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RESUMEN

Usando la solucién de un problema adjunto especialmente formulado se deriva una férmula integral para estudiar
la respuesta de un modelo lineal. La férmula relaciona directamente cada caracteristica escogida de sensibilidad del
modelo con las variaciones de los datos iniciales, y del forzamiento. Por analogfa con la bien conocida funcién de
Green, la solucién de la ecuacién adjunta hace las veces de la funcién de peso (funcién de influencia). Un conjunto
de tales férmulas relativamente simples, provee un método efectivo para estimar la sensibilidad del modelo a tipos
diferentes de datos de entrada sin tener que resolver cada vez el complicado problema b4sico.

El modelo simplificado de tres dimensiones de interaccién atmésfera-océano para calor global, se toma como
ejemplo. El modelo se ha linearizado usando medias mensuales climiticas de viento en la atmésfera y corrientes
estacionales climiticas en el océano. Las estructuras espacio-temporales de las funciones de influencia calculadas
para las anomalfas medias de la temperatura de superficie para diciembre, para la parte europea de la URSS y el
territorio de los EEUU son mostradas. Las regiones de mximo local de la funcién de influencia muestran las zonas
de los océanos que son energéticamente activas. Dentro de los intervalos de tiempo en los que los méximos locales
existen, sélo las anomalfas en el flujo de calor localizados en dichas zonas son las responsables de la magnitud final
de la anomalfa de la temperatura media considerada.

ABSTRACT

Using the solution of a specially formulated adjoint problem an integral formula is derived for the study of linear
'model response. The formula relates directly every chosen characteristic of the model sensitivity to variations of
initial data and forcing. By analogy with the well-known Green function, the adjoint equation solution performs here
the role of a weight function (or influence function). A set of such relatively simple formulas gives an effective method
for estimating the model sensitivity to different types of input data without solving every time the complicated
basic problem.

The simplified three-dimensional global heat interaction model of atmosphere and ocean is considered as an
example. The model has been linearized by using the climatic monthly mean wind in the atmosphere and the
climatic seasonal currents in the World Ocean. The time-space structures of the influence functions calculated
for the December mean surface temperature anomalies of the European part of USSR and the USA territory, are
demonstrated. The regions of local maxima of the influence function show the energetically active zones in the
World Ocean. Within the time intervals while these local maxima exists, only the heat flux anomalies located in
such zones can be responsible for the final magnitude of the mean temperature anomaly considered.

1. Introduction

Process that forms monthly mean air temperature anomalies in limited areas is undoubtedly
of meteorological interest (see, for example, Adem, 1975; Miyakoda and Sirutis, 1985; Lorenz,
1984; Shukla, 1981, 1985; Donn et al., 1986). Besides, this problem can also be considered as
a part of more common problem of the sensitivity study of the atmosphere model with respect.
to variations of its initial data, external sources and internal parameters (Marchuk, 1975, 1979).
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With that end in view, a set of linear and nonlinear functionals of perturbations of the basic
solution can be taken as the indicators (measure) of the model sensitivity. Different mean values
of meteorological fields, the kinetic and the total energies, the enstrophy and other physical
characteristics of perturbations are the examples of such indicators. The choice of appropriate
functionals is determined by the aims and tasks of each concrete investigation. Needless to say,
that the results of the sensitivity analysis of any nonlinear model depend essentially not only on
the sensitivity indicators chosen, but also on the stability properties of the basic state and the
time-space structure of the forcing and the initial data perturbations considered.

The classical approach to the problem of model sensitivity includes the stability study of
particular solutions of the model with respect to variations of their initial data, external sources
and internal parameters. In particular, the linear stability problem to initial perturbations
means an analysis of the spectral properties of the operator linearized about the basic state. In
common case it is necessary to examine a structure of the stable and unstable invariant manifolds
of particular solutions, as well as to try to find the Liapunov functions or apply other methods.

