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RESUMEN

Para las aplicaciones practicas, la distribucién original de las intensidades de lluvia y la de sus méximas anuales son
ambas interesantes. La relacién entre estas dos distribuciones no pude obtenerse a partir de la teorfa clisica de los
valores extremos debido a la viariacién estacional y a la autocorrelacién en los datos. Los resultados matematicos
para la distribucién de los méximos en las secuencias m-dependientes se dan para ilustrar el efecto de dependencia
local sobre la distribucién de valores extremos. El ntimero promedio de excedentes en un racimo es un pardmetro
importante en la relacién entre la distribucién original y la de valores extremos. Para lluvias cafdas en los primeros
5 minutos, de datos provenientes de Belgrado, los cuantiles de los maximos anuales resultan sobre-estimados por
casi 10 mmh ™! sj el efecto de autocorrelacién se ignora. Este sesgo puede f4cilmente eliminarse, tomando en cuenta
el arracimaje local de grandes intensidades pluviales en una temporada lluviosa.

ABSTRACT

For practical applications both the parent distribution of rainfall intensities and the distribution of their annual
maxima are of interest. The relation between these two distributions cannot be obtained from classical extreme value
theory because of seasonal variation and serial correlation in the data. Mathematical results for the distribution
of maxima in m-dependent sequences are given to illustrate the effect of local dependence on the extreme value
distribution. The average number of exceedances in a cluster is an important parameter in the relation between
the parent and extreme value distribution. For 5-min rainfall data from Belgrade quantities of the annual maxima

are overestimated by about 10 mm h~! if the effect of serial correlation is ignored. This bias can easily be removed
by taking local clustering of large rainfall intensities in a rainy spell into account.

1. Introduction

Statistical information about the occurrence of heavy rainfall can be given in different ways. For
hydrological applications the data are often presented in the form of extreme value statistics
(usually annual maxima). However, this is not the most suitable form of presentation for every
user.

There is a relation between the parent and extreme value distribution. This relation is well-
known for independent random variables with the same distribution (Gumbel, 1958). Unfortu-
nately rainfall data over short intervals are neither independent nor identically distributed.

In most parts of the world there is an obvious seasonal variation in the occurrence of high

rainfall rates. For instance, in Belgrade (Yugoslavia), 5-min intensities larger than 25 mm h™1
only occur during the summer period May-September. Often there is not only an annual cycle
but also a diurnal cycle.
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Figure 1 gives three hypothetical situations in which there is at least one 5-min interval with
an average intensity greater than 10 mm hL Examples were found in De Bilt (Buishand, 1984).
In case A there is a single 5-min interval with a rainfall rate greater than 10 mm h_l, whereas
in the other cases there is some clustering of high rainfall rates due to dependence between the
rainfall amounts of neighboring 5-min intervals. In case B there is a run of two adjacent intervals
in which the rainfall rate exceeds the 10 mm h™! threshold. Case C is more complicated since
in this case there are two runs in which the threshold is exceeded.

A good insight into the relation between the parent and extreme value distributions of such
data requires some knowledge of modern extreme value theory. In this paper a number of
mathematical results for the distributions of maxima are discussed. These results are applied to
5-min rainfall data of Belgrade.
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Fig. 1. Examples of rainfall events with 5-min rain rates exceeding a threshold of 10 mm ht
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2. The distribution of maxima of independent random variables
Let Ry, Ry . . . . .. be a sequence of random variables and

Zn =max (Ry, Ry . . . . .. , Rp). In our application to the rainfall data, the R; will refer
to average intensities over consecutive 5-min intervals in a particular year.

In the first instance we assume that the R; are independent with a common distribution
function

F(r)=P(R;<r), i=1,...yn. (1)

Then for the distribution of the maximum Z, we obtain

Pr(Zn < 1) = Pr(Ry < 1yeeeeey Rn < 1) = F"(r). (2)

For large n the distribution of Zy is determined by the shape of the right tail of the parent
distribution F(r). Using the approximation

LaF(r) ~ —[1 = F(r)],

for large r we obtain

Pr(Zn < T) ~ e—n[l—F(r)] (3)
for the distribution of Z,. The quantity n[1 — F(r)] gives the expected number of E; that exceed
the threshold r.

