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RESUMEN

Se revisan las implicaciones de los procesos en cascada en los modelos barotrépicos y cuasi-geostréficos, usando la
conservacién de energfa cinética y enstrofia en el caso barotrépico y conservacién de la suma de energfa potencial y
cinética disponible, y de enstrofia potencial cuasi-geostréfica en el caso baroclinico.

El limite superior para las cascadas de energfa a través de un nimero de onda esférico dado, obtenido del teorema
de Fjgrtoft, es usado en el caso barotrépico para estimar la resolucién necesaria para impedir casi todas las cascadas
a través del maximo nimero de onda en el espectro computacional.

La generalizacién a modelos baroclfnicos cuasi-geostréficos da la posibilidad de estimar las resoluciones horizontales
y verticales requeridas para que, en la resolucién computacional, se limite la cascada de energfa total, a través del
méximo nimero de onda esférico y tri-dimensional, a una fraccién pequeiia de la energfa total inicial.

ABSTRACT

The implications of cascade processes in barotropic and quasi-geostrophic models are reviewed using conservation of
kinetic energy and enstrophy in the barotropic case and conservation of the sum of available potential and kinetic
energy and of potential, quasi-geostrophic enstrophy in the baroclinic case. The upper limit for energy cascades
across a given spherical wave number, obtained from Fjgrtofts theorem, is in the barotropic case used to estimate the
resolution necessary to prevent almost all cascades across the maximum wave number in the computational spectrum.

The generalization to quasi-geostrophic, baroclinic models gives the possibility to estimate the horizontal and
vertical resolutions required to limit the cascade of total energy across the maximum three-dimensional, spherical
wave number in the computational resolution to a small fraction of the initial total energy.

1. Introduction

In an important paper on atmospheric spectral dynamics Fjgrtoft (1953) investigated the energy
and enstrophy exchanges in two-dimensional, non-divergent flow. The major tools were the two
conservation theorems for this type of atmospheric flows, i.e. the conservations of kinetic energy
and enstrophy. The major result was the establishment of an upper limit to the amount of kinetic
energy which can be cascaded to small scales. It was also stressed in the investigation that a
fundamental difference exists between two- and three- dimensional flows in this regard because
truly three-dimensional flows permit the cascade processes to smaller and smaller scales.

It has been pointed out by Charney (1973) that an intermediate case is the one of quasi-
geostrophic flow. Two conservative quantities exist for this type of flow, i.e. the conservation of
quasi-geostrophic enstrophy and the sum of available potential and kinetic energy. An impertant
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restriction applies in this case, because the latter conservation theorem is true only in the case
where the temperature gradient vanishes at the surface of the Earth. However, if this were the case

a complete analogy would exist between quasi-geostrophic and two-dimensional, non-divergent
flow.

In addition to the general statement on cascade processes Fjgrtoft (1953) considers also the
special case of a low order system consisting of three components. He points out that under
conservation of kinetic energy and enstrophy a change in the kinetic energy on the middle scale
will produce changes of the opposite sign on the small and on the large scale. In addition, he
maintains that the change in the kinetic energy on the large scale is larger than the change on
the small scale. This widely quoted statement is not true in general as we shall demostrate.

On the other hand, studies based on observations seem to agree with the postulated theorem.
Early studies by Saltzman and Fleisher (1960), Saltzman and Teweles (1964) and Yang (1967)
are based on a decomposition in longitudinal wave numbers, while a later study by Chen and
Wiin-Nielsen (1978) uses a resolution in spherical harmonic functions. The study by Steinberg et
al. (1971) includes also the nonlinear interactions of enstrophy and potential enstrophy. All these
studies show that the kinetic energy is exported from the middle scale to both the larger and the
smaller scales with the larger amounts going to the larger scales. The question s 1s usual how
the empirical studies can be understood in terms of the present theory.

In the remaining part of this paper we shall discuss Fjgrtoft’s theorem and relate it to the
observational studies. Some remarks will also be made concerning quasi-geostrophic, baroclinic
flow.

