Aimdsfera (1991), 4, pp. 145-164

Analysis of dynamic data assimilation for atmospheric phenomena.
Effect of the model order '

LUIS LE MOYNE HERNANDEZ

Centro de Ciencias de la Atmdsfera, Universidad Nactonal Auténoma de Mézico, 04510, Mézico, D. F., Mézico

JESUS ALVAREZ CALDERON

Departamento de Ingenieria de Procesos, Universidad Auténoma Metropolitana-Iztapalapa,
Apdo. 55534, 09840, Mézico, D. F., Mézico

(Manuscript received Feb. 1st, 1990; accepted in final form Nov. 14, 1990)

RESUMEN

Se estudia el problema del pronéstico del tiempo basado en el uso de informacién e priori a través de modelos
de principios ffsicos en conjuncién con medidas obtenidas sobre la marcha. Nuestras derivaciones de un algoritmo
de estimacién ponen en evidencia que para entender y explotar las técnicas actuales de estimacién se requieren
ingredientes de conocimientos fisicos de los procesos, técnicas para representar ecuaciones diferenciales parciales (como
un conjunto de ecuaciones diferenciales ordinarias), propagacién de errores numéricos y estimacién condicional en
estadfstica. Se concluye que la actualizacién del error estadistico de modelo as{ como del nimero y localizacién de las
medidas, juegan un papel importante en el desempeiio del estimador. Un tratamiento adecuado de los aspectos antes
mencionados, genera un estimador cuya aplicacién, tamafio, tratamiento numérico, esfuerzo computacional y medida
de red deben ser tales que se garantice un cierto desempefio manteniendo simplicidad y facilidad de implementacién.

ABSTRACT

The problem of weather forecasting based on the use of a priort information, from a first principles model, in
conjunction with on-line measurements is addressed. Our derivation of an estimation algorithm evidences that
understanding and exploitation of available estimation techniques require ingredients from physical knowledge of the
process, tools to represent partial differential equations (as a reduced set of ordinary differential equations), numerical
error propagation and conditional estimation in statistics. It is concluded that updating of the model error statistics
and the number and location of measurements play an important role on the estimator performance. A suitable
treatment of the preceding issues leads to an estimator whose accuracy, size, numerical treatment, computational
effort and measurement mesh can be chosen so that performance is guaranteed while keeping simplicity and ease of
implementation.

1. Introduction

Techniques for weather forecasting are an active area of research in atmospheric sciences. Accord-
ing to the deterministic or statistical nature of models used, those techniques can be classified in
three classes: fully deterministic, fully statistical and deterministic-statistical.

The fully deterministic techniques (Charney et al., 1950; Adem, 1962; Castro et al, 1985),
consist in the time integration of a model represented by a set of equations derived from first
principles (mass, momentum and heat conservation as well as thermodynamics and constitutive
equations). The time evolution of the model-reality missmatch is induced by the initial deviation,
with respect to reality, of the model and by a persistent exogenous deviation produced by the
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imperfections associated to both the conceptualization of the phenomenon and the numerical
approximations used to solve the model equations. It must be pointed out that the preceding
forecasting techniques do not possess a self-correcting scheme based on measurements received as
the estimator is running.

Fully statistical models (Le Moyne et al., 1986) consist of difference equations that describe
the temporal evolution of a set of statistical parameters that represent the state of the process.
The statistical model is usually a linear auto regressive moving average model (ARMA) built, not
from first principles, but from a priori study of the statistical behavior of discrete, in space and
time, data. Once this is done, available recursive statistical tools are used to devise the estimation
algorithm. Forecasting requires interpolation in space and extrapolation (to the future) in time.
The advantage of the recursive statistical techniques is that, by incorporating data (as they
become available), in a feedback scheme, the predictor acquires an error self-correcting feature.
The disadvantage is that the fully statistical technique ignores the knowledge, about the process,
available from research efforts on model construction based on first principles.

Deterministic-statistical models combine statistical and deterministic features (Miyakoda and
Talagrand, 1971). Our work is based on that kind of models.

In the communication and control theory (Kalman, 1960), the estimation of unmeasured
states based on incomplete noisy measurements has been addressed. Jones (1965) applied
Kalman’s, optimal estimation technique to meteorology forecasting using an ARMA-type model.
Petersen (1968) applied Kalman’s theory in meteorology to carry out objective synoptic observa-
tions. That is, he built a time-space statistical correlation to perform a space interpolation and a
time prediction.

