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RESUMEN

Un modelo de dos niveles de orden bajo, casi-geostréfico, se utiliza para investigar la respuesta a calentamiento
externo. El calentamiento tiene variaciones en las direcciones norte-sur y este-oeste. La disipacién friccional (por
friccién) se incorpora usando tanto la friccién interna como en la capa limite. El flujo zonal se describe mediante las
variables dependientes, una para el flujo medio vertical y la otra para el de cizalladura vertical. Las restantes cuatro
variables dependientes en el modelo son las amplitudes de las componentes seno y coseno de una onda viajera en el
flujo medio vertical y en el de cizalladura.

El modelo de orden bajo es estable en el sentido de que las trayectorias que empiezan fuera de un cierto circulo
cruzan éste aproximéandose al origen del espacio de seis dimensiones. El modelo también tiene la propiedad de que
la razén de cambio de un pequefio volumen es negativa, indicando que éste se reducird a cero, entonces cualquier
atractor que pueda existir es de volumen cero. Un estudio detallado de los miiltiples estados estacionarios del modelo
y de su estabilidad se pospone para un trabajo posterior. En este estudio nos basamos en un mimero de integraciones
numéricas a largo plazo que muestran que el modelo tiende a una solucién estable o a una estacionaria, o bien a
una solucién periédica dependiente del tiempo. Parece entonces que el modelo no contiene soluciones caéticas.

Se realizan comparaciones con el modelo de tres pardmetros recientemente publicado por Lorenz y con los modelos
desarrollados por Saltzman et al. Este modelo de Lorez que contiene soluciones caéticas para un forzamiento
externo norte-sur suficientemente grande, puede obtenerse como un caso especial del modelo de seis pardmetros.
El comportamiento distinto de los dos modelos puede explicarse, por las suposiciones que son necesarias considerar
para obtener a partir del modelo complicado, el méas simple. Se demuestra que el modelo de Lorenz descubre el
flujo térmico del modelo de dos niveles, y que la diferencia de fase entre el flujo térmico y el flujo medio de las
ondas en el modelo, siempre es de un cuarto de la longitud de onda asegurando con esto que el transporte sur-norte
de calor sensible es un maximo para ciertas amplitudes. También se sefiala que se requieren valores grandes del
calentamiento externo para obtener caos en el modelo de Lorenz. Estos resultados también se encuentran en el
modelo de Saltzman que es una generalizacién del modelo de Lorenz aunque ambos tiene tres variables dependientes,
solamente.

Parece entonces que para explicar las variaciones inter-anuales de la atmésfera en términos de comportamiento
caético en la estacién fria y no caética en la estacién caliente, requerird investigaciones posteriores usando modelos
que puedan simular los procesos en cascada que se dan en la atmésfera real.

ABSTRACT

A low-order, quasi-geostrophic, two-level model is used to investigate the response to external heating. The heating
has variations in both south-north and west-east directions. The frictional dissipation is incorporated by using both
boundary layer and internal friction. The zonal flow is described by two dependent variables, one for the vertical
mean flow and the other for the vertical shear flow. The remaining four dependent variables in the model are the
amplitudes of the sine- and cosine~components of a travelling wave in the vertical mean flow and in the vertical
shear flow.
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The low-order model is stable in the sense that trajectories starting outside a certain circle will cross the circle
and approach the origin of the six-dimensional space. The model has also the property that the rate of change of
a small volume is negative indicating that the small volume will shrink to zero. Any attractor, which may exist, is
thus of zero volume. A detailed study of the multiple steady states of the model and their stability is postponed
to a later publication. In this study we rely on a number of long-term numerical integrations, which show that the
model approaches either a stable, steady state or a periodical time-dependent solution. It appears therefore'that
the model does not contain chaotic solutions.

Comparisons are made with the three parameter model recently published by Lorenz and with the models
developed by Saltzman et al. This Lorenz model, which contain chaotic solutions for sufficiently large south-north
external forcing, can be obtained as a special case of the six parameter model. The different behavior of the two
models may be explained by the assumptions, which are necessary to obtain the simpler model from the other. It
is shown that the Lorenz-model describes the thermal flow of the two-level model, and that the phase difference
between the thermal and the mean model flow waves always is a quarter of the wavelength assuring that the south-
north transport of sensible heat is at a maximum for given amplitudes. It is also pointed out that large values
of the external heating are necessary to obtain chaos in the Lorenz-model. These results are also found in the
Saltzman-model, which is a generalization of the Lorenz-model, although both have three dependent variables only.
It appears therefore that to explain the inter-annual variations of the atmosphere in terms of chaotic behavior in
the cold season and non-chaotic behavior in the warm season will require further investigations using models, which
can simulate the cascade processes in the real atmosphere.