2. Nondivergent, horizontal flow

Let us start by considering the two conservation theorems. Developing the stream function as
a series of spherical harmonic functions we can express the total kinetic energy and the total
enstrophy as infinite series. If n is the meridional index of the associated Legendre functions it
turns out that when we write the kinetic energy in the form

K=Y K(n) (2.1)

n=1
we get the series for enstrophy as follows:
o0
a’E= Y c(n)K(n) (2.2)
n=1
where a is the radius of the Earth and
c(n) =n(n+1) (2.3)

Considering next a low order system of three components it is important to note that only
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components which satisfy the selection rules of Platzman (1960) are of interest because all other
components have a vanishing interaction coefficient. Let m be the longitudinal index of the
associated Legendre functions. The selection rules are then for three components

m3 = mp + my
ng —n; <nzg <ny+ng

ni + ng + n3 is odd (2.4)

when it has been assumed that ny < ngy < ng.

(2.1) and (2.2) are for the three component system

Ki+K;+K3s=K

1K1 +c3Kg+c3 Kg= o’E (2.5)

It is straightforward to calculate the changes AK; and A K3 corresponding to a given change
on the middle component AKy. We find that

€3 —C2 €2 —

AKl = - AKz; AK3 = - Akg
3~ 0 €3 — ¢
AKl €3 —Cy
= 2.6
AK3 c2 — C1 ( )

It is obvious that AK;/A K3 is positive. To gain insight into the magnitude of the energy ratio
we notice that it is larger than unity if

1
ez < 5le1+e3) (2.7)

but it is possible to obey the selection rules and select components in such a way that (2.7) is not
satisfied. It was decided to consider a truncation at nmax = 25 and to compute the last ratio in
(2.6) for all selection rules (2.4). We still get a large number of “active” triplets. (2.7) shows that
if ny is selected close to n3 it is unlikely the inequality will be satisfied, while selecting ny close
to n; increases the likelihood that (2.7) will be satisfied. It is not practical to show all values of
the ratio, but to illustrate the remarks made above we may first consider Fig. 1 where the ratio
AK1/AKj is plotted for all active triplets as a function of n3 with ny = n3 — 1. Since ny and ng
have different parity it follows that n; must be even. As expected we find that the great majority
of the values of the ratio are less than unity. To be exact, only the triplets of the form (n, n + 1,
n + 2) produce a value larger than unity. Close to the other extreme we may consider Fig. 2 in
which ny = n3 — 7. In this case the ratio is larger than one for all active triplets. For the whole
sample of triplets it turns out that the majority produces a ratio smaller than unity.
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Fig. 1. The ratio K1/Kjs as a function of ng computed for n; = 2, 4, .., 22 and with na = nsg — 1. Only the triplets
of the form (n, n + 1, n + 2) result in a value of K; /Ky > 1.

In view of these results for the basic triplets which together make up the whole set of interactions
it is pertinent to ask why the obervations seem to agree with Fjgrtoft’s conclusion. The reason is
the way in which the results are presented in all cases. For a given truncation the wave numbers,
included in the calculations, are divided in three groups normally called the large, the middle and
the small scales. This means that we consider only three groups of waves. For each group we
may calculate the amount of kinetic energy represented by the group and an average scale. For a
group including all wave numbers from n' to n”, inclusive, we find

K(n', n")= Z K(n) (2.8)

n=n'
and the average scale ¢ from the equation

’
nl

cK(n!, n')= 3" ¢(n)K(n) (2.9)

n=n'

To use (2.8) and (2.9) it is necessary to have a spectrum of kinetic energy as a function of n. In
the following we use a spectrum based on the data from three months, J anuary 1983-85, inclusive.
For each month the spectrum was divided in two parts: the stationary part equal to the monthly
mean and the transient part which is the deviation from the monthly mean. Finally, the spectrum
for the stationary waves and for the transient waves were obtained as an average for the three
months. The spectrum covers the range 1 < n < 30 and were provided by Professor E. Eliasen.
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114 N,=Nn,-7

15 20 25
Fig. 2. Arrangement as in Fig. 1, but for n; = 8, 10, .., 16 and nz = ny — 7. Note that all values of K;/Kg are
larger than unity.