In case we want to examine the linear response of the model, an alternative approach based
on applying the adjoint method and algorithms of the theory of small perturbations can be
used. The adjoint method is universal and constructive enough for estimating the response of
mathematical model with respect to small perturbations of the initial data and the external
forcing. For the wide class of geophysical problems this approach was suggested and developed
by Marchuk (1975, 1982) and Marchuk et al. (1985). A set of linear functionals representing the
different time-space means of perturbations of the basic state fields are considered here as the
main characteristics of the model sensitivity.

The adjoint method enables us to obtain the integral equations relating the sensitivity cha-
racteristics to small variations of input data. Besides, the solution of adjoint problem specially
formulated can be interpreted as an influence function because it characterizes the influence
of such variations on the magnitude of the sensitivity indicators mentioned above. Therefore,
the time-space structure of a certain solution of the adjoint equation (influence function), and
especially an information about the position and evolution of its local maxima and minima, fa-
cilitates better understanding the process that forms the linear response of the system. Besides,
this information gives a possibility to estimate the relative contribution of different types of
perturbations to the final value of the sensitivity indicator.

Thus the space-time structure of solutions of the adjoint problems specially formulated is of
considerable importance in the study of linear response of a model. These solutions play the
role which is similar to that of normal modes in the linear instability study (Marchuk and Skiba,
1990).

In this work the adjoint method is used for studying the formation process of the mean air
surface temperature anomalies in December above the European part of USSR and the territory
of USA in the framework of a simplified atmosphere-ocean-soil heat interaction model.

2. Atmosphere-ocean-soil thermal interaction model

The model domain D = Dj + D3 + D3 consists of the spherical layer D; of the atmosphere
(troposphere), the domain Dy of upper layer of the World Ocean and the domain D3 of up-
per layer of the soil (Fig. 1). Here Dy = {(A\, 9, 2) : (A, 9)e S, 0 < z < hy}; Dy =
{(x 9, 2): (A, 9)e Sg, —hy < 2<0}; D3={(7, 9, 2): (A, 9)e S3, —~hg < z < 0}; S =
S1 + Sz + S3 is the Earth surface, S; is the part of S covered by snow and ice, Sy is the ocean
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surface, S is the continent surface free of snow and ice, X is the longitude, 9 is the colatitude, z is
the altitude, z = h; is the upper boundary of D;, z = 0 is the interface between the atmosphere
and the ocean (or the soil), z = —hg and z = —hg3 are the lower boundary of the domains Dj
and D3 respectively.

Let T(\, 9, z, t) be a deviation of the air—, water—, or soil— particle temperature from the

basic state value T'(\, 9, z, t). Within the time interval (o, ) we consider the simplified heat
transport and diffusion equation

T . ,o.n 8, 8T 3
ass + div (uT) - E(Vb—z—) pAT =0, (1)

o
in the atmosphere domain D; and the ocean domain D;. Here u(z, t) = a(2)U(z, t), z =

=S
(A, 9, z), U is the wind (or current) velocity vector in D; (in Dz), p(z, t) and v(z, t) are the
heat turbulent diffusion coefficients in horizontal and vertical directions respectively, div ( ) is the
divergence operator and Aj is the spherical part of the Laplace operator, a(z) = Cp p(2) where
p(z) is the standard density and Cp is the specific heat. We suppose that a(z), Tz(n:, t), u(z, t)
and v(z, t) are the known functions in the time-space domain D x (0, ?).

The coefficients u(z, t) and u(z, t) are identically zero for all zeD3 and therefore in the soil
domain the equation (1) is the well-known one-dimensional (in z) heat equation.

As the initial and boundary conditions for Eq. (1) we take:

T(z, t) =T%(z) at t=0 (2)
Vﬂzo at z=hy, z=—hgy and z= —hg (3)
a9z
u%?—;— =—-F(\, 9,t) at z=0 on Sy, (4)
aT
bon = 0 on lateral surface Q2 of D, (5)

where 7 is the unit vector of the outer normal to  and T°(z) and F(), 9, t) are small
cleviations of the initial temperature and model heat forcing from the basic state quantities
T°(z) and F(A, 9, t).