1. Introduction

Low order models of the atmospheric general circulation can be used to understand some aspects
of the mechanisms at work in the climate system. Thompson (1987) studied a two-level quasi-
geostrophic model with differential heating in the meridional plane and with lateral diffusion
as the dissipating mechanism. The author (Wiin-Nielsen, 1991, hereafter referred to as A) has
recently studied the response to the external heating of the atmosphere by using a low order
system, which has six components. The system is based on the quasi-geostrophic model and
has two components to describe the zonal structure, while the remaining four components are
used to describe the waves. The main result of the study is that for each intensity of the
heating (constant in time) and each wavelength there exists one and only one stationary, stable
state. Two kinds of stable steady states exist. The most important is a baroclinic wave, which
slopes westward with heigth and thus transport sensible heat from south to north. It has the
characteristic phase difference between the temperature field and the geopotential field giving
warm air advection into the ridge of the height field and cold air advection into the trough. For
a typical baroclinic wave in the steady state the phase differnece is of the order of 1/6 to 1/5
of wavelength. The other stable steady state, which exists outside the baroclinic domain has an
equivalent barotropic structure.

The model used in A has an external heating which varies with latitude, but is independent
of longitude. It has in other words been assumed that the main effect of the heating in the
atmosphere is to create a temperature difference between the high and the low latitudes which
will create the baroclinic waves by the baroclinic instability mechanism provided the horizontal
temperature gradient is sufficiently large. This assumption is certainly convenient because it
permits a transformation to a set of new equations expressed in terms of the heat transport, the
eddy kinetic energies in the vertical mean field and the vertical shear field, and an additional
transport quantity, analysed in A. On the other hand, the real atmosphere has longitudinal
variations of the heating created partly for the long waves by the distributions of continents and
oceans and partly for the Rossby waves by the atmospheric waves themselves. It may thus be
of importance to include the longitudinal variation in the model. One of the purposes of this
paper is to attempt to do this.
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The analysis carried out in A concentrated on the steady states and their stability, but no
numerical integrations were carried out. Lorenz (1984, 1990) has investigated the long term
behavior of an even simpler model containing only three dependent variables. This model may be
obtained as a simplification of the model described in the previous paragraph. In the most recent
study Lorenz (1990) has demonstrated that for a sufficiently large external forcing his model has
chaotic solutions, while periodic solutions are characteristic for smaller external forcing. These
properties of the model are then used to investigate the interannual variations of the model
atmosphere with the tentative conclusion that interannual variations may be described in terms

of the chaotic behavior during the winter season, while non-chaotic, periodical behavior should
be typical for the summer season. A second purpose of this study is to compare the simple
Lorenz model with the slightly more general model used in the present study.

Saltzman et al. (1989) has made a study of an eight component model. Compared to the
model in this paper it has an additional component in the zonal flow at each of the two levels.
The major part of their study is however concerned with a three component low order model,
which in many ways is similar to the Lorenz-model, but also different in including important
mechanisms, which are neglected in the model formulated by Lorenz. The models are similar
in the reduction to a three component system. In particular, the assumptions concerning the
wave structure, treated in detail in section 4 of this paper, are the same in the two models.
On the other hand, the beta effect, which is neglected in the Lorenz-model, is retained in the
three component model derived by Saltzman and his colleagues, who also, in an ad doc manner,
include a specified poleward eddy momentum transport due to wave structures and wave-wave
interactions not explicitly represented in the model. It would appear that the eddy momentum
transport is stipulated in a too general form, since the eddy momentum transport must vanish
at the lateral boundaries. When these conditions are incorporated in the prescribed momentum
transport, it reduces to a simple trigonometric form, because the boundary conditions do not
permit the remaining terms. This inconsistency has no influence on the results obtained for the
three level model.

The generalized three component Saltzman-model has been investigated by computing steady
states, and the stability of these states have been determined. In addition, the seasonal variations
have been obtained by numerical integrations. In our study we shall have more limited goals as
outlined below.

The generalization of the previous six component model to contain longitudinal variations
of the heating complicates the mathematical analysis of the model equations. It is no longer
possible to transform the equations in the same manner as in A. One can in principle determine
all steady states by using the eddy equations to determine the amplitudes of the waves in terms
of the longitudinal heating and the zonal flow and proceed to use the equations for the zonal
flow to calculate all stationary states. This procedure requires a series of cumbersome algebraic
manipulations, the evaluations of a number of matrices and the solution of a high degree algebraic
equation. In view of this situation it was decided to rely on long term numerical integrations
to demonstrate some properties of the system. However, a study of the steady states and their
stability will be published separately in the near future. Since the equations for the system were
discussed in A, we shall refer to this paper, but restate the equations here.

2. The model

The model will be the same as the one employed in A. This means a standard two-level, quasi-
geostrophic model with the curl of the surface stress proportional to the relative vorticity at 100
kPa. The curl of the internal stress becomes proportional to the thermal vorticity. Since the
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two information levels are at 25 and 75 kPa we shall for simplicity take the vorticity at 100 kPa
to be 1/2 of the vorticity at 75 kPa.