A comparison is first made with the early investigations where a truncation was made at n = 15.
Dividing the spectrum in three parts, 1 < n < 5,6 <n < 10and 11 < n < 15, we find using (2.8)
and (2.9) that

cr, = 22.64
cp = 76.48
cg = 174.98
and consequently
AK, AE,y
= 1.83; — =0.2
AKj ’ AE; 0.24

in qualitative agreement with the observational studies.
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The main aspect of this picture does not change if we use the whole spectrum. In the following
example we have used 1 <n <10,11<n<20,21<n<30 giving

cr, = 68.14
oy = 221.26
cg = 634.73
resulting in
AK, AE,
— =2.70 — =0.29
AKj; ’ AE;

The spectrum can be used also to calculate the upper limit for the energy cascade across a
certain wave number as determined by Fjgrtoft (1953). For these calculations we need the mean
scale for the whole spectrum. It can be obtained from (2.8) and (2.9) setting n’ =1 and n" = 30.
We find

c=177.43

From Fjgrtoft (loc.cit) we note that an upper limit to the fraction of energy which can cascade
across n = N is

> K(n)

n=N+1 c—c

<
S K(n)  NaTe
n=1

(2.10)

If for example, we want to estimate the upper limit to the cascade across N = 30 we find that
the right hand side of (2.10) is 0.18. We may also use (2.10) to estimate N in such a way that
the energy cascade across n = N is less than r. From

c—oc)

e 2.11
pyep—— (2.11)

we find

eN41 =l — (1= r)ey] (2.12)

Suppose for example that we judge that the observations do not justify a resolution higher than
N = 30. This does not mean that a prediction based on the data should be limited to n < N
because the nonlinear processes will cascade the energy to higher wave numbers. The calculation
above shows as a matter of fact that a fraction of 0.18 could be cascaded. (2.12) can be used
to calculate the prediction range if we want to guarantee that a fraction no larger than r would
be cascaded. If we go to the extreme setting r = 0.01 we find ¢N+1 = 17545 corresponding to a
maximum n of about 132. The same argument as above has been applied earlier in a qualitative
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sense by Wiin-Nielsen (1985) to explain why an increase in resolution without any better database
normally will provide a better forecast. The accuracy of the calculation will naturally depend on
the reality of the spectrum which is essential for the whole computation.

3. The quasi-geostrophic baroclinic case

Quasi-geostrophic baroclinic flow is governed by the equation

aQ _
E_O (3.1)
where
B0 (L N
Q=n+ (220, n=r s (3.2)

As indicated by (3.1) it has been assumed that the flow is adiabatic and frictionless. Under
these circumstances we expect that the sum of available potential and kinetic energy is constant
for the domain of the entire Earth. The potential enstrophy is also conserved over the same
domain. The change of kinetic energy is:

dK ”"// 28 dsdp,p:ﬁ (3.3)

The available potential energy is defined by

')b 2 *
/ § opo? " dp* P (3.4)
giving
3 fo *
/ 6t apo )dep (3.5)

Integration by parts using the boundary condition that

a
a:* =0, p'=1 (3.6)
gives
80 1ot ay* .
/ / [Btap apoa *2) dsdp (3.7)

We have, consequently,
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dE+4) _po il [g d , fo* ay .
i g /0 fs ¥+ 5 (opoz 3pr) | 9597 (3.8)

but using (3.1) we find that the integrand in (3.8) is

YV V=9V - (QV)=V-(Q¥v)-Q -V =V.(Q¢ v) (3.9)

We may thus conclude that (K + A) is conserved in an integral sense. Denoting the relative
enstrophy by

