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RESUMEN

Utilizamos anélisis de Fourier y los resultados de Spiegel (1957) para calcular el decaimiento radiativo de una per-
turbacién de temperatura, pequefia, lisa y localizada en una atmésfera homogénea e isoterma bajo la suposicién gris.
Encontramos expresiones aproximadas analfticas para el decaimiento, tanto para los limites épticamente delgado
como grueso. Asimismo derivamos un método para checar la exactitud de la solucién o soluciones, utilizando la
conservacién de la energia de la perturbacién.

ABSTRACT

We use Fourier analysis and Spiegel’s results (1957) to calculate the radiative decay of a small, smooth, localized,
temperature perturbation in a homogeneous, isothermal atmosphere, assuming the grey case. We find approximate,
analytic expressions for the decay in both the optically thin and optically thick limits. We also derive a method for
checking the accuracy of the solution(s) using the conservation of energy of the perturbation.

1. Introduction

The radiative decay of sinusoidal temperature perturbations has been extensively investigated,
partly because such structures are so readily generated by various wave phenomena in planetary
and solar atmospheres, and partly because they are generally simpler than localized perturbations
to understand from a mathematical veiwpoint. Spiegel (1957) conducted the first rigorous deri-
vation of the linear radiative decay of a sinusoidal temperature perturbation. He examined the
restricted problem of an infinite, homogeneous, isothermal, grey atmosphere, and found the decay
rate to be dependent on the scale of the perturbation. Sasamori and London (1966) extended this
work to a non-grey, plane parallel atmosphere of semi-infinite extent, using several line and band
profiles, even the simplest of which required numerical techniques.

Gay (1978), Nagirner (1979) and Gay and Thomas (1980, 1982) showed that the effects of a
finite boundary are to impose discrete eigenfrequencies on the decay modes. Due to the presence of
boundary conditions the eigenfunctions of the controlling integral equation are not pure sinusoids,
in analogy to the eigenfunctions of Schrédinger’s equation in quantum mechanics. They discussed
how other complicating influences may be included in the calculation of radiative cooling by
exploiting the completeness properties of the eigenfunctions.
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The mathematical expressions for radiative relaxation in a realistic planetary atmosphere often
obscure the conceptual aspects. In this paper we consider an initial value problem in which a
grey, infinite, homogeneous atmosphere is subjected to a temperature “pulse” of finite extent. It
may be considered to be an extension of the work of Spiegel to a more realistic case in which all
spatial frequencies are present.

In section 2 we develop the necessary equations and obtain the closed form solution for the
temperature profile at all points in space and time. In section 3 we evaluate the solution numeri-
cally, in both the optically thick- and optically-thin limits. In section 4 we show how the sum of
the internal energy of the gas and the radiative energy may be evaluated. From conservation of
energy, this quantity is invariant in time, and therefore may be used as a check on the numerical
accuracy of the solution. In the last section we discuss the results and make recommendations for
future studies.

2. Development

We begin with the radiative transfer equation

dI
_d_.: = kLnPa(Iv - Sy) (1)

I, = spectral intensity,

s = distance along the light path,

k}' = mass extinction coefficient,

pa = mass density of the absorbing gas,

Sy = spectral source function.

With the usual convention for a plane parallel atmosphere, we write the intensity in terms of
upward (Ij’ ) and downward (I, ) components. Expressions for these two intensities can be found
from the formal solution to the radiative transfer equation for a plane parallel atmosphere. In
an infinite medium there is no contribution from the boundaries, so the upward and downward
intensities are:

fo'e] !
o e (20)
Ty H
Tv / '
Eww=[" a2 -tesidfu, (20)
—00 u
z
Ty = k;npadz (3)

is the vertical optical depth referenced to a plane at z = 0, which is at an arbitrary location.
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The equation governing a localized temperature perturbation can then be obtained starting
with the definition of the spectral heating rate:

dly
=-V.F,=-| ¥4
QV FV pu ds W,
where w is solid angle, and we have used the definition of the spectral flux, Fu. Substituting for
dly/ds from the radiative transfer equation (1), and assuming azimuthal symmetry yields:

1
Qv = 27k pg / (I - S} 4)

p.' = cos#,

where the sign of u' is indicated explicitly:

1 1 1
Qv =27k0pa([ Trap+ [ tran- [ Svdi). (5)
o [ -

Assuming that there is no scattering, k' may be replaced by x})°, the mass absorption coefficient.
Assuming that all sources are thermal in nature, we have Sy, = By (T'), where B, (T) is the Planck
function. We assume that the temperature is a function of a single position variable and time
only. Substituting Sy and (2) into (5), and performing the integration in the third term, whose
integrand is independent of direction, yields

' 1 Ty ,
QU = Zﬁﬁz‘pa [/ (/ dTLBV(rL)e—(Tu—TU)/“+
o — 00

/Too dr,',B,,(r,’,)e_(T"’_T“)/”> (i-—u - ZBV(TV)]. (6)

Assuming the grey case, k' = k permits immediate integration of this equation over all fre-
quencies. We define the total heating contributed by all frequencies, and write it in terms of the
change in temperature,

oo dT
/ del/ = Q = pth—az'(T, t),
[

where p; is the total gas density. Cp is the specific heat at constant pressure, and is more
appropriate than the specific heat at constant volume because the volume of an unconstrained gas
parcel will change as the temperature changes. At any rate, this effect is small in the linear approx-
imation used, so we will ignore any adiabatic temperature change effects. The Planck function
integrated over all frequencies is B = o‘BT4/7r,'where op is the Stefan-Boltzmann constant, so
(6) becomes
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1 '
dT _ 4Kpaop [1 / ( / R (0 VI /°° I The— (T ~T)/u) dp _ T4]_
dt ptCp L2 —o0 T u

The next step is to linearize the problem by assuming a small perturbation to the isothermal
background state, T'(r, t) = T + ©(r, t). Keeping only background terms, and terms linear in the
perturbation yields

de 4Kpa0'B |:1 /1 (/T 174 =3 '—(T—TI)
— 2| dr' (T + 4T 0O)e Ky
dt ptCp 2 Jo —o0 ( )

(e o]
/ dr'(T* + 4T3®)e—(f'—f)/u) d_:. — (T +4T°0)|.
i

Here we have used Spiegel’s result that the effect of the temperature perturbation through the
temperature dependence of the mass absorption coefficient, «, is zero to first order (Spiegel, 1957).
That is, the heating/cooling due to the change in extinction approximately cancels the change in
emissive cooling/heating. Note that © can be positive or negative.

The background state is constant, so the emission of the background atmosphere just balances
its absorption. Thus the terms describing the background radiative equilibrium state drop out of
the above equation. This leaves us with the equation governing the temporal and spatial evolution
of the temperature perturbation;

1 '
_dg = 7[1/ (/T d,—’@e“(T—T )/u + /oo dr'@e““l_r)/”) é’i — @] (7)
dt 2/ —00 T ¥z
16UBT3lcp
— a
T T Cope (8)

3. Solution and limiting forms
a. General

In an infinite, homogeneous medium this equation can be solved by separation of variables,
O(r, t) = 0(r)$(t). The usual method of substitution into the equation, followed by division by
0¢ and setting each side equal to a separation constant —n, yields a simple equation for ¢, which
has the solution

B(t) = ¢t = 0)e ™, (9)

where n is given by the second equation resulting from the separation:

n=°- —27‘;2—7_) /;1 (/_Too dr’0(T')e—(T_r,)/" + /Too dr'0(r')e“(T'—T)/#) d_:_ (10)
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The first step of the Fourier analysis is to assume spatial solutions of the form 0(r) = ¢'*". The
actual solution will be the real part of the solution produced by this procedure. The quantity k
is dimensionless, as a result of r being dimensionless. Solutions of this form also make the decay
rate of the solution dependent on the wavelength of the decaying (sinusoidal) perturbation. The
decay rate for each component of the perturbation is then given by

n(k) = v - %/01 (/_Too dr k5 =) /T°° drle(ik—‘l‘)(r'—r))%/_t.