It will not be necessary to go in detail with respect to the equations. We shall adopt the
following numerical values:

k= R/cp = 0.286
o =10"1s71

B=16x10"1m 17! (2.1)
For the low order model we define the two streamfunctions by the following expressions:

s = % sin(2\y) + —Eici sin(Ay) sin(kz) + % sin(Ay) cos(kz) (2.2)

with an analogous expression for the thermal streamfunction in which the subcript * is replaced
by the subcript T'. For the heating we adopt

Q = Q:sin(2)y) + Qs sin(Ay) sin(ky) + Q¢ sin(Ay) cos(kz) (2.3)

As the equation indicates we have introduced a dependence on both z and y in this specifica-
tion. In A we had the first term only. In these expression k = 27/L, where L is the wavelength,

A = n/W where W is the width of the channel (W = 107m), and the coefficients B, E and F
have the dimension of velocity.

Following the same procedure as in A we derive the equations for the six component model.
These equations are identical to those in A expect for an extra term in the eddy, thermal
equations. We rewrite the equations here for easy reference introducing a short hand notation
for some coefficients.

dB.
dt

€
=~7(Be - Br)

dBr

g1~ —9o(EBsFr — ErFu) +e(Bs — Br) — erBr +¢:Q-
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d‘ﬁ: = (asBs — bs)Fs + as By Fr — E(E" _ Er)
d;;' = —(asBs — b:) Eu — ayBrEr — £ (Fs ~ Fr) (2.4)
%l = (arBs — by)Fp — ey BpFu + iz—T(E. - Br) - GT;EET + geQs
* *
d_ftl = —(ar B+ — br)Er —c7BrEs + i%(ﬂ — Fr) - GT%FT + geQc

in which we have introduced the following notations:

k% — 3)2 Bk
as = 2 1 k2)’ b =3
2(A2 + k2) 22 4k
Sk Y et 2 S | S Y ek 2
T = 202 + k2 + ¢2)’ T = X2 1k2+q2 T= 2002 + k2 + ¢2)’
N—1+—qz—' e—i' e =T,
T TaN TN
2 2
9’k kq'k
= = ; 2.5

The quantity (E«Fp — E7F.), appearing in the second equation above is proportional to the
transport of sensible heat as was shown in- A.

If one were to pursue the same strategy as in A, i.e. to determine the steady states, it would
be required to solve the last four equations in (2.4) for the four amplitudes. This could be
done, since the equations are linear in the four quantities: Es, F«, Er and Fr. They would be
expressed in terms of the zonal parameters and the eddy heating given by Q. and Q¢. From
these expressions one would have to calculate the heat transport term in the second equation
of (2.4). Using finally the condition in the steady state that Bs = Br, one would end with an
algebraic equation in one of the zonal variables.

For the moment we shall be satisfied with some examples of numerical integrations of the
system stated above. We shall be interested in the nature of the solutions. In view of the
contribution from Lorenz (1990) it is of importance to see if the system will produce chaotic
solutions. The numerical integrations have been carried out using the Heun scheme for the
integration in time. It proved sufficiently accurate for our purposes. We shall, however, start
with some general considerations of the model equations.

We consider an infinitesimal volume element, V, in the six-dimensional space of the dependent
variables. The logarithmic change of the volume in time is equal to the divergence of the
“velocity” vector:

% — V'V - (dB./dt, dBp/dt; e /dt, dFs/dt, er/dt, dFy/dt) (2.6)
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From the equations we get:

‘fi‘t’ — v <e ter + L e+ 4eT)> 2.7)

Contrary to the system used by Lorenz (loc. cit.) it is thus seen that the small volume in
time will be reduced to zero. If an attractor exists it will therefore have a zero volume.

We may also investigate the stability of the system as a whole. By this we understand that
if we start the system in a point very far from the point (0, 0, 0, 0, 0, 0) in the six-dimensional
space it will always behave in such a way that the trajectory eventually will end inside a finite
volume. For this purpose we consider the total energy in the system. It consists of the sum of
the available potential and the kinetic energy in the zonal flow and the wave. Denoting P = 50
hPa and g, the acceleration of gravity, we get:

PLISHy S A% 4 k2
4“;2 (B2 + F2) + ——fzkl(ET + F”)} (2.8)

E= 5{33/2+NB%/2+

From (2.8) and the system of equations we may proceed to calculate the rate of change of the
total energy. After some algebra of an elementary nature we find:

d
d_f=-%{T1+T2+T3+T4+T5+T6—T7—T8} (2.9)

in which the notations have the following meaning:

T1= E(B. - Br)?