1 2
po 1.2 * 2 a , fo® 9y
E = — - d d M = V —_— 3.10
L gt e= Ve s L5 (3.10)
giving
Q=f+¢ (3.11)
we find after some calculation that
dE  po2Q} /‘1/‘ Y *
— = ——dsd 3.
dt ga? Jo 566)\ sap (3.12)

It turns out that E' is conserved under the boundary condition (3.6). To show this we need to
consider the integral in (3.12). It vanishes as shown in the Appendix L

In the following developments we shall express each of the two conservation theorems in wave
number space. For each isobaric surface we shall use an expansion in spherical harmonic functions
just as in section 2. In addition, it will be necessary for our purposes to find the vertical structure
functions which ideally should form a set of normalized, orthogonal functions over the interval
from 0 to 1 in the variable p*. Some degree of freedom exists at this point because the only
requirement of the quasi-geostrophic theory is that the static stability paramete: should be a
function of p only. The specific function is, however, not required.

If we want to cover the whole vertical interval we could, for example, in agreement with Charney
(1947) specify an atmosphere with a constant lapse-rate. In that case it has been shown by Jacobs
and Wiin-Nielsen (1966) that the vertical structure functions are a set of Bessel functions. Wiin-
Nielsen (1989) has discussed this case, and it is possible to define a set which satisfies all the
requirements. One may also approach the problem in a different way. It was noticed by Gates
(1961) that the static stability parameter

o= —a—— (3.13)

varies approximately as p_z. This observation has been verified using independent data, provided
we do not include the very high levels in the atmosphere (say 5kPa and above), in which case &

varies as p_s with & slightly larger than 2.
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The vertical structure functions are, in any case, solutions of the equation
(3.14)

d , fol dE, 2,
dp* “opo? dp* )+ 2qEqg =0

with the boundary conditions dE¢/dp* = 0 at p* = 1 and p = pr, where pr is a small value of
pr

the normalized pressure. We propose to use

c
o=— (3.15)
D«
in which case (3.14) becomes
d [ 2dEyg 2.,
P [p*a;] +AgEq=0 (3.16)
with
AZ = (g2 9P0
g =gq) 7o? (3.17)
One may verify that the required solutions are
Br") = () o {oin @9 — 20(0) o8 (u(0))} (3.18)
! (1+4p(g)%ér '
where -
¢ =~Inp', &r = ~lnpr, ug) =L (3.18)
€r
and where the factor in E4 has been determined in such a way that
1 2, *
/ Eq(q")"dp” =1 (3.19)
T
It can also be shown that the functions Eq(p*) are orthogonal, i.e.
1 * * *
/pT Eq(p")Er(p*)dp" =0, r#¢ (3.20)
We note finally that
2 2 1
w(a)" = A9)" - 7 (3.21)
which can be converted to
2 2172
o° /1 II
AP =L 21 ) (3.22)
4 &

oopo
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With these preparations we may write the streamfunction as a triple infinite series

(A ¢ p) =03 ¥(m n, )P (d)e ™ Eq(p*) (3.23)

g m n

In complete analogy to the nondivergent, horizontal case we get in this case

K+A= p"zzz )2+ A(@))¥(m, n, 9

ZZZ )2+ A(9)")?¥(m, n, g)? (3.24)

or writing
T(n, ¢) = (s(n)® +A(¢)>) Y. ¥(m, n, ¢)° (3.25)

we may write (3.24) in the following way:

T = K+A—’£ZET(n, 9)

F S al o', ) (3.26)
with

M (3.27)

2 2 2
a(n, 9)* =s(n)*+ )% s(n)?=
The numbers a(n, q) may for a given truncation in n and ¢ be arranged as an increasing series.
In the following we shall assume that this has been done, and we shall use r as the index for the
series so arranged. We may then define the mean scale m? by the equation