The integrations over 7', and then K, are simple to perform and the imaginary parts cancel, so
we are left with

n(k) = '7<1 - %tan_1 k)

= ’1(1 - %cot~1 %), (11)

which is Spiegel’s result, except with a nondimensional wavenumber (Spiegel had k/x instead of
k as the argument). As he pointed out, this function increases monotonically from zero to v as

k increases from zero to infinity, as can be seen in Figure 1. We will examine its behavior more
carefully below,

The e*" form a complete set of linearly independent eigenfunctions, in terms of which any well
behaved function of 7 can be expanded. In general we can write down the solution for a single

sinusoidal component as ©(r, t) = Rp¢(0)e_"(k)teikr.rln particular we can choose an initial
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Fig. 1. The decay rate n(k) in units of ~.
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temperature distribution and find its evolution in time by adding up all of its (time dependent)
Fourier components, properly weighted by its Fourier transform;

©(r, t) = Re / % F(k)p(0)e "Bk gy,

= ¢(0) /Ooo F(k)cos(kt)exp (—'yt (1 - %tan—1 k))dk, (12)

where F(k) is the Fourier transform of ©(r; ¢t = 0). The evaluation of (12) is difficult for an
arbitrary temperature distribution. However, the exponential factor can be approximated quite
easily in both the optically thin and thick limits, and with a judicious choice of temperature
distribution we can obtain closed form solutions.

A particularly simple, but realistic initial temperature perturbation is known as the “Witch
of Agnesi”. It has the form ©(r, 0) = ¢(0)/(1 + (r/a)?), which is a bell-shaped curve with a
denoting the half-width at half-maximum. The single maximum is at 7 = 0, and the amplitude
falls off as (a/r)? for larger . Besides it’s “realistic” shape, it also has the attraction of having a
simple, exponential Fourier transform F (k) = ae~ %, However this still does not yield an analytic
result, and we must resort to approximating the decay rate n(k). As Spiegel noted, this decay rate
behaves approximately as k? for small k, which is the optically thick limit, while in the optically
thin limit n(k) approaches v, and becomes independent of k.

b. Optically thin limit

We will examine the optically thin limit first, in which the half width of the perturbation is
much less than one optical depth. Such a distribution is dominated by the larger wavenumber
components of the Fourier spectrum, which permits us to only approximate the decay rate for
large k. Hence it will be sufficient to approximate n(k) by a finite number of linear segments, the
number depending on the desired accuracy of the results and the actual width of the perturbation.

The approximation for n(k) can be succinctly written as

n(k) = {7(mik+ n;) for k; <k <kjyy, = 1,...,2}, (13)

where m; is the slope, n; is the “n-intercept,”, k; and k;;, are the domain endpoints of the ith

segment, and £ is the number of segments in the approximation. We can then write equation (13)
in the form

(4 k;
e =~ ¢(0)GZ/I; +1 cos(kr)e_ak_7t(m‘k+n‘)dk. (14)
1 '

The first segment must pass through n = 0 at k = 0 because k = 0 represents the isothermal
component of the perturbation, which cannot evolve with time in an infinite atmosphere. We can
make the last “segment” a horizontal half-line starting at k, and going out to infinity, since n
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approaches « for large k. Thus the last integral of (14) is an improper one, and when the limit of
kg1 — oo is taken its value becomes the value of the integral at k,. Each integral in (14) can be
evaluated using the same formula (Gradshteyn and Rhyzhik 2.662 # 2).

azr

/ e’ cosbr dz = 7 (acosbz + bsin bz).

€
a? +

Gathering terms in cos k;7 and sin k;r yields

o(r, ) = a®(0)(a + my~t)
(a +myyt)? + r2
L
a¢(0) Z{(El - E’g)re_ak‘ sin k; 7+
i=2
(a-+ mert) By = (a+ my_13t) e cos kir |, (15)
y — exp[—(m;_1k; + ny_1)71]
il k) = e e £ 12
E2 (t, kz) = exp[—-(miki + ni)’)’t]

(a+ mit)2 + 12

This is not a particularly transparent formula, but some features of its behavior can be easily
seen. When evaluated at ¢t = 0 the terms in the sum disappear and we are left with the initial
temperature perturbation, as required. If, instead, we examine the solution at r = 0 as a function
of time, we see that the coefficient of the cosine expression in the sum consists of two parts. Each
of these parts decays with time, but the difference between them increases with time because n(k)
is an increasing function of k. That is, each segment represents larger values of the decay rate
n(k) than the one preceding it. Thus, E; decays faster than Fy, and the net effect is to reduce the
amplitude of the perturbation monotonically with time. This. behavior characterizes regions near
the peak, while the temperature at outlying regions will initially increase with time as the positive
contribution from the sine term overcomes the negative contribution from the cosine term. Lastly,
for very large times the perturbation decays to zero amplitude, as can be seen by inspection.