2 2
T2 = ‘("—137;*2"—){(& — Er)? + (F. - Fr)%}

_ 9 26Q 2
T3 =0, (Br/2 - Q=)

T4 ‘;:J,Q{(Er/z Q0 + (Fr/2 — 0c)%}

K
T5 = (eT - feA?)B%

_fer(OP+ kY QY 2, 2
TG—{ 2 - 8%/ }(ET+FT)
_ ¢°kQ
T7 4/\),062:

_9 2xQ
T8 = 2%/, Q% +4%
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In the above formula we have introduced a scaled value of the heating by writing

Q=QQ (2.10)

The purpose is to obtain a scaled value of @, which in order of magnitude is comparable to
the velocity components and a suitable value of Q is therefore 10 3kJt 1s~!. The right hand
side of (2.9) is certainly negative, if the initial point on the trajectory in the six-dimensional
space is far removed from the origin (0, 0, 0, 0, 0, 0). It can, however, be shown that dE/dt is
positive in a region close to the origin. We may see this by investigating the sign of dE/dt in
the point where By = Bp = Qz, Ev = Epr = Q, and F, = Fp = Qc. In this special case we find
that the contribution to dF/dt from the zonal part is:

—g{er _ ?}‘{;:} 52 (2.11)

and it is easy to see that the contribution from this term is positive for the selected values of
the parameters. The contributions from the eddy terms are:

P{ PLEny L _ Qq’x

T\ T T k2 2k fo

bat+an.

This contribution is wavelength dependent, but an evaluation of the parenthesis in the term
for a wavelength corresponding to a typical baroclinic wave in the atmosphere assures us that
the parenthesis is negative and the whole contribution therefore positive. We have thus shown
that dE/dt is positive in a point of the six-dimensional space under consideration and thus by
continuity in a small region around the point. We may thus conclude that the system is stable
in the sense that its trajectory will remain in a finite region.

The main conclusion from this section is therefore that if the system has an attractor, it will
be of vanishing volume, and that the system is stable in the sense that the trajectory will not
go to infinity.

8. Some numerical integrations

In this section we shall describe some long-term integrations of the system described in section
2 of this paper. The integrations were carried out using the Heun scheme with a time step of
3 hours. Although we could have plotted the resulting values of the six parameters, we have
preferred to concentrate on the waves, where the largest variability is found. It was decided to
plot quantities, which are proportional to the eddy transport of the sensible heat and quantities
proportional to the kinetic energy of the vertical mean flow and the vertical shear flow.

The first experiment simulates winter conditions. For this purpose we have kept Q. and Q.
at constant values equal to 2.27 x 10" 2kJt 1s™! and 4.5 x 10 %kJt 1s™1 respectively, while
Qs = 0. These values are comparable with the values, obtained for the winter season, by Schaack,
Johnson and Wei (1990) as typical for the troposphere. The integrations are carried out for a
few years to avoid any influence of the initial conditions. Figure 1 shows a plot of the heat
transport for a time period covering about 80 days at the end of the first year of integration. It
indicates quite clearly periodic flow with a period close to 28 days. Figures 2 and 3 show the
two kinetic energies for the same time period. Also these figures show periodic flow with the
same period. Several other time integrations were perfomed with higher and lower values of the
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heating parameters. In all cases we have obtained periodic flows showing that the solutions are
non-chaotic.

ll#

H’,n’f‘

300 320 340 360
t, days
Fig. 1. A measure of the transport of sensible heat as a function of time showing two periods at the end of an
integration over one year. Qs = 2.27 x 107 2kJt"'s~! and Q. = 4.5 x 107 3kJt 1571,
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Fig. 2. The kinetic energy of the wave in the vertical mean flow. Parameters as in Figure 1.
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Fig. 3. The kinetic energy of the wave in the vertical shear flow. Parameters as in Figure 1.

It is of course also possible to simulate the annual variation in the model. The zonal part of
the heating function was assumed to vary according to

Qz(t) = 2.0 x 1072 + 2.84 x 1072 cos(wt) (3.1)

where w is the frequency corresponding to the annual period. Q. has the same constant value
as before. We obtain then a solution, which in the first approximation may be characterized
as a variation with the annual period, on which is superimposed a shorter period variation due
to the baroclinic waves created by the instability of the current. A closer look shows also that
there is a lag in the response in such a way that the waves of the largest amplitude appear some
time after the beginning of the year, while the lowest level of the variability is found after the
middle of the year. These statements are illustrated in Figure 4, which shows the shear flow
kinetic energy as a function of time for one year after 5 years of integrations. Figure 5 shows the
behavior of the same variable after 10 years of integration. Similar annual variations are found
for the other variables.