Epstein (1969) used a deterministic model where he acknowledged an erroneous initial con-
dition that was modeled as a random variable. As a consequence, the deterministic evolution
model became a stochastic process that provided, in principle, the evolution of the probability
density funtion. However, it did not provide means to update the forecasting as new measurement
information became available (Jazwinsky, 1970). Moreover, posing the problem as a full charac-
terization of a non-Gaussian statistics leads to complicated numerical implementation problems.

Epstein and Pitcher (1972), faced the latter disadvantage by restricting themselves from the
beginning to a linear system with Gaussian statistics. As a result, two moments suffice to yield
a complete statistical characterization. Along the same line of work, Pitcher (1977) incorpo-
rated persistent forcing errors due to model truncation. This was accomplished by modeling the
truncation error as an additive, exogenous stochastic process. Miyakoda and Talagrand (1971)
used data over a period of several days with a deterministic estimator and obtained a forecasting
model which assimilated in an optimum way the observations as they become available. Ghil
et al. (1981) developed a shallow water model suitable for treatment with Kalman’s theory.
The estimator mode! used a finite difference approximation. The use of standard finite difference
techniques to represent the model may lead to an inefficient numerical algorithm. This is important
if we are interested in developing an optimal estimator, because the optimization of the filter
consisting on reducing (or increasing), the number of active states and it is not very easy in finite
differences.

Stochastic estimation based on combination of model prediction with actual measurements, is
a rather mature area in systems theory and has undergone ample testing in various scientific and
engineering disciplines.
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In athmospheric science, prediction with data assimilation has been a subject of study for
various decades. Only recently, that line of research has found a formalization and systematization
in optimal stochastic estimation theory (Ghil, 1981), Ghil, (1989) gave an overview on the state
of the art in prediction atmospheric studies. Although the estimation theory used is a standard
one, the value of that work is the move towards systematization in atmospheric prediction.

In this work we address issues which are relevant in understanding the model-based estimation
scheme and in implementing it efficiently. We derive the estimator model as one where three
kinds of model approximations have been made: conceptual, representation in a finite dimen-
sion and numerical time integration. The additional feedback introduced by data assimilation is
conceptualized as a devise to endow the predictor with ability to tolerate model and numerical
time-integration errors while maintaining precision.

Ghil et al. (1988), gave an overview on the state of the art on the meteorology applications of
sequential estimation with data assimilation. Their work was based on a Kalman estimator which
eliminated fast undesirable model modes.

In this work, we focus on issues relevant to the model-based, with data assimilation, stochastic
atmospheric estimator. Those issues are: effect and role of model order and sensors’ allocation
on estimator performance. Ultimately, recursive stochastic estimators combine and reconcile,
in a suitable manner, information from actual measurements and from a model. The estima-
tor model is posed as an approximation to reality which includes a sequence of approximations:
conceptual, representation in a reduced finite dimension and time integration. With standard
estimation techniques, we derive an estimator for a hemispheric barotropic model. Derivations
stress the appearance of all model estimator approximations. By doing so, we establish a fra-
mework which clearly shows how the estimator is conformed and how it works. Connections as
well as interpretations with physical aspects and numerical implementation issues are established.
Regarding estimator performance, we address three issues: the effect of order size of the estimator
model, the effect of updating the model error statistics and the influence of the number and loca-
tion of measurements.

To test the estimator under reality-model mismatch, estimator performance as a function of
the estimator model order (number of harmonics) was studied. The results show that a reduced
(simpler) estimator model with an adequate measurement mesh, suffices to yield adequate fore-
casting. It is concluded that the election of the number and location of measurements play an
important role on the performance of the estimator.

2. The deterministic model

The present technique is intended for a wide class of atmospheric models. Without restricting
the applicability, here the simplest barotropic vorticity model (BVM) is used to illustrate our
points. The BVM describes approximately the horizontal flow of an atmosphere, which is vertically
averaged, homogeneous, incompressible, inviscid and with vorticity conservation in all the flow
points. The BVM is described by the following equation (Charney et al., 1950 ):

ds _
2=V V=) (1)

where ¢ is the vertical component of the relative vorticity. V is the velocity and f is the Coriolis
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parameter. In natural coordinates, the preceding equation can be expressed, as follows (Silberman,
1954):

% 1,0 Vi o
—a—t—a( 0%+sin0 ﬁ)(§+2ﬂcos0) (2)

where « is the radius of the Earth. A and # are the longitude and the co-latitude, respectively.
V) and Vy are the components of the horizontal velocity and 0 is the Earth angular velocity.
Furthermore,
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This is a hyperbolic partial differential equation (PDE) with an initial value problem in time
and a boundary value problem in a two-dimensional space. Boundary conditions are accounted
by construction.