Some examples of the evolution of the perturbation for various half-widths can be seen in
Figures 2a-c. They use the approximation for the decay rate given by (13) and the example data
given in Table 1, below. The behavior of the solution is what we expect intuitively; the initial
decay of the peak is relatively rapid, as the large-wavenumber components with their relatively
rapid decay rates disappear. The remaining, small-wavenumber, components give the distribution
its broadened appearance. It is noteworthy that despite the small number of segments (three)
used in the approximation of n(k), and hence the small number of wavenumbers which appear in
(14), the figures are distinctly lacking in the waviness we might expect.
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Fig. 2a-c. Temporal evolution of non-dimensional perturbation ©/¢(0) with half-widths of optical depths a) 1.0, b)
0.5, ¢) 0.25, using the optically thin description (Eqs. 15). Each curve denotes the shape of the perturbation at
the dimensionless time ~t.
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Table 1. Values for the limits, slopes, and n-intercepts of the line segment approximation of Spiegel’s decay function
n(k) used for Figure 2a-c

T k; my n;

1 0.0 0.05 0.0

2 0.15 0.2 -0.027
3 4.27 0.0037 0.812
4 51.0 0.0 1.0

¢. The optically thick limit

When the half-width is much greater than unity the initial perturbation is described primarily
by the small wavenumber Fourier components, and Spiegel’s function can be approximated by

n(k) ~7(1 - %(k— SE ))

~ T2 |
~ gk (16)

We will see in Appendix A that this result is identical to that of the Eddington approximation.
In our case the factor of 1/3 is a result of the approximation of tan" 'k for small k. Spiegel
identifies the factor of ~/3(kpa)?, which arises from writing k in dimensional form in the above
approximation, as a thermal diffusivity. This is appropriate because in the optically thick limit,
and in the grey case, radiative transfer can be described as a diffusion process; photons must
travel many mean free paths before escaping to the unperturbed regions. The process proceeds
differentially, so the problem can be reformulated as a differential equation. This alternative
derivation is pursued in Appendix A.

In either formulation the problem reduces to evaluating (12) with n(k) approximated by '7k2/3.
With this approximation the expression for the evolution of the optically-thick perturbation be-
comes

o0

_aek? —ak
o(r, t) qu(O)a/ e S cos krdk (17)
o

There are two readily available solutions to this integral. The first is from Gradshteyn and Rhysik
(3.897), and involves the “probability integral” ®(z).

o(r, 1) = 202 (e 1 - o) + 1 - 22, (18)

®(z) = % /: et at.

a-tir

Vat/3’
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A somewhat simpler form can be found in Abramowitz and Stegun (7.4.2).

1

o(r, t) = ¢(0)a5\/_i—7trRe ez'2erfi:(z*), (19)

where z* denotes the complex conjugate of z.

4. Energy density

Our use of a line segment to approximate the quadratic region of the decay rate spectrum should
lead us to suspect that the initial amplitudes of the small wavenumbers are overestimated, and
hence the long wavelength components are overestimated at large times. In other words the tem-
peratures in Figures 2a-c for large time are too large. To estimate how much error there actually
is in this numerical solution we may calculate how much energy is in the initial perturbation,
assume that energy is conserved, and then compare the energy in both thermal and radiative
forms due to the perturbation at later times with this initial amount. The perturbation thermal
energy of the gas Uy(t) can be found from the temperature perturbation, ©(r, t),

(o o]
Uglt) = mCp [ 0(r, t)dr. (20)
—Q0
The perturbation radiative energy requires more effort. The spectral energy density is defined
as
1 2r 1
w==>[ Ldw= —"/ Idu,
C J4m ¢ J~1

where ¢ is the speed of light. We can substitute for the integral of I, from (1) and then use the
assumption of only thermal sources to substitute B, for Sy and use the grey case assumption to
substitute x for kp*;

1
uy = Qv =l/ Budu.
cJa

PakC

After integrating over all frequencies to get the total radiative energy density, we can write
both @ and B in terms of the temperature

C 2
up = PO 9T | 2084
pakc Ot T

Linearizing this equation as before, and noting that the time-independent, background radiation
energy terms cancel, we obtain the perturbation radiation energy density as a function of position
and time.