All years are not identical. This is due to the fact that the time periods of one year does not
contain an integer number of period for the waves. It follows that the state on a given date is
not the same as the state of the model on the same date the previous and the following year.
Hewever, the main result is that the general nature of the state of the model does not change
from one year to the next. The variability of the model is much more regular than is found from
observations or in the model with only three dependent variables as designed by Lorenz (1990).
The latter model shows an interannual variability, where the flow is chaotic in the wintertime
and non-chaotic in the summertime for sufficiently large external forcing. Due to this fact the
Lorenz-model is able to produce several types of flow during the summer season where some
summers are characterized by very low amplitudes, while others display large amplitude flow.
Due to this behavior Lorenz draws the tentative conclusion that interannual variability may be
explained in terms of the chaotic behavior in the colder season.

The differences in behavior of the six and the three parameter models are at first sight surpris-
ing. Why is it that a slightly more general model with a few more degrees of freedom behaves
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Fig. 4. The kinetic energy of the wave in the vertical shear flow for the sixth year in a simulation of the annual
variation of the atmospheric flow. Q5 = 2.0 X 10" 2kJt 1571, the amplitude of the annual variation of Q5 is
2.84 x 10~ 3kJt~1s~! and the constant value of Q. is 4.5 x 107 3kJt 1571,

in a much more regular way that the simpler model with only three dependent variables, which
‘can be obtained as a special case of the more general model? Is it perhaps due to the way in
which the smaller model is obtained as a special case of the other? The same questions can be
raised in any investigation, in which low-order models are used to investigate a certain nonlinear

15007
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700

0 90 180 270 360

t, days

‘Fig. 5. The kinetic energy of the wave in the vertical shear flow for the eleventh year in the simulation described
in Figure 4.
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phenomenon. An attempt will be made in the next section to answer the questions raised here
by making a closer analysis of the relationships between the two models. We shall, in particular,
be interested in how the Lorenz-model can be obtained from the six parameter model.

4. Comparison with the Lorenz model

The purpose of this section is to investigate the connection between the present six parameter
model and the simpler three parameter model of Lorenz (1990). For easy reference we start
by recalling the equations for the Lorenz model. With a cyclic change of the notations of the
variables in such a way that z denotes the zonal variable and z and y the wave variables connected
with the cos- and sin-parts of the wave they are:

Z =@+ arlf - 7)

d—x—za:—b 2y—x+
dT_ Ly g

d
d_z =zy+brzz—y (4.1)
In this model z denotes a nondimensional value of the zonal vertical wind shear or the merid-
ional temperature gradient, while z and y are the amplitudes of the sine and cosine parts of a
travelling wave. If the model, described in section 2, shall be reduced to the equations (4.1) we
should use the three thermal equations in the system (2.4), originating in the thermal vorticity
equation, because these equations contain the description of the external heat sources. The
problem is then to relate the variables of the vertical mean flow (i.e. those with subscript *) to
the corresponding thermal variables. Considering first the zonal equation for the rate of change
of Br it is obvious that one can get the correct form in the first of the Lorenz equations, if one
assumes Ey = Fp and F« = —Ep. These assumptions will give a very special structure of the
wave, and it is easy to see that the wave will have the temperature field lagging exactly one
quarter of a wavelength behind the wave in the streamfunction for the vertical mean flow. Since
the heat transport is proportional to the amplitudes of the two waves and to sine of the phase
difference, it is seen that the assumption also implies an unchanging phase difference, which
at any time for given amplitudes provide a maximum heat transport. The three component
model designed by Saltzman et al. (1989) is more general than the Lorenz-model, but the same
assumption is made with respect to the heat transport and the structure of the wave.

We note further that to obtain the Lorenz form of the first equation we should express the
dissipation entirely in the variable Bp. This can be done in a number of ways. One of the
reasons for a certain arbitrariness at his point is that the dissipation can be expressed in various
ways in a two-level quasi-geostrophic model. It is always required to express the surface vorticity
¢4 in terms of the two vorticities ¢« and ¢p. Phillips (1956) did this by assuming that

$4 =% — 2 (4.2)

which assumes a linear extrapolation. One could also select to do as Charney (1959) who
assumed that

$4 =¢3/2=(¢x —¢r)/2 (4.3)

which is the assumption made in this study. Formally, the two assumptions make a difference in
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the numerical value of the dissipation coefficient, which in the former case becomes proportional
to €/4 -+ e, while the latter case gives ¢/2+¢7. However, when the equations are nondimension-
alized, it turns out to be a difference in the time used for the scaling of the variables. In any
case, we have used a coefficient consistent with the present formulation. Note in this connection
that the term containing Bs are disregarded in the dissipation terms.