3. Reduced model for estimation
8.1 Discretization in space

Equation (5) describes the time evolution of an element [a function ¥ (A, 8, t)] in an infinite
dimensional space. As in a standard numerical technique, the estimator algorithm requires a
suitable approximation of the solution to equation (5) in a reduced, finite dimensional space
(Alvarez et al., 1981). In other words, the PDE (5) must be approximated by a set of ordinary
differential equations. In principle, model reduction can be achieved with any standard technique.
Among them are, finite differences, finite elements, spectral methods or combination of them.
Estimator performance is affected, in terms of accuracy and efficiency, by the selection of the
model reduction technique. A detailed study of this matter is beyond the scope of the present
work and here we circumscribe ourselves to work with one of the standard solution existing
procedures for equation (5): a global approximation in terms of a double Fourier series solution
with Orszag’s basis functions (Orszag’s, 1970). Orszag’s approximation is a suitable an efficient
model reduction technique which yields not only a small set of ODE’s, but also a numerically
well-conditioned problem. As we shall see, these features will be translated to the estimation
algorithm performance.

The stream function is approximated by a truncated double series:

n_1+m . .
P(X, 0, ) =a’QY_ 3 (Ui(t) cosih + V}(t) siniA) P} (sin 6) (6)
i=0 j=i
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where p are the associated Legendre normalized functions of the first kind of order ¢ and degree
7- U'( ) and V (t) are time dependent Fourier coefficients. For simplicity, time dependency will
be dropped from the notation. Substitution of (6) into (5) yields

dus S 2 .
I L Y S S
at  j(G+1) 37 +9)
dv?e . . 2 .
AL R LU (7)
dt JjG+1) 3G +9)

where E; and F; are Orszag’s coefficients (1970). Equations (7) contitute a set of ODE’s whose
states dependent variables are the expansion coefficients UJ’: and Vf.

To facilitate manipulations, the above equation set is rewritten in vector notation:

z=Az+b, z(0)=nzx, (8)

where

= [U}, U;..UL, UL, Ui .UP, Vll,...v,;"]

2
T a’f) [1 m ol m]
b = —|Ey,....., B Fy,...F,
J(j+1) 1 no» 1> n
oD
4= 92

where ( )T denotes vector transposition and D = diagonal m

8.2 Discretization in time

In principle, any standard numerical integration scheme (Euler, Euler modified, Runge-kutta,
Gear) for ODE’s can be used to carry out time discretization of equations (7). For a standard
numerical integration (as the one used in fully deterministic predictors), election of the time
integration technique is a crucial step that affects the performance and accuracy of numerical
integration. On the other hand, it is a well known fact in estimation theory that introduction of
measurements (as they become available), in a properly designed feedback, incorporates a self-
correcting capability to the prediction. Therefore, a properly designed estimator should be able
to yield adequate predictions in spite of using a simple, possibly less accurate, time integrator.

Following Alvarez et al. (1981), represent equation (8) as a difference equation:

(tyi1) = eAltkr1—tk) " +/ tk+1)b(7-)dr (9)
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Introduce an approximation: b(t) is taken as a piece-wise (staircase) by (t) constant function:

b(t) = b(tk), tp St <ty

Hence, the last equation can be approximated with the following first-order vector difference
equation:

Tg+1 = Fzp + Gby (10)

where
F=e4% b =b(t;)

G = APt At =tg 1 —tg (11)

Since (8) is a linear, time invariant equation, matrices F and G are not state or time dependent.
Therefore, F' and G are computed at once and stored. The aforementioned matrices are evaluated
with a truncated serie expansion for an exponential matrix (Balakrishnan, 1954):

AnAtn nAtn+1
F= Z and G = Z e (12)

The truncation is such that, for a given time increment At, the contribution of an additional
term in the series is less than a certain prescribed tolerance:

A"At"

€ :n;.;.XI fii = f,";_I l» [fz?] F= Z (13)

n=0

3.3 Relationship between measurements and model states

For the present application model, the sensors are assumed to be m geopotential measurements
at discrete locations in the two-dimensional longitude-latitude space. Measurements are available
at discrete points in time. The relationship between the m-dimensional measurement vector, at
time ¢y, and the model states (Fourier coefficients) is given by:

vt = |p(A1, 01, te), P(A1, 02, t)y-s (A2, 61, tr), p(Ag, O, tr)..