Z T(r) = E a(r)2T(r) (3.28)

r—l

We realize of course that in practice all spectra have to be finite. When we nevertheless use
an upper limit of infinity it should be understood that T'(r) will be essentially zero for sufficiently
large values of r. Suppose then that we divide the whole spectrum in two parts: 1 < r < R and
r > R+ 1. We may then define two mean scales corresponding to this division as follows

m*ZTr)—Za(rVT(r); mee 3, T(r)=

r=1 r=R+1

o0

> (n)’T(r) (3.29)

r=R+1
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From (3.28) we note that m > «(1), while (3.29) gives a; < m+ < a(R) and mas > a(R)).
With these definitions the system (3.26) becomes

SE + Sy = S°

m2Sf 4 m?, 8%, = m?sP® (3.30)

where

572 = Z T(r) (3.31)

r=ry
The solution of (3.30) is
St - miy = m? o Sfy _m’—ml r (3.32)
SP T mh—ml 5P  mi.m?
From the definitions in (3.29) it is clear that
m? < m?, (3.33)

but since the quantities on the left hand sides of (3.32) are positive it follows also that

mg <m< mg* (3.34)

The second ratio in (3.32) measures the fractxon of the total energy contained in the components

with r > R. This ratio would be unity if m? = m“, but this is possible only if m? > o(R+ 1)2

or, in other words, if we decided to make the division of the spectrum at a very small value of R.
We decide not to do that, and we can always guarantee that m? < ao(R + 1) We have then

SEi1 m? — a(1)? < m?
S T a(R+1)2-a(1)? T af(R+1)2

(3.35)

where the last inequality holds because m? < a(R + 1)2.

Using (3.35) it is possible to make some general statements about cascade processes. Suppose
for example that it has been decided that the obervations permit a resolution no higher than

a(RA) Such a decision can be made from diagnostic studies by saying for example that, r < R4
should contain 99% of the total energy. We consider this question in section 4. The initial
analysis consists then, in principle, of a spectrum, where significant coefficients in the spectral
representation exist for @ < a(R4). For this spectrum it is clear that m? < a(R4)%. Let us next
consider the resolution in the model, say & = a(R)ps). In general, we would want to use a higher
resolution in the model (i.e. a(Rpr) > a(R,4)) to give room for the cascade processes and thereby
prevent an undesirable false accumulation of energy on the highest wave numbers. The value of
a(Rpr) can be estimated from (3.35) by requiring that
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a(R4)? - a(1)?
a(Rp)? — a(1)?

<b (3.36)

where b should be selected as a reasonably small number. Suppose that B4 corresponds to n = 30
and ¢ = 3 which means an assumption that waves with a wavelength less than about 1000 km
cannot be analysed with accuracy and that three vertical structure functions depict the important
vertical scales. We would then have:

a(1)? = a(0, 1)? =2.64 x 107122

and
a(R4)? = (30, 3)% = 44.20 x 107122
Setting b = 0.05 we find that (3.36) is satisfied if
a(Rap)? > (1) + %(a(RA)z — a(1)?) = 8.34 x 10”1072

Having this value we enter the ordered table of a(r)2 - value, and we can, of course, find a
number which is closest to the estimated value. In this sense the problem has a unique solution.

Px

0.2
0.3
0.4 —
0.5
0.6
0.7
0.8

0.9 7

1.0

I T n |
-5x10° 0 Zm  5¢10° 10x10°

Fig. 3. Z’' = ®'/g as a function of normalized pressure p* = p/po. The curve, marked ex., is obtained from the exact
formula, while the curve marked n = 30, is obtained from the first 30 vertical components. The dots show the
values from the U. S. Standard Atmosphere.
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On the other hand, we have provided an inaccurate estimate using (3.36), and we have therefore
a number of possibilities, because the value of a(Rps)? can be approximaied by various pairs (n,
q). For example, the following pairs are all in the neighborhood of the estimated value: (112, 15),
(98, 16), (80, 17) and (56, 18). Even more extreme cases could be given with small values of n and
large values of ¢ or vice versa. The practical solution is normally to determine g separately in such
a way that the various parameters are described in a satisfactory way in the vertical direction.
Some examples are given in Appendix II and Figures 3 and 4. The estimates given above are based
on our knowledge of cascade processes in the atmosphere. We know from diagnostic studies that
potential enstrophy is cascaded toward higher wave nombers by nonlinear interactions (Chen and
Wiin-Nielsen, 1978) for sufficiently large wave numbers. This process will go on as the forecast is
produced by integration of the model equations. This means, considering the definition in (3.29),
that mfi will increase, while m?2 will decrease. (3.35) is then based on the fact that m? cannot be
less than «(1)%, while m? will remain larger than a(R + 1)%. It is also seen that these estimates
are quite inaccurate. Better estimates can of course be obtained by following the changes in the
two mean scales during a forecast. Although such experiments have not been performed, it is to
be expected that m? will not be as small as a(l)z, while m2, actually would increase during the
integration.