The two equations for the rate of change of Ep and Fr are treated in a similar way in the
dissipation terms, while we use B« = Br in the advection terms. Finally we note that the
Lorenz model does not contain any beta terms. After all these considerations we may write the
equations for the Lorenz model in the form:

dB
_(_E’-’_‘ = —ao(E% + F}) — (e + e7) Br + 92Q=
dEp b
— = arBpFp — cpBpEp — (¢/4+ er) » ET + 9eQs
dF b
ETL = —aTBTET — cTBTFT — (6/4 + €T) bf FT + gch (4'4)

(4.4) are the equations as they come from a simplification of the model used in this study, but
it has not been possible to deduce the exact form from the two papers by Lorenz (1984, 1990).
Indeed, Lorenz states that the equations originally were derived in an ad hoc manner. However,
once a decision has been made on the assumptions in the two-level quasi-geostrophic model,
it is possible to get the Lorenz equations in a form equivalent to (4.4). The nondimensional
equations can be obtained by introducing a time scale T, two velocity scales V; and Vg, and two
heating scales S; and Sg, where the subcripts z and E refer to the zonal and eddy quantities,
respectively.

We introduce the following notations:

_ ¢ebr _ erbr
1= 1, €2 = 7,
_ € _ €T
€= 4N, °TT N,
q2
No=1+ - 4.5

Following the normal procedures it is then straightforward to find that the equations in (4.1)
are obtained with the following values of the scaling parameters:

1
T =
e t+ e
Vz:el + e9
—cr
Vé“ e +ey

B (—aocr)
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s, — (eter)(er +es)
(—gzcr)

_(e1 +e)?

Sp =
E= (“aoer)?

(4.6)

The two constants in the Lorenz equations become:

ar — e+er
L_€1+62

by = —L (4.7)

All the values entering the scaling parameters and the two Lorenz constants are wavelength
dependent. To obtain a reasonable agreement with the values used by Lorenz it is required to
select the proper value of the wavelength. This choice was made by determining the value of the
wave number in such a way that by, = 4 as required. Corresponding to this value we find that
az, = 0.33. The value used by Lorenz for this constant is 0.25, but the small discrepancy may be
explained in terms of the choice made here for the numerical values of the width of the channel
and the Rossby radius of deformation (¢q). The value of the wavelength turns out to be about
4800 km which falls close to the wavelength of maximum baroclinic instability. We observe also
that with this value all the coefficient in the equations are positive except ¢p. Due to this fact
we find that all the scaling parameters are positive.

The numerical values of the scaling parameters may be computed from the formulas given
above. We find: T = 11.7 days, V; = 7.67ms ! Vg = 10.88ms_1, S; = 3.31Wt~! and
Sg = 5.20W¢7 L, Among these values the time scale deviates considerable from the 3 days given
by Lorenz. The difference of almost a factor of 4 is not easily explained. The first explanation,
which comes to mind would be that Lorenz has used dissipation rates four times larger than
those employed here. However, if that were the case, the expressions for the scaling parameters
show that the scaling parameters for the winds and the heating rates would be four and sixteen
times larger, respectively, and that would bring the values obtained in the time integration of
the nondimensional equations out of the atmospheric range. Since the time scalé in the Lorenz
model as shown is also the dissipation time, it would appear that the value of 3 days is somewhat
too small, since the dissipation time normally is assumed to be about 10 days, which is in better
agreement with the result obtained here. The other scaling values give reasonable dimensional
values for the various parameters. The zonal winds for example are in the Lorenz integrations
of a maximum value of about 2 corresponding to roughly 15ms_1, while the heating rate for the
winter (F = 8) becomes 26.5Wt~! which is in reasonable agreement with those computed from
observations as remarked earlier.

It may be of interest to make a more detailed analysis of the Lorenz model as given by the
system (4.1). A part of such an analysis has of course already been presented in Lorenz (1984,
1990), but we shall go somewhat further. By setting the three time derivatives in (4.1) to zero
we get the equations for the stationary states. The equation for the values of z, the zonal wind
shear, becomes a cubic equation, which may be written in the form:

Gt=a(F-2)((1+b%)22 —22+1) (4.8)
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Fig. 6. The steady states for the Lorenz-model. For given values of F and G one obtains the values of z on the
ordinate. Note that for large values of F' and small values of G only one solution exists.

Since the quadratic expression in the last parenthesis on the right is always positive, it is
seen that if G = 0 we shall have only one steady state: Z = F. It is thus the inclusion of the
heating in the west-east direction, which gives the possibility of having multiple steady states.
A graphical representation of the solution to (4.8) are shown in Figure 6, where G has been
plotted as a function of Z for various values of F. For given values of F and G we may use the
curves to obtain the steady state values of Z. We note that for large values of F and G we obtain
three steady states. However, the time integrations shown by Lorenz (1990) employ the values
of G =1, F = 6 (summer) and F = 8 (winter). Figure 6 shows that for these values we obtain
only one steady state with a Z value very close to, but a little smaller than the given value of F.
Denoting

D=(1+bt)z -2z +1 (4.9)

we find the following steady state values for Z and ¥:

__G(1-72)
7= 2022 (4.10)
g="F (4.11)

When 7 is close to F we find from (4.10) and (4.11) that the amplitude of the wave in the
steady state is very small. For G = 1 and F = 6 we find an amplitude of 0.04, while G = 1
and F = 8 give 0.03. As we can see from Figure 6 the steady state values of Z fall in three
classes. One class has negative values of the vertical wind shear. The steady states of this kind
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are shown in Figure 7 as a function of F and G. This solution does not exist when G is small
and, F is large, and it is not present in the integrations of the Lorenz equations for values of F
larger than 3 when G = 1. Figure 7 shows also that the negative vertical wind shear increases
as G becomes larger. The two positive solutions for the vertical wind shear may be divided in
the small and the large values. The small positive values are shown in Figure 8. This solution
is not present in the Lorenz cases since the solution does not exist for G = 1 and F > 3. Figure
9 shows finally the large positive values of the steady state vertical wind shear. It is seen that
the dependence on G is slight, while the value of Z, especially for the larger values of F, is well

approximated by F.

F, non-dim.
PN

G, non—-dim.
Fig. 7. The steady state solutions with small values of z in the Lorenz-model as a function of F and G. The
solution does not exist for large values of F and small values of G, and it indicates an easterly flow for larger

values of G.

It is important to know the stability of the classes of steady states which exist for a given pair
of G and F. The stability has been determined numerically for all the steady states displayed in
Figures 7, 8 and 9 by solving the eigenvalue problem using the method of small perturbations.
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Fig. 8. The steady state solutions with intermediate values of z in the Lorenz-model as a function of F and G.
Also this solution is nonexistent for large F and small G. It indicates a westerly flow for large values of G.

7t 7
6l 6 6

5
5 5

F, non-dim.

Q, non-dim.
Fig. 9. The steady state solutions with large values of z in the Lorenz-model as a function of F and G. The values
for z are only slightly smaller than F.

The results of these calculations are that the steady states having a positive value of the vertical
wind shear are unstable whenever they exist. For the negative values of the vertical wind shear
in the steady state we find that the steady states are stable except for large values of F combined
with relatively small values of G. The latter result is shown in Figure 10 as a function of F and
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Fig. 10. The stability of the steady state solutions for negative values of z. Instability is obtained only for large
values of F and moderate values of G. All other steady states are unstable.

G. Instability is found for F = 7 and F = 8 for G = 2 and G = 3, while only F = 8 gives
instability for G = 4. The eigenvalues were determined by a computer program for eigenvalues
of non-symmetric matrices, but the eigenvalues are of course also the roots of a cubic equation
which for the model is:

v® + (a+2(1 — 2)v + (D + 2a(1 — 7) + 2G%/D)v
+<aD + glc_;‘f(l -1+ bz)E)) =0 (4.12)

To make a partial check on the numerical results one may calculate the conditions under
which the constant term in (4.12) is negative, which would indicate that the cubic equation has
a positive and real root and thus represent an instability. Leaving out the details we may state
the main result that all the smaller positive values of Z in the steady states belong to this form
of solution. With respect to the larger positive values of Z we have already noticed that they are
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quite close to the values of F for large values of this quantity. In addition, when G is small, it
implies that Z and ¥ are small as well. Under these conditions the frequency equation is reduced
to

v+ (a+2(1 = F))v? + (2a(1 — F) + (1 — F)? + 62 F?)v

+a((1 - F)2 4+ b2 F?%) = 0? (4.13)

By direct substitution one may verify that the above equation has the roots

v=(F —1) £ibF

An excellent agreement is found between the above values and those found from the numerical
solutions.

The numerical values of F and G selected by Lorenz (1990) to demonstrate that interannual
variations may be due to a chaotic behavior of the atmosphere in the winter season, but a lack
of chaos during the summer, are F = 8 (winter) and F = 6 (summer), while G = 1 is used to
represent the forcing by heating in the longitudinal direction. We note that with the scaling found

earlier in this section F' = 8 corresponds to 2.65 % 10 2kJt7 157! = 26.5W¢t ! = 265Wm ™% where
the last number represents the mean heating in an atmospheric column of unit cross section.