---;p()\m, 0m—1a tk),---,P()\m, Oma tk)

where p(};, 0;, t;) is the measured pressure at coordinates (};, f;) at time tj, expressed as
Fourier’s coeficients.

By definition, the evolution of the state x describes the process dynamics. In general, the
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measurements and the states do not have to coincide, the state vector z (in this case, the expansion
coefficients) and the measurement vector y; are related by: (see appendix A)

yk = Czg (14)

Cim = B+

aZQZ[gg (i +2)2 — m?
g ligV 4(i+2)2 -1

2(i+1) [i2 —m?
i—1 | 42 -1

P,Tl] cos mA

Where C is the transformation matrix between states and observations.

4, The Stochastic Model

In a realistic situation, the reduced model (10) is only an approximation to reality. The reduced
model contains errors due to: the conceptual simplifications underlying model (1), model reduction
via a truncation of an infinite Fourier double series (6), the assumption of piece-wise constant
exogenous inputs, and the truncation involved in the evaluation of the exponential matrix (11).
In addition, and due to model missmatch between expansion coefficients and actual observations as
well as to inherent uncertainties associated to the measuring devises, the measurement equation
(14) is not exact. To face these facts, the above model and measurement imperfections are
accounted for as additive random errors that enter the dynamic process at discrete points in time.
That is,

Tpi1/k = Frp + Gy + wy (15)

Yk = Czy + vy (16)

where wy and vy are vectors assumed to be stochastic time sequences with a characterized joint
statistics. wy and vy are zero-mean, independent, Gaussian sequences. That is,

E[“’"] :E[”"] =0 E[“"{”i] =0; k i=1, 2

where E [.] is the expectation operator. Model and measurement errors are uncorrelated (white)
sequences. That is,

T
E [wk wi] = 6kiQk, E [U;f Uk] = 63 By,

Where Q and By are error covariance matrices. 6; is a Kronecker delta (6;; = 1 if k = 4, and
0 otherwise).
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The presence of the stochastic input sequences induces statistical properties to the state and
measurement sequences (zx) and (yx). Hence, model (15 and 16) induces a joint statistics between
the state and measurement sequences, and therefore, it is possible to pose the estimation problem
as a conditional estimation: “given the past and the present measurements, obtain an estimate of
the states (expansion coefficients) n steps ahead in time”.

Before further pursuing, let us state a final assumption: the state and the error sequences are
independent. That is,

E[(xk - ?Ek)Tw,-] =0, E[(Ik - Ek)TUiJ =0; k, i=1, 2,...

where Z), = E[xk] is the mean of z;. Finally, an initial guess for the state statistics must be

assessed:

To = E[x"J’ Fo= E[(z — %o)(z — zo)T]

To conclude, the estimation scheme requires: a model built from first principles (F, G, C), a
sequence of measurements (yg), an initial state guess zo, and the value of the covariances P, Qy
and Ry.

The required initial state value and the error covariances can be seen as design parameters for
the estimation scheme. The election of those parameters should be guided, as much as possible, by
designer knowledge on: the expected errors of the one-step prediction model, information about
the uncertainty of the measurement, and the value of the initial state error. A great deal of
this information can be gathered before the estimation scheme is implemented. As we shall see,
the statistics design parameters can be adjusted either from a priori test or when the estimation
scheme is running. Regarding implementation on a digital computer, we are aiming to end-up
with a recursive estimator. In other words, the forecasting should be based on the storage of a
“moving initial condition” that contains all past information.

5. Construction of the estimator

The solution to the estimator problem can be obtained with various procedures (Meditch, 1969):
weighted least squares, minimum variance or maximum likelihood (Jazeinsky, 1970). Since equa-
tions (15) and (16) are linear and the statistics is Gaussian all procedures lead to the same result.

The time discrete version of the Kalman estimator has two advantages: the resulting estimator
is well suited for on-line digital computations and the estimator construction procedure shows, in
a transparent manner, the nature of the estimation strategy. Because the exogenous and initial
statistics are Gaussian and the system is linear, the (z) — (yx) joint statistics is also Gaussian and
therefore, the description of state estimate mean and covariance constitute a complete statistical
characterization.