In general, F;(r) = Pr(R; < r) slowly varies with i and for large r the process of exceedances
can be regarded as a nonhomogeneous Poisson process. Therefsre we can write

n

a(r) = )_[1 - Fi(r)] = n[1 - F(r)] (4)

=1

»

The approximation (3) becomes now as

Pr(Zn < 7) ~e ) (5)

The number of exceedances Sn(r) .of the level r has a binomial distribution that for large r
can be approximated by a Poisson distribution with parameter a(r). The approximation (5)
then follows immediately from the fact that Pr(Zn < r) = Pr[Sn(r) =0].

The accuracy of this Poisson approximation for Belgrade is shown in Figure 2, where f denotes
frequency and k the number of heavy one-day rains (higher than 25 mm h™! (Janc, 1987)).

In many applications the tail of the parent distribution can be approximated by an exponential
distribution. This implies that for large r

a(r) ~ e Te(rmua), (6)
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Substitution of (6) in (4) gives

Pr(Zn<r)~ exp[-e_r“(r_““)], (7)

which is a Gumbel distribution with location parameter ug and scale parameter 7;. Note from
(6) that uq is the value of r for which a(r) = 1, i.e., uq has an expectation of being exceeded
just once in a sequence of length n.
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Fig. 2. Empiric ( - ) and theoretic ( - - ~ ) Poisson frequencies (K denotes number of heavy one-day rains).

3. Extreme value theory for sequences of dependent random variables

Correlation between successive values in a time series does not always put limitations on the
applicability of the approximations given in the previous section (Leadbetter, 1983). For large
n, Eq. (5) can still be used if the following conditions are satisfied:

1) The sequence Ry, Ry, . . . . is a mixing sequence. In essence this condition requires that the
various terms in the sequence may only be weakly dependent when their separation in time is
large. For instance, in a mixing sequence,

Pr(Ry<r, Ry<r, R <r)
tends to
Pr(Ry <r, R <r)P(Ri<r) as k — oco.

2) The random variables R; and R; ;) are pairwise asymptotically independent in the right tail
for every k # 0, i.e.,

Pr(Riyp >1/R; >r)

tends to zero as r — oo. In particular, if we consider exceedances of a high-level r, there will be
no local clustering of such events (case A in Fig. 1).

Since sequences of rainfall amounts over certain time intervals are characterized by relatively
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short memories, we may safely assume that mixing condition 1 is satisfied. However, departures
from condition 2 may have a serious impact on the distribution of maxima.

To examine the distribution of run lengths in more detail, let us consider the event that a run
with length greater than 2 starts at t =7 4 1:

E; = {Ri <r, Ri+1 >r, Rijg 2>, R,'+3 >r} (8)

A sequence of 1-dependent random variables is characterized by the property that the events
{111 <7y Ry <r}and {Rj g <rjik,-.., Bn < rn} are dependent if k = 1, but independent
if k> 1.

For 1-dependent processes we obtain

PAE) = Pr(Ri <7, Ris1 21, Resg > 1) =

= Pf(Ri <r Ri+1 2 T)P"(Ri-i-s > 7‘), (9)
and thus

P (E;)
Pr(Rt < r, R‘+1 Z T)

< Pr(Riys > 7). (10)

The left-hand side of (10) gives the fraction of runs with a length greater than 2. Since, the
right-hand side of (10) vanishes as r — oo, it follows that for large values of the threshold r there
will be no run or hardly any runs with a length greater than 2. So for 1-dependent processes,
exceedances of a high-level r occur either as single peaks (case A in Fig. 1) or paired in a run
(case B in Fig. 1). To explain more complex situation like case C in Figure 1, we have to
consider higher-order dependence models.