On the surface S; (or on S3) at z = 0 we prescribe the ocean-atmosphere (or soil-atmosphere)
conjunction conditions which are typical for the diffraction problems when two media with
dissimilar physical properties interact with each other at the interface (Ladyzhenskaya, 1973):

[T]=T(, 9, -0, t) - T(A, 9, 40, t) =0, (6)
and

[ aT] = VBT

oT
VE' -a—z(A, 9, -0, t) —I/E(A, J, +0, t) =F (7)
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where, by definition, the symbols [T] and [v %—":—] mean the difference of the limit values (on the

interface 2 = 0) of the functions 7T'(z) and V%%(z) obtained from the ocean (or soil) domain
(¢ = —0) and from the atmosphere domain (z = +0). Thus, according to (8), the function
T(A, 9, 2, t) is continuous in z everywhere in the domain D. As to the equation (7), it is the
heat balance condition at the interface 2 = 0 between two media.

We also assume that the continuity equation

div w=0 (8)

holds for the velocity vector T in Dj and D;. Besides, the normal component of the vector u
to the lateral surface ) of the oceanic domain Dj is supposed to be zero:

—
u

-n=0. 9

The unique solvability of the generalized solution of the problem (1)—(9) within any finite
time interval (0, ) was proved by Skiba (1978).

3. The adjoint method

The direct method of analysing the sensitivity of our model consists in solving the problem
(1)—(7) repetedly for different variations of the initial data T°(z) and the forcing F(}, 9, t).
For complicated problem this procedure takes a lot of time and efforts. More efficient method
can be used if we confine the sensitivity study by analysing the behaviour of several linear
functionals of the perturbated solutions only (Marchuk, 1975, 1982).

Suppose we want to examine how the functionals

Sp(T) = /Ot‘/D p'(z, t)T(z, t)dz dt (10)

and

S (T) = /0 ‘ /S F*(\, 8, )T(), 6, 0, £)dS dt (11)

will change if the input data variations T°(z) and F(), 9, t) change. Here P*(z, t) and
F*(A, 8, t) are the known functions characterizing the sensitivity indicators analyzed. In this
connection, in addition to the main problem (1)—(9), let us formulate an adjoint problem based
on the concept of the adjoint operator in Hilbert space (Dunford and Schwartz, 1963). To do it

we introduce the Hilbert space L%(D) of real functions f(z) and g(z) defined in the domain D
with the inner product

<f,g>= /Df(x)g(z)dz (12)

and the norm

I fll=< £, £ >'? (13)
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To formulate the adjoint problem, note that under conditions (3)—(9) the advection opera-
tor A1T = div (T[T) is skewsymmetric, and the diffusion operator A3 = %(V%E) + ulqT is
symmetric in Hilbert space LZ(D) (Skiba, 1978), i.e.

< AT, ¢ >=<T, —A19g> and < AT, g >=<T, Ayg>

for all functions T and ¢ from the domain of the operator A; + Aj.
In the time-space domain D X (0, t) we put the adjoint problem:

oT* =y 0, OT* . _ s
—a— - div(uT") - E(V 32 ) —pAT =p (14)
T*(z, ) =0 at t=1 (15)
oT*
v =0 at z=hy, z=-hy and z= —hj3 (16)
*
Va;; =—F*(\,9,t) at 2=0 on Sj, (17
orT*
™ =0 on lateral surface Q1 of D; (18)

where p*(z, t) and F*(), 0, t) are the functions defined the sensitivity functionals (10) and
(11).