Suppose, for a moment, that at time ¢; the mean and covariance of the state are known and that
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a prediction at time t;; (before receiving a new measurement yy ;) is required. This prediction
can be posed as a conditional expectation:

Zk1lk = E|Thi1)y, Ye—1-5 Yo

For the measurement update, we shall need the joint model-based statistics ley(x,y) at time
tk+1. Applying the conditional expectation operator E[(.) | y] to both sides of equation (15) yields

£k+l|k = kalk +Gbk (17)

The assumption of (wy) with zero mean has been used and hence, the noise term in equation
(15) has vanished. From equations (15) and (16) valuation of E [(zj, — ‘%k+1|k)(xk+l - i’k+1|k)T]

gives a one-step prediction of the estimate error covariance:

T
Prii1jk = PreF Py + Qk (18)
. ) T T
E{(ﬂikﬂ = Zp41)6) (Uk+1 — Cp|e) ] = CPekC (19)
J A ) T T
E[(yk-}-l = Czp k) Wr+1 — C2pqapk) ] =FPe1xC" + B (20)

Once the model-based prediction has been done, we proceed to evaluate the minimum variance
estimate of z;; when a realization (measurement) of y;; is available.

To facilitate manipulations, we introduce the following notation:

T =Ttk : model-based prediction of the state

T = ik+1|k+1 : estimate after measurement update

Y = Yk+1 ! measurement

y=0C% : model-based prediction of the measurement
Pz = Plc+1|k : error covariance before measurement update
Py = Pk+1|k+1 : error covariance after measurement update

T

T
Pry = FFyi1xC
+Rg11
K=K, : gain matrix
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Since the injected statistics is Gaussian and the model is linear, the minimum variance estimator
is a linear one (Jazwinski, 1970).

r=Z+ K(y—79) (21)

The value of the gain matrix K and the a posteriors covariance P can be obtained directly with
the orthogonal projection theorem (Anderson and Moore, 1979). This theorem can be thought
of as a corollary to the conditions for a minimum variance (MV) estimate which has replaced
the joint probability density function fzy(z, y) by the conditional one ley(x, y), by means of
theorem of Bayes (Anderson and Moore, 1970). The necessary and sufficient condition to have a
MYV estimate is given by the orthogonality of the state error (z — Z) with respect to the innovation

(v — ).
That is,
B|(z - 2)(y - 9)7| =0

where 0 is a n z m matrix with zero entries. Substituting (21) in the above condition and solving
for K yields

= -1
The a posteriori covariance is obtained from the Pythagorean identity in the probability space:
—_ J— —_—1=
Pzz:Pzz—szPnyzy (23)

Substitution of the a priori statistics (17, 18, 19, and 20) in expressions (21, 22, and 23) yields
the equations for the measurement update. The resulting equations for the recursive estimator

are:
Initialization
Zolo = o, Po|o =Fo (24)
Propagation
Zxr1k = FrZejks (25)
T
Pyi1k = Fe Py Fr + Qk- (26)
Update
X o T A
Lk = k-1 1 ke+1(vk — Ck Zgjx-1) (27)

T
Prik = FPrjk—1 — Bk+1Ck By (28)
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where

~1
T
kr+1 = Prje—1Ck [Ck Pyg—1Cr + Rk] (29)

The fundamental idea behind the construction of the estimator is to use data, as they arrive,
to reconcile, in the minimum variance sense, the model-based state prediction with the value
of the measurement. Note that if the prediction of the measurement coincides with the actual
measurement (z = Z), the state prediction is left unchanged by the measurement update.

Adaptation of the model error statistics

The matrix sequece Q) models the uncertainty associated to the model prediction. That un-
certainty is due to a model which approximately describes a physical phenomenon and to numeric
approximations to that model. Q@ can be assigned large enough so that all situations are consi-
dered. However, it seems natural to use the model-based prediction of the measurement and the
actual measurement to assess, in an adaptive fashion, the uncertainty Qy.