ptCp 8O(r, 1) 203473
= +
parkc Ot cT

uy(r, t) o(r, t). (21)
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Integrating (21) over the whole medium and adding the perturbation thermal energy (20) yields
the total perturbation energy in terms of the temperature perturbation only, as a function of time,

o
_ pCp /°° 90(r, t) 8cgT /°° /°°
Up(t) = are ) o1 dr + re Joo O(r, t)dr + p:Cp - O(r, t)dr,

which can be written more compactly as

Up(t) = ZZ—%{LZ %dr+ [% + panc] /:: o(r, t)dr}. (22)

In the non-dissipative case treated here the total perturbation energy should remain constant,
and equal to the initial perturbation energy. In principle the perturbation energy at all times
can be evaluated using the approximate expression for © given by (15) or (18) in (22). Its
departure from the initial constant value is a measure of the overall error of the numerical solution.
Unfortunately the expression for the initial perturbation is time independent, which means that
one of the (time dependent) approximate solutions, (15) or (18), must be used in (22) to find
the initial energy. Thus even the initial energy will only be approximately correct, and must be
evaluated numerically, which means that this method will provide only a relative check on the
accuracy of the solutions (15) and (18).

5. Summary and conclusions

We have evaluated the initial-value problem of a one dimensional temperature “pulse” decaying
radiatively in a grey, infinite, homogeneous medium. We have presented numerical solutions in
two cases; that of the optically-thin and optically-thick limits. The results confirm our intuition
that the perturbation relaxes to the radiative equilibrium state by reduction of its amplitude, and
by gradual broadening of its width. At the same time, the relaxation time gradually increases,
with increasing spatial width. We have also shown how, in principle, the conservation of energy
may be used as a partial check on the numerical accuracy of the solution.

More realistic atmospheres and other temperature perturbations could be treated by evaluating
the closed-form solution (12) with modern numerical methods for determining inverse Fourier
transforms. Making the atmospheres non-isothermal, or perhaps bounded, but retaining the
radiative equilibrium, might be the easiest complexity to include. It would also be possible to
treat the non-grey case using some relatively simple line profile.
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APPENDIX A
An alternative development for the optically thick cases, when the half-width is significantly
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greater than optical depth unity, begins with the radiative transfer equation for an atmosphere
with no scattering, and only thermal sources;

a1
6_: = —ky pa(Iy — By),

where s is distance. The vertical optical depth will be dfined by e, = pk}’pas, and in an

optically thick atmosphere 8I,,/dr = 8B, /dr. Thus the radiative transfer equation becomes

dB,
or

Integration over solid angle gives the net spectral flux from the first term on the right hand side of
(A1) which has a component only in the 7 direction (use the scalar F,, to denote this component).
The second term on the right disappears because it is isotropic, which leaves

1
—-F, = 27r/ aBVpdu.
-1 aTy

Taking the divergence yields the spectral heating rate;

=

— B,. (A1)

aF,
aTy ’

Qr=-V-F, = —Kypaj

— 1 9%B,
= 4ZTKypPa 1 Wﬂ

By is isotropic, so the integration over  can be performed, yielding the familiar factor of 1/3,
which is the Eddington approx1mat10n (The average value of the squared cosine of the polar
angle).

As before we integrate over all frequencies to get the total heating rate, Q, which is equal to
ptCp0T /0t. Thus

OT  47mKpa 9’B
rCr5r ot~ 3 ar?’

Again, B = oBT4/ 7, and we linearize the equation by assuming an isothermal background
with a small perturbation, and keeping only terms linear in the perturbation. The equation for
the evolution of the perturbation ©(r, t) is then

Qg . 4fcpaaB4T3 2%e
at  3pCp 972’

This also can be solved by separation of variables, using —n as the separation constant and
the component functions © = ¢(t)x(r). The time dependence is given by the same function
#(t) = ¢(0)e™™, but this time n is given by a differential equation;
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Putting this in standard form leads us to look for solutions in the form of Fourier components;
X = e'kr, where k is defined by n(k) = gk2, which will be recognized as the small k approximation
of Spiegel’s n(k), equation (11). The total solution is then given by the real part of the Fourier
integral

S . tk?
O(r, t) = Re/ ¢(0)ae_kae’kre_13_dk
o

bt —alc——jﬂz1
= a¢(0)/ coskre 3 dk,
[+

where we can take the integral out to infinity because in the optically thick limit the perturbation
has very small contributions from the large k& values. This can be seen clearly in the Fourier
transform of the perturbation, which decays exponentially with k, with a “rate” a. This integral
is identical to (17), which is discussed in the body of the paper.
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