the vertically integrated vertical velocity @ appeared the most important. Thus we express the
vertically integrated moistening and heating rates by the regression equations,

M

— =aq¢+ v+ (21)
i A

R

+ =ag¢ +byw+ ey (22)
Iy,

It is easy to see that the closure of the scheme (based on ¢, @) yields values for any of the

following pairs: (M, R); (Q1, Q2);{(ag, aq); (b, n). The aforementioned calculations are carried
out on the sigma surfaces (¢ = p/ps) in a 12-layer spectral model.
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Here ¢ denotes the relative vorticity at the ¢ = 0.7 surface. The vertically averaged @ is from
o = 0.1 to o0 = 1.0, where w is determined from & by relation,

Olnp,
ot

w
P,

o +o +V . Vinps)|.

It should be noted that in these regression equations the rainfall rate R and the moistening rate
M are functions of three variables, i.e. I}, ¢ and @. In the present study the formulation of the
problem remain essentially the same, except that we shall estimate a global (tropical) rather than
a regional (GATE) regression. Thus in the present study the coefficients of multiple regression
ay, b1, az, by and ¢y, ¢y vary geographically. For this study we utilized global FGGE IIIb analysis
as a data base. The use of GATE observations in the previous study had the advantage that high
quality observations, uncontaminated by excessive analysis, provided the statistical correction for
the Kuo type cumulus parameterization. Although the FGGE IIIb analysis is based on the best
available global observations, it is not the same quality of time series data set as GATE over
many regions. However, the premise of the present study is that the global statistical correction
to the scheme of Kuo may provide a better description and prediction of the tropical precipitation
and the convective process in comparison to an application of the GATE findings. Furthermore
heavy precipitation rates in excess of 35 mm day_1 are not being handled by the previous scheme
(Krishnamurti et al., 1983b) due to the upper limit of the GATE histories. The limits of ¢ and @
outside GATE area in the previous scheme were restricted within the extremes observed during the
GATE. This was necessary as the regression equations were derived using parameters within these
limits. This restricted the tropical rainfall amounts predicted by this scheme to about 35 mm/day
consistent with GATE histories. That limitation is considerably relaxed by the global data sets
of precipitation in the proposed regression. The heavy orographic precipitation is another area
that is being handled in the present context.

The requirement for an additional moisture amount nIy, over a vertical column requires that we
remove an equivalent amount somewhere for moisture conservation. In the present formulation
that is executed mostly in the boundary layer. We require that

1
(g%t)/o (¢" — q)do = nI, (23)

where ¢* is a modified specific humidity and At is the time step. By setting ¢* = eq, where ¢ is
largest i.e. the planetary boundary layer. Thus,

1 1
R 1 1
¢ =gq[1+ nIL/(—gA—t) /0‘1 qdo] (25)

This parameterization is structured to the FSU global spectral model.
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