Since uncertainty (Qg) is injected to be model-based prediction step, the propagated uncer-
tainty (Py=;) is larger than the departure uncertainty (P). Mathematically this can be easily
seen: equation (16) shows that the matrix Py is result of adding two positive-definite symetric
matrices. As a consequence, any scalar measure of the error covariance matrix (trace, determinant,
maximum eigenvalue) increases. Usualy, Q; can be pre-assigned and kept constant. Because past
model error are available, it is natural to update the model matrix error covariance Q- Update
of Qf is a standard tool in estimation a theory Chin (1979) Mehra (1972). Phillips (1986) claims
that in the atmospheric practice, use of update matrix Qy is precluded because an excessive com-
puting time is required. However, the excessive computational effort may have its main cause
on the use of detailed models, large finite models and unnecessary accurate integration technics.
In the present work, we use simple reduced models and, accordingly, a simple time integration
technique. This alleviates the computational effort to store and update the matrix Qg. To retain
only the essence of a model error adaptive scheme, we use the following scheme:

Qr = a1 (30)

where aj is the mean squared measurement prediction error. That is,

1 T
ak = —1(yk ~ CrZr+1k) (Ve — CkTriajk) ()

6. Results

Numerical simulation tests were devised to illustrate the performance and to exhibit some features
of the estimation scheme based on data assimilation. The initial states (harmonic coefficient ), and
their initial errors statistics were obtained as follows. Using isohipsa data, over the a 5° lat, long
mesh, taken from Silverman (1954), the harmonic coefficients were calculated with a 100 harmonic
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series expansion. With the difference between Silverman’s isohipsae data and ours, a mean squared
average error for our harmonic coefficients were evaluated by means of expression (30). For the
n-th order (< 100) estimator, the initial state matrix covariance uncertainty is obtained from
(31). The renewal isohipsa data were assimilated at 2 hour time intervals. In our simulation,
the measurement data were provided by the numerical integration of the barotropic model with
100 harmonics. In other words, the numerical simulation (with an explicit Euler method with
integration step of two hours) with 100 harmonics acted as “reality”. At each time interval, as
in the initial assessment of uncertainty, the difference between the “reality” measurements and
the n-th order estimator predicted measurements, was used to assign the state model uncertainty
matrix Qy (eqs. 30 and 31). With one time-interval lag, the update of Q) provides the adaptive
feature of the estimator with respect to modeling errors.

As we say in section 3 (eq. 12), the time-integration for the n-th order estimator was done with
a further numerical approximation. While in the “reality continuous model”, an Euler (2 hours
intervals) was used, here, the time advance was done with the discrete model scheme (egs. 10 to
13).

6.1 Effect of the approzimation induced by the discrete nature of the estimator model

Figure 1 displays the estimator performance at a particular coordinate (15° north, 65° west).
This coordinate coincides with a measurement point which has measurement error. To exhibit the
effect of the discretization error, a full mesh data is used. The mesh consist of 1297 equidistributed
(5° apart) measurements. In this case, the estimator acts as a model-based filter that reconciles,
in a minimum variance sense, model and mesh data errors. If the measurement at that point
is erroneous (bias, mishandling) the estimator is able to attenuate the effect by using data from
all the mesh. In Fig. 1, Curve R (continuous) represents the “real” time evolution associated
to the 15°n, 65°w isohipsa. Curve M represents the predicted value from an estimator without

soo [

—.—— Model
5000 ceereeeee. EStimation
B Reality
'l L A L L L L 1 . 1 J
2 6 0 14 18- 22
TIME, hr

Fig. 1. Estimate of the (15° N, 65° W) geopotential hight from a full equidistributed (5° appart) mesh.
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data assimilation. As mentioned before, the difference between R and M is due to the integration
scheme. R used an explicit scheme based on an exponential transition matrix (see expression
11). Both R and M use 100 harmonics. Curve E is obtained when data are assimilated with the
estimation scheme. As expected, the estimator is able to track the “reality” in spite of modeling
inaccuracies.

6.2 The filtering-interpolation capability and the influence of the data location

In numerical approximation of partial differential equations (Voigt et al, 1984), it is known that
global methods (as expansions in harmonic series), lead to low dimension (number of expansion
coefficients) approximation models (ordinary differential equations). In general, those methods
suffer from a lack of robustness (ability to attenuate error propagation from equation residual
error to solution profile error). The later limitation is aggravated as the approximation dimen-
sionality increases. Adequate local methods (finite differences and finite elements) with adaptive
mesh are better suited to cope with the robustness problem. However, the later methods require
more elaborated implementations and lead to large dimensions in the approximated models. The
implementation limitations are further enhanced when dealing with models in two and three di-
mensions (when altitude is considered). Orszag’s (1970) global approximation is an ingenious
global method which retains simplicity and produces acceptable robustness because uses tailored
expansion functions. In this work, to obtain a small dimensionality in the estimation scheme,
we have chosen Orzag’s (1970) method. This should not be taken as a restriction because the
estimation scheme can, in principle, be constructed from any model numerical approximation
technique.