9.1 Sequence with higher-order dependence

In an m-dependent sequence, events are independent if they are separated by more than m
time units (e.g., an mth-order moving average process). For the distribution of the maximum
Zy of such a sequence it was shown by Newell (1964) that for large n

Pri(Zn < 1) ~ e "Fr(Di), (11)
where D; denotes the event
D,' = {R,‘ > r, Ri+1 < T,....,R,'+m < r}. (12)
If m =1 then (11) is reduced to
Pr(Zn < r) ~e b0, (13)

where b(r) denotes the expected number of runs above the threshold r. The quantity nPr(D;)
gives the expected number of events Dy, Dy, . . . . that occur in a sequence of length n. If r is
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large then Pr(D;) will be small and the occurrence times of events Dy, Dy, . . . . approximately
form a Poisson process. The right-hand side of (11) gives the probability that none of the events
Dy, Dy, . . .. Dy occur in this limiting Poisson process.

When Pr(D;) varies with season, then in general the limiting process will be a nonhomoge-
neous Poisson process; this leads to the following asymptotic distribution for the maximum:

Pr(Zn < r) ~ exp[— Z Pr(Dy)]. (14)

=1

Let us now return to case C-in Figure 1. Assume that the rainfall is a 12-dependent process
(i.e., has a memory of 12 x5 min = 1 h). If we choose a threshold of 10 mm h™! then we have two
runs, but the event D; only occur at the end of the second run. In general, for the distribution of
the maximum the number of clusters rather than the number of runs or individual exceedances
has to be taken into account (Rootzen, 1978).

For the 1-dependent process, exceedances of a high-level r may occur in runs, but there is no
local clustering of these runs. If we have m-dependent process with m > 1 then it is possible
that runs also accur in bunches. In fact, there will be no clustering of runs if for large r

Pr(D,-) ~ Pr(R,- >, Ri+l < r). (15)

Then (13) can be used to obtain the asymptotic distribution of the maximum. In contrast
with the 1-dependent process, runs with a length greater than 2 need not be rare events. But if
for large r we have

Pr(D;) < Pr(R; > r, Riy1 <r1), (16)

then runs above the threshold r occur in clusters and (14) should be used to obtain the asymptotic
distribution of Zj.

An m-dependent sequence is a special case of a mixing sequence. The poisson limit for the
point process of cluster positions of high-level exceedances remains valid for these more general
sequences (Leadbetter, 1983). The nature of clustering of rare events can be derived from the
probabilistic structure of the underlying stochastic process.

In case C (Fig. 1) there is strong local clustering of large values. Therefore, instead of (14)
we can try the approximation

Pr(Zn <r) ~e <), (17)

where ¢(r) denotes the expected number of rainy spells in a sequence of length n with at least
one 5-min rain rate greater than or equal to the threshold r. Here a rainy spell is defined as
an uninterrupted sequence of wet 5-min intervals bounded on each side by a dry 5-min interval.
This is in fact a run for which the threshold r is equal to the smallest measurable rainfall amount,

(0.14 mm h™! at Belgrade) in sequence.

Equation (17) is based on the assumption that for large r the number of clusters in a sequence
of length n has a Poisson distribution with parameter ¢(r). To be more specific about the
distribution of Z, we need to know the form of ¢(r) for large r. If ¢(r) is exponential, ie.,

o(r) ~ eTelrmue), (18)
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then we obtain

Pr(Zn < r) ~ exp[—e (%)), (19)

Hence Zp has a Gumbel distribution with location parameter uc and scale parameter 7.

Note that is not necessary to describe the seasonal variation in the occurrence times of clusters
of rare events to derive the distribution of the annual maximum Zy,. For this purpose we only
need to know how the expected annual number of clusters c(r) varies with r.

4. Application to 5-min data for Belgrade

Thirty years of data (1951-1980) were digitalized from the self recording rain gauge of Belgrade.
From the 5-min data, estimates of a(r) and ¢(r) were obtained by counting the numbers of events
and rainy spells with a rainfall intensity of at least r mm h~! using Egs. (6) and (18). The
estimates &(r) and &(r) were plotted on a logarithmic scale (Fig. 3). From the figure it can be
seen that even for very high rainfall intensities, &(r) still differs from &(r). The ratio a(r)/é(r) is
~ 1.5 which means that there are on average 1.5 exceedances in a rainy spell. A consequence of
this local clustering of high rain rates is that Egs. (5) and (17) do not lead to the same result.