The conjunctions conditions on S; and S3 at the interface z = 0 are similar to (6) and (7):

[T*]= o (19)
.and
[uag; ‘] = F* (20)

Note that Eqs. (8) and (9) are also valid for the coefficients of the adjoint problem.
Let p* = 0. Then it can be shown (Marchuk and Skiba, 1978) that the balance equations

c% /D o(2)T(z, t)dz = /S F(), 6, t)dS (21)
and
55 [ @I (@ tyaz = [ 0, 0, 1)as (22)

are fulfilled at any time. Besides, the estimates of the solutions T' and T"* of the main and adjoint
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problems have the following form:

%/D a(m)Tz(x, t)dz < [gT(z\, 6, 0, t)F(X, 6, t)dS (23)
~ & |, T @ 0y < [ 10, 0, 0, 9F(, 0, )as 24

The integrals being in the left-hand size of (23) and (24), are equivalent to the norm (13)
squared. Suppose that F = F* = 0. Then (23) shows that the solution T'(z, t) is Liapunov
stable. The same is also true for the adjoint solution T*(z, t) provided the problem (14)—(20) is
solved from t = ¢ to t = 0. Thus the adjoint problem is well-posed if it is solved in the opposite
direction as compared with the main problem (1)—(9). That is why the initial condition (15) is
put at t =1t.

Taking the inner product (12) of Eq. (1) with the function 7" and of Eq. (14) with the
function T and subtracting the results obtained, we arrive at

S(T) = Sp+ (T) + Spe (T) = /0 ‘ /S T*(), 8, 0, )F(), 0, t)dSdt

* 0
+ /D ()T (z, 0)T°(z)dz (25)

Setting p* = 0 we obtain ¥(T) = Sp+(T). And if F* = 0 then (T) = Qp+(T). Hence,
the functionals Sy« (T) and S'p«(T) can be calculated not only by means of the main problem

solution T'(z, t) using (10) and (11), but also through the adjoint equation solution T*(z, t)
using formula (25).

Let us divide the interval (0, ) by N subintervals

In=(—-nr,t—(n—1)7) (26)

of the sufficiently small length r where n =1,..., N and t = Nr. Then the formula (25) can be
approximated by

N * 0
S, (T) 2 7 .32—:1 Rn+ fD o(2)T* (z, 0)T°(z)dz 27)
where
Rn= /S i (A, 0)Fa(), 6)dS (28)

and Tz (A, 6) and Fn(X, 6) are the mean values of the functions T*(}, 6, 0, t) and F(A, 0, t)
within the interval I.

Thus in order to apply the adjoint method for estimating the mean temperature anomalies
we have to solve the adjoint problem (14)—(20) and then use (25) or (27), (28). The structure
of the formulae (25), and (28), shows that the adjoint equation solution 7*(z, t) is the influence
function of the heat forcing anomalies F(), 8, t) and the initial temperature anomalies T°(z)
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with respect to the magnitude of the functional (25) or (27). By Eq. (28), if the positions and
the signs of the local maxima of T (), 6) and Fn(X, 8) coincide then the integral Ry, gives a
considerable contribution into the value of I;(T'). Conversely, if the spatial structures of Ty (2, 6)
and Fyp(), 0) are orthogonal, i.e. Rn = 0, then the anomaly F(A, 6, t) gives no contribution
into the value of ¥y (T) within the time interval In. As a result, the time-space structure of
the adjoint problem solutions enables us to analyze the process of forming the linear response
of the model. Actually, in each interval I, the local maxima of the influence function Ty (X, 6)
expose the zones on the Earth surface which give the largest contribution into the value of the
sensitivity indicator &+(T"). These zones are called the energetically active zones of the oceans
and the continents. Note that the time-space structure of Ty (A, 6) depends to a considerable
degree on the characteristic F*(, u, t), i.e. on choice of the sensitivity indicator, and also on
the wind and the current fields as well as the vertical turbulent coefficient in the upper layer of
the oceans (Marchuk and Lykossov, 1989).