1.0
: ] I ] I
-5x10° 0 Zm 5x10" 10x10°

Fig. 4. A comparison of the exact curve, marked ex., and the curve obtained from the first 5 vertical components.

15
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4. An observational study

The purpose of the diagnostic study is to investigate the spectrum of the total energy A + K as
discussed in section 3 of this paper. The basic data available for the study were the coefficients in
an expansion of the relative vorticity in associated Legendre functions for a number of pressure
levels. We denote them Z(m, n, p*) where m is the longitudinal wave number, n the meridional
index and p* = p/po, po = 100 kPa. For our purpose we need to convert these to vertical structure
functions described in the previous section using the formula

1
Z(m, n, q) = [ Z(m, n, p*)Eq(p*)dp’ (4.1)
PT
where Eq(p*) is given by (3.18). The levels for p* were: 0.1, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50,
0.70, 0.85 and 1.00. The integral in (4.1) was evaluated using these levels and the trapezoidal
approximation. (3.24) was used to obtain all the terms in the summation leading to A+ K, noting
that

2

¥(m, n, q) = m

Z(m, n q) (4.2)

It was also decided to obtain A + K as a summation over n and ¢q by defining:

m<n

S(n, g = Y. z(m, n, q)° (4.3)

m=1
The largest value of n is 63 and that of ¢ is 5.

The calculation of the energy spectrum was carried out once a day, but we shall be concerned
mainly with the averaged spectrum for the month. The total averaged amount of energy (A+ K)
turned out to be 3962 KJm™ , and the averaged scale m? for the total spectrum is 2.715 X
10~ 1m ™2, which very nearly correspond to n = 15 and ¢ = 3. Another pair (n = 26, ¢ = 2) is
also close to the averaged scale, but we prefer the first pair because the meridional wave number,
n = 15, is more reasonable considering our knowledge of the spectra as a function of the meridional
index n from earlier studies (Chen and Wiin-Nielsen, 1978). The result concerning the averaged
scale is perhaps a little surprising at first glance considering that many prediction models had a
truncation at T'(15) (which means a triangular truncation at n = 15) in the early days of global
prediction. The explanation is of course that these models were not restricted to ¢ = 3 necessarily,
and, as we shall see, the addition of the contribution from values of ¢ larger than 3 makes quite
a difference.

In interpreting these results we should also have in mind that the averaged scale m? is defined
(see eq. (3.28)) as the scale which multiplied by the total energy gives the total potential enstrophy.
Geometrically speaking we may say that the area of the rectangle with the dimensions of the
average scale and the total energy is the same as the area under the curve of potential enstrophy
considering all scales. The average scale does not divide the energy or the enstrophy in equal
parts.