Straight lines are fitted in Figure 3 for r > 25 mm h™1l. The fit is reasonable and therefore

the approximations (6) and (18) can be applied. For r < 25 mm h™! the points deviate from
the fitted line. However, this has no serious consequences for the distribution of extreme values

because the annual maximum is nearly always greater than 25 mm h~L
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Fig. 3. Estimates of a(r) (crosses) and ¢(r) (dots) for 5-min rain rates at Belgrade. The quantities d(r) and &(r)
refer to a sequence with a length of one year. The straight lines represent the exponential approximations (6)
and (18), respectively; the curved line is based on the lognormal distribution (20).
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Fig. 4. Gumbel probability plot of annual 5-min rain rate maxima (dots) for Belgrade (30-year period). The

Gumbel line with parameters diq and 74 is based on the assumption that the data are independent, whereas the
Gumbel line with parameters @, and #. is obtained with a model in which dependence is taken into account.

From the straight lines in Figure 3 we can get an estimate of the parameters uq, 74 and uc, 7.
The Gumbel lines with these parameters are shown in Figure 4. The upper line with parameters
Gg and f3 should be the correct distribution of the annual maximum if the effect of dependence
could be ignored. This is not the case, however. Although the differences between the two lines
are not very large (~ 10 mm h_l), the lower line, which is based on a reasonable dependence
model, gives a better fit.

To correct for dependence we must have some idea about the average number of exceedances in
a cluster, i.e., the ratio a(r)/c(r) as an important parameter in the relation between the parent
and extreme value distribution. The nature of clustering of rare events can be derived from
the probabilistic structure of the under-lying stochastic process. As an alternative, information
about clustering of large values can be obtained directly from data. When this quantity is known
it is not difficult to derive the extreme value distribution from the parent distribution or the
right tail of the parent distribution from the extreme value distribution.

It should be stressed, however, that the chosen extreme value distribution only gives informa-
tion about the upper tail of the parent distribution. Although we may obtain the exponential
tail from the extreme value distribution it is dangerous to extrapolate this result to lower rain
rates.

From Figure 3 it is seen that the exponential distribution greatly underestimates the average

number of exceedances a(r) for rain rates less than 25 mm h™1. In the literature the parent
distribution of rainfall amounts over short intervals has often been approximated by a lognor-
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mal distribution (Marshall, 1983). The curved line in Figure 3 is based on the two-parameter

lognormal distribution
Enr — M
a(r) =nf1 - g(2T=E) L, (20)

where ¢( ) stands for the standard normal distribution function. The parameters p and r can
be obtained from ug and 74 using the relations (Singpurwalla, 1972)

r = 200n)"/?/(uara) (21)
and
m = enUQ — Tdn, (22)
where
dn = (26am)Y/? — £n(lnn) + tndm (23)

2(2Znn)1/2

This two-parameter lognormal distribution gives a reasonable fit for values of r between 10
and 90 mmh™! (Fig. 3). Extrapolations outside this range require further study of the shape of

a(r).

5. Conclusions

The classical theory of extreme values is based on the assumption that data are independent
and identically distributed. Even when the data are correlated the classical theory may give
the correct asymptotic distribution of maxima. However, the theory should be extended if rare
events occur in clusters. Then the distribution of maxima is not directly related to the average
number of exceedances of some high-level r as in the independent case, but to the number
of clusters with large values. This result holds not only for stationary sequences but also for
sequences with a seasonal component.

It is, of course, not always obvious how a cluster of rare events should be defined, but for
5-min rates at Belgrade it is sensible to look at the number of rainy spells in which the level r
is exceeded. This results in a better approximation to the distribution of annual maxima than
a model in which the distribution of extremes is related to the average number of exceedances
of some threshold r.
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