Because of the presence of feedback in integration, numerical integration is more robust than
numerical differentiation. The presence of additional feedback is due to measurement corrections
in the estimation algorithm. This fact offers the possibility of achieving robust predictions based
on global methods while keeping the algorithms simple and the dimensionality small.

-
6000 |
/ "‘——-“--«.“_-%‘“"‘
a 5500}
(-4
£ "
5000 B wee. Estimation
i I5° STATION AWAY Reality
1 1 1 1 1 L . 1 i 1 J
2 6 0 14 18 22

TIME , hr

Fig. 2. Estimate of the (15° N, 65° W) geopotential hight from four [(0° N, 65° W), (30° N, 65° W), (15° N, 50°
W), (15° N, 80° W)] surrounding measurements, which are 15° away.
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Figure 2 shows the estimator performance when only four data are used to estimate an isohipsa
(15° N, 65° W) which is not measured. The measurements {(15° N, 50° W), (15° N, 80° W), (0°
N, 65° W), (30° N, 65° W)] surround, 15° apart, the location of the estimated isohipsa. The initial
condition was taken with no error. In this case, the estimator produces a small error (about 50 m).
This simulation exhibits the combined filtering-interpolation capability of the estimator. Figure
2a shows the performance when three measurement points [(15° N, 20° W), (15° N, 110° W),
(60° N, 65° W)] , are used to estimate the isohipsa at (15° N, 65° W), in this case the information
is generated 45° away, and estimate convergence is slower. Figure 3 shows the performance when
three measurement points, 60° away [(15° N, 5° W), (15° N, 130° W), (75° N, 65° W)] are used
to estimate the isohipsa at (15° N, 65° W). In thi: cace, the measurements are so poor that the
the estimator fails to track “reality”, and a limitation of the estimator is brought up.
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Fig. 2a. Estimate of the (15° N, 65° W) geopotential hight from three [(15° N, 110° W}, (15° N, 20° W), (60° N,
65° W)] surrounding measurements, are 45° away.
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Fig. 3. Unsuccessful estimate of the (15° N, 65° W), geopotential hight from [(75° N, 65° W}, (15° N, 5° W), (15°
N, 125° W)] surrounding measurements which are 60° away.



ANALYSIS OF DYNAMIC DATA ASSIMILATION 159

The preceding simulations suggest that, for a certain region in the longitude-latitude space
the design of an estimator includes the establishment of an adequate measurement mesh. A
measurement mesh is characterized by the number and location of its measurement points. By
adequate we mean a measurement mesh with a reduced number of elements which yields accept-
able estimate performance (uncertainty and speed of convergence). A systematic treatment of
the mesh election goes beyond the scope of this work. At this stage, it suffices to conclude that
few measurements (15° away) are sufficient to provide acceptable estimates. The computational
effort required by the estimation scheme is significantly reduced when few measurements are used.
With few measurements, the quality of the estimate degrades as the measurements are scattered.
In fact, in our case, at 60 away, the estimator breaks down.

6.8 Model order and robustness

In comparison to a predictor without data assimilation, the model-measurement estimation
scheme should function with a rougher model approximation. This is so because the estimation
feedback enhances numerical robustness (ability to tolerate numerical error propagation). Here
we assess estimator performance in terms of the number of harmonics retained in the model
approximation. To do so, we carried out a study of a process where 4 measurement stations
[(10° N, 65° W), (20° N, 65° W), (15° N, 60° W), (15° N, 70° W)], forming a 5° side square, are
used to estimate the isohipsa at point (15° N, 65° W). Fig. 4 shows the estimator performance

soco]

~—.—.— Model
o—o—o 50 Harmonies

o—eo—e 30 Harmonies
—em— 10 Harmonies

5000 Reality

15° STATION AwAY

2 6 10 14 18 2

TIME, hr
Fig. 4. Estimator performance as a function of the number of harmonics retained in the estimator. The (15° N, 65°
W) geopotential is estimated from four surrounding measurements [(10° N, 65° W), (20° N, 65° W), (15° N, 60°
W), (15° N, 70° W)] which are 5° away