The next question is’how far we will have to go in the spectrum to be sure that we have resolved
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the major part of the total energy. We may for example decide that we want to find the value
o? beyond which we have only 1% of A + K. For this purpose we have computed the last ratio
in (3.32) which is the ratio of unresolved energy to the total energy. The result is given in Fig.
5 where the ratio r is shown as a function of «, given in the unit of 10~ %m. The curve is of
course by definition a decreasing function of a because the addition of an additional value of o
in the discrete set will automatically make the numerator SI°2°+1 smaller while the denominator
S1° remains the same. Nevertheless, the curve consists of regions, where the slope is very small,
followed by a rather abrupt change in r. The first “plateau” around r = 0.78 consists of values
with ¢ = 1 and a few values with ¢ = 2 and small values of n. As n increases, retaining ¢ = 2,
we drop to the next “plateau” around r = 0.60. The following almost horizontal level around
r = 0.40 contains pairs with ¢ = 3 and rather large values of n. Another level with r ~ 0.22
contains, in an analogous way, pairs with ¢ = 4 and moderately large values of n until the curve
falls to almost zero when ¢ =5 and n = 15.

1.0 —-

0.5

0.0

| [ I I I I I l [
1 2 3 4 5 6 7 8 9 10

ax10°m

Fig. 5. The ratio of the energy beyond wave number « and the total energy, including all wave numbers, as a function
of the wave number a.

From Fig. 5 we then conclude that 99% of the energy A + K is included if we truncate at
n = 15, ¢ = 5. The truncation just mentioned applies of course to the average spectrum for the
month. a4 will be the wave number corresponding to n = 15 and ¢ = 5, indicating that it may
correspond to the analysis or initial state. On this basis we proceed to estimate the largest wave
number in the model (aps) following the same procedure as in section 3. With

17
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m? — a(1)?

"< aMDE = a(1)?

=e (4.4)

we calculate a(M)? for m? = 2.715 x 107 11m ™2, (1) = 2.689 x 10712m2 and e = 0.02. We
have deliberately taken e somewhat larger than the analysis accuracy in view of the poor estimate
in (4.4). We find a(M)? = 1225.7 x 10" 2m ™2, The following pairs (n, q) are close to this value

n q
89 21
109 20
124 19
138 18

We notice that the values of n in the small table above are of the same order of magnitude
as those presently used in medium-range weather prediction models. It is more difficult to make
comparisons in the vertical direction because the medium-range prediction models normally use
gridpoints in the vertical direction and not vertical structure functions. In the data used for
the diagnostic study we had 10 information levels. The number of levels in the more advanced
prediction models is around 20. With the 10 analysis levels we have judged that a maximum value
of ¢ = 5 could be justified because E5(p*) has 5 zeros and the information levels are closer to each
other in the upper atmosphere than in the lower.

Table 1

The zeros of the functions
Eq¢(p*) for¢=1, .., 5.

=1 p* = 0.3699
q=2 p* = 0.6082, 0.1923
¢g=3 p* = 0.7178, 0.3332, 0.1546
g=14 p* = 0.7799, 0.4385, 0.2466, 0.1387
g=>5 p* = 0.8196, 0.5172, 0.3263, 0.2059, 0.1299

Table 1 shows the position of the zeros of E4(p*) for ¢ = 1, 2, .., 5, while Fig. 6 displays the
distribution of (A + K) on the five values of ¢. In the relatively large value of (A + K) even at
g = 5 we see an indication that the selected value of the maximum values for ¢ is not large enough
because one would expect smaller values of the total energy at this end of the spectrum. In any
case, we have provided an estimate of the resolution required to permit the enstrophy cascade to
large values of n and ¢ without damage to the prediction.
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Fig. 6. The total energy for the five first vertical wave numbers.

5. Conclusions

This investigation makes use of the conservation theorems for barotropic and quasi-geostrophic
flow to make an estimate of the resolution necessary in prediction models as compared to the
resolution in the analysis which is determined by the density and quality of the observations. In
the barotropic case the kinetic energy and the enstrophy are conserved in an integrated sense. It
follows from the conservation theorems that the cascade processes through nonlinear interactions
to smaller scales are limited. An analogous statement can be made for quasi-geostrophic, baroclinic
flow where the sum of available potential and kinetic energy, as well as the potential enstrophy
are conserved.