Since ¥(T) can be defined by two equivalent ways (see (10), (11) and (25)), it is useful to
distinguish two opposite situations. If a lot of functionals are taken as the indicators in the
sensitivity study, but the number I of the pairs {F;(}, 8, t), T?(z)} analyzed is rather small
(i =1,...,I) then it is more efficient way to solve I times the main problem (1)—(9) and after
that apply the formulas like (10) and (11). In another case when I is large, but the number of
the sensitivity indicators is small then it is better to use the adjoint method and the formula
(25) (Marchuk, 1975).

4. Calculation of the influence functions

We now consider the results of two numerical experiments which have been carried out on
purpose to find the time-space structure of the influence function T*(z, t) in case when the
climatic December means of the air surface temperature anomalies for two limited areas are
taken as the sensitivity functionals (11). The limited area is the European USSR (hereafter the
region B;) in the first experiment, and the USA territory (the region Bj) in the second one. In
other words, the functional (11) is equal to

. ;
S e (T) = / [ T 60, nas a, (29)

At mes By Ji

in the m — th experiment where mes B is the area of Bm(m = 1, 2), and At is the one-
month period, besides, the interval (t — At, t) coincides with December in our calculations. The
functional (29) corresponds to

g i (A 0, t)eBm x (£ - At, T)
F* (A, 0,1) = (30)

o, otherwise.

Here the simbol z means the product of two sets By, and (t — At, f)

In accordance with the adjoint method, the functional (29) can be also estimated through the
Eq. (27) if the adjoint problem (14)—(20) is solved with p* = 0 and F* defined by (30).

Analysis of the adjoint solutions indicates tbat T* varies sufficiently slowly and smoothly
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in time, so that the approximate relation (27) can be used. The “information source” (30)
is non-zero within the interval (f — At, t) and equal to the zero in the interval (0, ¢ — At).
Therefore, while the adjoint equation is solved with F* in operation, the quantity 7*(z, t)
increases continuously on the interval (t — At, t) from the zero at t = t to a certain value at
t =1 — At, and then begins to decrease monotomcally because of large-scale diffusion. Hence if
the time interval (0, ?) is large enough then the quantity T*(z, 0) will be rather small and the
last integral in (25) and (27) becomes negligible. In this case Eq. (27) is reduced to

N
S (T) =1, / Ta (A, 0)Fa(), 6)dS (31)
n=1 s

It follows from (31) that within each interval Iy, the heat flux anomaly Fn(X, 6) has the
weight Ty (), 9). Thus, for each n(n=1, 2,...,N) the integration over the whole sphere S in
the formula (31) is reduced to that over the subset of S, which is an intersection of two areas
containing the non-zero (practically, only significant) values of Fu(X, 6) and T (), 0). Therefore,
the large values of Fn(A, 6) are of importance only in such subsets of the surface of the sphere
S where they are accompanied by sufficiently large values of Ty (A, #). That is why positions of
the local maxima of Ty, (X, 8) are of great interest for us.

The scheme time step equal to 6 hr, was chosen on the basis of many tests with the numerical
scheme used. Seven levels in z were considered: the levels 1-3 were in the atmosphere, the fourth
level corresponded to the interface 2 = 0, and the levels 5-7 were in the ocean or soil. Three
months interval, October-December, was taken as (0, #) and divided into 9 ten-day subintervals
In(n=1,...,9; see (26)). Thus r = 10 days and N = 9 in the formula (27). Besides, the intervals
I, were numerated such a way that I; corresponded to the last 10-day period of December
whereas Iy coincided with the 1st 10 days of October. The adjoint problems were integrated in
backward direction of time with the monthly mean climatic velocities in the atmosphere and the
seasonal mean climatic velocities in the World Ocean. Values of the vertical turbulent coefficient
in the ocean upper layer have been specified by the method that takes into account a variability
of the sea surface temperatures (Marchuk and Lykossov, 1989).