when 100, 50, 30 and 10 harmonics are used. As it can be observed, the estimator is able to
work, within acceptable precision, with only 10 harmonics. With less than 10 harmonics, the
estimator diverges. Figure 5 shows the results when the measurement mesh is moved away from
the prediction point. Now the measurement stations [(15° N, 50° W),(15° N, 80° W),(0° N, 65°
W), (30° N, 65° W)), are 15° away. Here, the filter works satisfactory with 30 harmonics. When
the measurements are moved 90° away the estimator requires at last 50 harmonics, this can be
seen in Figure 6.
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Fig. 5. Estimator performance as a function of the number of harmonics retained in the estimator. The (15° N, 65°
W) geopotential is estimated from four surrounding measurements {(0° N, 65° W), (30° N, 65° W), (15° N, 50°
W), (15° N, 80° W)] which are 15° away.
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Fig. 6. Estimator performance as a function of the number of harmonics retained in the estimator. The (15° N, 65°
W) geopotential is estimated from surrounding measurements [(75° N, 245° W), (15° N, 155° W), (15° N, 25°
E)] which are 90° away.
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Summarizing, the size of the estimator model depends on the size and location of the mea-
surement mesh. As the measurement points are closer to the prediction point, the estimator
error decreases. For example if measurements are 5° appart, there is a drastic (to 10 harmonics)
estimator order reduction

7. Conclusions

Every modeling process involves a deviation from reality where every simplification, calculus or
conception induce to more or less important errors, to avoid the real values. Only through a
feedback process one may correct the estimations of any model so to do with any other model of
greater efficiency, like our results show it.

As a part of a modeling process, the reduction in harmonics is able to yield a drastic reduction
of computer times at developed models. In series like those used in the present work, this is not
able of fact without the use of feedback processes because of the lost in preciseness.

Our results show the possibility to rebuilt useful preciseness, even, when the reduction in
harmonics is so drastic as the use of only 10 harmonics (only 10% of the original design used by
Orszag).

Data selection incorporated to a forecasting net, usually requires an objective process in com-
puter, for the initialization of the process. However, the dynamic initialization process like the
present is of a greater preciseness because, to every initialization, it incorporates the experience
in the former estimations, generally not taken in account in modeling of static initial conditions.

As it has been shown it is possible to reduce significatively the density in data necessary to
the initialization of the process because the sensibility in the equations to the data which is
incorporated.

On the other side the dynamic covariance allows the sensibility of the initial condition to be
adjusted giving as a result that corrections on introducing the feedback be as big as necessary
and therefore permits a dynamic incorporation.

We consider the formulation in Kalman’s theory is still able to give good contributions to the
optimization in the atmosphere estimation and its frame of applicability is still wide and requires
the most high finished attention.
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APPENDIX A
THE MEASUREMENT MATRIX C

The stream and surface functions are approximated by a truncated double series:

10 i410 ) )
(A, & 1) =a?2 D] > (UL(t) cosih + Vi (t) sini)) P} (sin 0) (1)
1=0 j=12
aznz 10 m+10
p= Z Z [A,m cosmA + B]" sinm)\ | P|" sin 6 (2)
g m=0 l=m

The relation between geopotential and the stream function are given by Holton (1979):
Vigp = 20sin V24 (3)
where g (gravity) is constant. From (1) and (2) the following laplacians are obtained:

10 m+10
V2¢ = —Q[Z Z (Up! cosmA + V' sinmA) Py 'n(n + 1)]

m=0 n=m

02 10 m+10
Z Z (n+ 1)(Ay' cosmA + By sinm)) Py (sin §)

m=0 n=m

Substitution of the last two expressions into equation (3) yields:

n m+n
0 Z z (A7 cosmA + Bl sinmA) P (sin 6)I(1 + 1) =
m=0 l4+m

n min
20%sin0 > 3 1(1 + 1) (U cosmA + V" sinmA) " sin 0
m=0 l+m

Recall the recurrence formula for associated Legendre functions:

1

sinP" = a1

sy {4+ P + 0= m et DR |

After comparison of power coefficients, one obtains the relationships between the two pairs of

U, _{1 AP _z+_z[(z+1)2—m2]1/2*
vim ] L2 \Bpm 1[40 +1)2 -1

(Uz?1>}l+ [412 ]1/2
Vit )t 12 —m?

expansion coefficients:
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This equation can be solved for the {A;, B;} set: Then, the measurement equation is given by

y=Cr

where

a202[2i (i+2)?—m?
i+2\ 4G +2)2—1 !

. .2 _ 2
2(,2+ ONK - m P,-'fl] cos mA.
1—1 42 -1
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