It is first demonstrated that an agreement exists between observational and theoretical studies
with respect to the nonlinear transfer of kinetic energy through the spectrum, when the whole
spectrum is divided in three-groups, i.e. the large, the medium and the small scales. It turns
out that the mean scales for each of the three groups in practice are separated in such a way
that, considering the three groups as if they were individual wave number with a scale equal to
the mean scales, the nonlinear interactions will transfer more kinetic energy to the larger than
to the smaller scales. This is not necessarily true for three arbitrarity selected wave numbers, as
demonstrated in the beginning of the paper.

The estimate of the required resolution in a barotropic prediction as compared to the resolution
justified by the data is based on the two conservation theorems which imply that the mean scale
is conserved. Dividing the whole spectrum in two parts, called the large and the small scales,
we observe that the mean scales of each of the two parts will change systematically during the
forecast because the enstrophy is transported across the dividing wave number from the larger to
the small scales. The mean scale for the larger scale will thus be smaller while the mean scale for
the other part of the spectrum will increase. This principle can be used to make an estimate of a
scale across which only a given small fraction of the total can be transfered.
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The generalization to quasi-geostrophic, baroclinic flow can be made, realizing that the con-
servation of kinetic energy is replaced by the conservation of the sum of available potential and
kinetic energy, the enstrophy is replaced by the potential enstrophy, and the two-dimensional
horizontal scale has a three-dimensional wave number as its analogue. A diagnostic study of the
data for January, 1983, providing a division as a function of the three-dimensional wave number,
shows that 99% of the total energy is accounted for if the truncation is made at n = 15 and ¢ = 5.
The results of the data study are then used to estimate the necessary truncation in the prediction
model.

The estimates are unfortunately not very accurate, but provide a first order of magnitude
calculation of required resolutions. An improvement could be made if a number of numerical
prediction integrations were performed.
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Appendix 1
We are first required to show that

7]
I= /sg%ds =0 (A.1)

In (A.1) we introduce the expressions for the nondivergent meridional wind component and the
relative vorticity. We may then write the integral in the form:

_/u /://22(30 Gu;((;s ¢>Uazd,\d¢ (A.2)

It is obvious that the first term in this integral vanishes. To evaluate the second term we make
use of the fact that the wind is assumed to be nondivergent and it is then seen that also this part
integrates to zero.

We are also required to show that the integral

1roy 8 (f2 oy
J :/ b < 9 >d dps =0 A3
o Js OX Ops \@pd Ops P = (4-3)

This can be done by integrating first by parts with respect to ps, using the upper and lower
boundary conditions. Thereafter it is seen that the remaining integral vanishes when integrated
with respect to longitude using the cycle condition for this direction.
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Appendix 2

The baroclinic case treated in this paper requires a decomposition in spherical harmonic compo-
nents and in the vertical structure functions. While the first part is done in daily operational
numerical forecasts, it may be of interest to consider the vertical decomposition. As an example
we consider the spherical harmonic component m = 0, n = 0 corresponding to the global mean
value. Starting from (3.15) we use the definition of the static stability to obtain an equation for
the globally averaged geopotential:

2
2d°¢  cv_dp 9
Ptd g + ; ‘7 = OopPo (A-4)

The solution to (A.4) satisfying the boundary conditions that ¢ = ¢o and T =T} at p« = 1 is:

2 2
o o RT
6 =d0— 20— (200 BD) (o pyin= R/ep (45)
K K K
From (A.5) we may compute the vertical average over the interval from pr to 1 and thereafter
calculate the deviation from the vertical average.

Fig. 3 shows the deviation from the vertical average from the formula above as well as the
curve obtained by computing the first 30 vertical components and recomputing the curve from
them. The dots in Fig. 3 indicates the values obtained from the U. S. Standard Atmosphere. The
30 components describe the exact curve with excellent accuracy except close to the boundaries.
This discrepancy is of course due to the unrealistic boundary condition of a vanishing vertical
derivative at the top and at the bottom of the atmospheric column. Fig. 4 shows that a quite
good approximation is obtained with only 5 vertical structure functions. This is important,
because only relatively few components may be computed realistically from the standard isobaric
surfaces.
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