The correctness of the computation was monitored by checking the satisfaction of the balance
relation (22) for T*. According to (30), the integral

/D o(2)T* (=, t)dz

must be equal to the unit within the interval (0, £ — At) where F* = 0.

For n = 3, 6, 9 the contours of the function Ty (), ) are presented in Figures 1 — 3 for the
first experiment and in Figures 4 — 6 for the second one. The figures chosen reflect the most
characteristic features in the evolution of T*(), 6, 0, t). Within the intervals I} — I3 the non-
zero values of the influence function Tj; (A, 8) (n = 1 — 3) are only in the small neighbourhood
of the European USSR (Fig. 1) and the USA-territory (Fig. 4). Startlng from the time moment
t — At(n > 4) the forcing F* is equal to zero, and the distribution of 7*(z, t) depends on such
physmal processes as the advection and the trubulent diffusion. It results in generating the local
maxima of Ty (A, 8). For n = 6, for example, there are three local maxima of this function in
the 1st experiment (Fig. 2) and two maxima in the 2nd one (Fig. 5). Positions of some local
maxima within the intervals Iy — Iy demonstrate the role of the well-known energetically active
zones (EAZO) in the World Ocean (Marchuk, 1989) In particular, during the intervals Iy — Iy,
maximal values of T”(), ) are mostly located in the Norwegian EAZO, Newfaundland’s EAZO
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‘and Gulfstream’s EAZO in the 1st experiment (Fig. 3) and the Northern Pacific EAZO in the
2nd experiment (Fig. 6).

INFLUENCE FUNCTION, USSR, DECEMBER, 3-RD TEN-DAY PERIOD
30 N

SO N

60 N 60 N

30 N 30N

EQ €0

30 S 308

60 S

90 S| 90 S

1 180M 120W 60 W OE 60 E 120E 180E

Fig. 1. Experiment 1. Contours of the adjoint solution Ty (), 8). The rectangular frame shows the forecast
region Bj.
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Fig. 2. Experiment 1. Contours of the adjoint solution Tg (), 6). The rectangular frame shows the forecast
region Bj.
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Fig. 3. Experiment 1. Contours of the adjoint solution Ty (), 8). The rectangular frame shows the forecast
region Bj.
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Fig. 4. Experiment 2. Contours of the adjoint solution Tg (), 8). The rectangular frame shows the forecast
region Bj. '
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INFLUENCE FUNCTION, USA , DECEMBER, 6-TH TEN-DRY PERIOD

90 N 90 N

60 N 60 N

30 N 30 N

EQ £Q

30 S 30 S

160 S 160 S
30 S 80 S
1801 1204 60 W OE 60 E 120E 180E
Fig. 5. Experiment 2. Contours of the adjoint solution T¢ (X, 8). The rectangular frame shows the forecast
region Bs.

INFLUENCE FUNCTION, USA , DECEMBER, 9-TH TEN-DAY PERIOD
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Fig. 6. Experiment 2. Contours of the adjoint solution Tg (A, 6). The rectangular frame shows the forecast
region Bs.
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According to the formula (31), an information about values of the heat flux anomalies
F(), 6, t) is of considerable importance in the zones of local maxima of T*(}, 6, t). Thus,
within the framework of the present model it is possible to study the mechanism of the relation
between heat flux anomalies F and the ultimate changes in the monthly mean temperature for
various regions of the Earth. Of course, to get more exact information about the time-space
structure of the influence functions T* we should especify the wind and current velocity fields
as well as the turbulent diffusion coefficients in the atmosphere and ocean.