F represents the maximum heating in the low latitudes. The heating intensity required to give
chaos (F = 8) seems rather large compared to the values obtained from observational studies.
The latest study (Schaack et al., 1990) based on the ECMWF data from the global weather
experiment has not calculated the zonal average of the heating, but looking at the maps it
would appear that it cannot be more than 1.5 kJ per day or 174Wm~2. Other earlier studies
(Lawniczak, 1970; Wiin-Nielsen and Brown, 1962) give similar or lower values. For this reason
alone it appears doubtful that the atmosphere reaches the chaotic conditions in winter time.
It is much more difficult to estimate a proper value of G. Consulting again the maps in the
study of Schaack et al. (loc. cit) it is seen that in addition to the heating contrast between
continents and oceans we find also a maximum contrast along the western borders of the Pacific
and Atlantic oceans in the regions of the Kurishio and the Gulf currents where the oceans are
the heat source in winter time, while the eastern parts of the continents are the sinks. The
horizontal dimensions of the latter heating pattern are more appropriate for the horizontal scale
selected in the theoretical study which is close to 5000 km. The heating and cooling are especially
strong in the Western Pacific and over Eastern China amounting to about 100 Wm_z, which
would correspond to a value of G of about 2. The heating and cooling pattern are somewhat
less intense in the Western Atlantic and over the eastern part of North America in winter, but
would correspond to G = 1.5. If these values were representative, Lorenz would have used a too
small value of G. The value of G is, however, very important for the behavior of the Lorenz
model, because an increase of G by 50 or 100% will change the nature of the solution to a regime
in which a stable steady state is present (Fig. 6). Integrations of the Lorenz model equations
with F' = 8 and G = 2 show that the trajectory rather soon will approach the stable stationary
state and oscillate around it. This state of the atmosphere is rather unrealistic, because it has
an easterly zonal current. Figure 11 shows the zonal variable, z, as a function of time in an
integration with ¥ = 8 and G = 2 and with an initial state, which is very close to the unstable
steady state with the largest value of Z. We notice that 2z is very close to the stable steady state
in about 24 days.



COMPARISONS OF LOW-ORDER ATMOSPHERIC DYNAMIC SYSTEMS 158

61 F=-8,G~-2

F-

80

z on-dwn

-2 t, days

-4

Fig. 11. z as a function of time in a numerical integration for F = 8 and G = 2 of the equations for the Lorenz-
model. The initial state is unstable. The solution approaches the negative, stable, steady state value of z
indicated by a horizontal line on the figure.

TV auss ao

The arguments givén abayvg,gembined with the fact that the slightly more general model
presented in Section 2 has only per?c‘fdic solutions in those cases where the simpler model gives
chaos, indicates that we cannot yet give a definifive answer to the question raised by Lorenz
(1990). The additional degrees of freedom present in the model in Section 2, which permits
the phase difference between the temperature and geopotential fields to vary freely and the
retension of the beta effect, have apparently removed the possibilities for chaotic solutions. To
answer the question raised by Lorenz it will probably be necessary to formulate a model with so
many degrees of freedom that it will simulate the essential parts of the cascade process in the
atmosphere.

6. Concluding remarks

The results of the studies described in this paper show that the particular low-order nonlinear
model under investigation has only periodic solutions for the parameter range corresponding to
the Earth’s atmosphere. The six component, two-level, quasi-geostrophic model has a heating,
which depends on latitude and longitude, internal as well as boundary layer friction. At each
level one dependent variable is used to describe the zonal flow, while the remaining two variables
are the amplitudes of the sine and cosine components of a travelling wave.

The model described above has been compared to the even simpler model used by Lorenz
(1990). This three component model is a further simplification of the six-component model, but
additional assumptions are naturally necessary to get the simpler model, which describes the
development of the thermal part of the slightly more general model. It is thus necessary to relate
the dependent variables describing the vertical mean flow to those describing the thermal flow.
While the structure of the Lorenz equations are easily obtained, it is more difficult to account
for the numerical values quoted by Lorenz, but a reasonable agreement can be obtained except
for the scaling of time. The other differences are probably due to the fact that the exact way in
which Lorenz has incorporated the friction is unstated in his paper. It is an important aspect
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of the Lorenz model that the baroclinic wave always has a structure, where the thermal wave is
lagging exactly a quarter of a wavelength behind the wave in the geopotential field. For a given
amplitude of the thermal wave there is thus a maximum transport of heat by the waves in the
Lorenz model. This means that the normal development of a baroclinic wave, where the phase
difference between the two fields undergoes systematic changes, is excluded in the Lorenz model
due to its simplicity.

Results similar to those described above have been obtained by Saltzman et el (1989). They
start from an eight component model, which is very similar to the six component model described
in this paper. However, most of their work is done with a three component model, which is a
generalization of the model by Lorenz. The main similarity is that the waves are treated in the
same way in the two models, and the main difference is the retention of the beta effect in the
Saltzman-model.

The tentative conclusion of the investigation by Lorenz is that the chaotic behavior of his
model in the winter season combined with the non-chaotic performance during the summer is
an internal atmospheric mechanism which may explain the observed interannual variation. It
is always difficult to draw conclusions about the real atmosphere from any low-order model.
However, the fact that a slightly more general model of the same kind with twice as many
dependent variables does not show any sign of chaotic behavior for even large values of the
forcing, may indicate that the Lorenz model does not contain a realistic mechanism for the
creation of the chaotic states. The six-component model used in this paper does not give an
answer to the interesting question raised by Lorenz. The answer may be provided by more
general models of the same nature, but containing so many degrees of freedom that the cascade
processes in the atmosphere may be simulated in a qualitatively correct manner.
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