APPENDIX
FACTORIZATION METHOD IN THE ATMOSPHERE IN MERIDIONAL DIRECTION

The three-dimensional non-stationary problems (1)—(9) and (14)—(20) have been reduced to
a set of one-dimensional simple problems by using the splitting-up method (Peaceman and
Rachford, 1955; Yanenko, 1959; Marchuk, 1982). These simple problems are successively solv-
ed by the direct (i.e. exact numerical) methods without any iterative procedures, besides, the
Crank-Nicholson scheme is applyed for the time approximation on each splitted step. As a
result, the finite-difference scheme is of the second order in spatial and time variables. All the
numerical algorithms are described in detail in Skiba (1978) and Skiba and Tandon (1990).
The total numerical algorithm is stable, independently of the choice of the scheme time step.
The direct methods used are the factorization method in the oceanic domain D3 and in the
z-direction in D (Marchuk, 1982); the periodical factorization method in the A-direction in the
atmospheric domain D; (Samarskiy, 1971) and a special factorization method in the #-direction
in the domain D;. We now shortly describe the last one. To a not inconsiderable degree it is
based on Swartztrauber (1974) method.

For k-th vertical level (k = 1,...,K), the finite difference splitted problem along the 6-
direction in D; is represented by the following system of equations:

a;; Ty, j—1 — b T +ei5T5, j1 = —fij

I
—bTo+ Y &Ti1=—fo (§=0),
=1
) I
=bTy+ > &T; j1=—f1 (G=J). (4.1)
i=1

The indices i and j indicate the grid points in A and # directions respectively. The points
7 =0and j = J correspond to the North and South Poles. We now introduce the notation

T Y —T T T T
T :(TO, Ti1yeeey TI’TJ)’ f :(foa fisees frs fJ) (AZ)
—-T
where the superscript T means the transposition of a vector and Ty = (Ty, Tig,---,Ty, j-1)

fori=1, 2,...,1I.
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Then we can write the system (A.1) in terms of vectors:

—

DT =-F (A.3)

where the matrix D can be represented in the block form:

R — —
-b X3 X3 ... X5 O
— —
Y, A 0 ... 0 W;
D = Y, O P, ... 0 W, (A.4)
Yr o 0 P W;
0 U; U, Ur —b
Here
Xi= (% O,... ,0), U= (0,...,0, &i)’
—T —-T
Y,‘ = (a,-, 1s 0,...,0), W,' = (0,... ,0, C,', J—l) (A.5)

are vectors of the dimension J — 1 and each ((J — 1) * (J — 1))- matrix P; is tridiagonal.

The characteristic feature of this system is that all the meridians meet at the pole points
(j =0, J). Thus each pole point connects all meridians in the problem (A.1). Therefore, we
should partition a matrix (A.4) of the system (A.3) by such a way that all the internal blocks
of this matrix were tridiagonal. The decomposition of the matrix enables us to construct the
numerical algorithm so that to separate all meridians from two pole points and apply the well-
known factorization method for each inner diagonal block of the matrix (Skiba, 1978). Then the

system (A.3) can be written as

I — - ~ =t
SN UT; -bT;=—f;. (A.6)

We will try to find a solution of the system (A.6) of the form

T,'=G.' +To V,' +Ty Zi (A7)
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Then the vectors G, V; and Z,; have to be solutions of the following systems:

— — — — - —
FiGi=—fi, BVi=-Y,, BiZi=-W;. (A.8)

Since F; is a tridiagonal matrix, all these problems are solved by the 3-point factorization
method.
The problems (A.8) can be solved simultaneously using parallel processors. Note that for each

i(i = 1,...,I) the only one inverse matrix P.-"1 is required to be found in order to solve all three
— —

J—
problems (A.8). As soon as vectors Gy, V; and Z; are known, we can calculate values of T,
and Ty at the pole points:

T, = Ro/R, T; = R;/R (A.9)

where

1=1 =1 1=1 =1
Ry = (S 33 5) (17+ 2 080 - (5 87.) (6 + 5 %)
I _, _, I _, I, NI o
R= (,; X,Z,) <§ U,V,) - (Z_‘; X,V —b) <,§ UiZ; —-b)

Note that due to relations (A.5) U;Z;= @;Z; j—i, The same is true for another products of
vectors in the last three formulae. Finally (A.7) solves the problem.
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