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RESUMEN

La estabilidad de la onda de Rossby-Haurwitz del subespacio Hy @ Hy, y dos tipos de modones de Verkley se analizan
a través de la ecuacién de vorticidad para un fluido ideal incompresible en una esfera en rotacién. Aquf Hp
es el subespacio caracterfstico del operador de Laplace sobre una esfera, correspondiente al valor caracterfstico
n(n + 1). Se demuestra que perturbaciones arbitrarias de la onda Rossby-Haurwitz se pueden dividir en tres
conjuntos invariantes, uno de los cuales contiene un subconjunto estable invariante Hp, tres conjuntos invariantes
de pequefias perturbaciones del modon estacionario de Verkley también son encontrados. La separacién de las
perturbaciones se logra con la ayuda de una ley de conservacién para las perturbaciones.

Férmulas para la determinacién de la distancia entre cualquier pareja de soluciones a partir del conjunto total
de modones o de ondas de Rossby-Haurwits se derivan a partir de la energfa y enstropia de las correspondientes
perturbaciones. Se obtienen condiciones necesarias y suficientes para que la distancia entre estas soluciones sea
constante. Se demuestra que cualquier flujo de super-rotacién sobre la esfera (perteneciendo a Hi) es estable,
independientemente del eje de rotacién escogido. Se prueba la inestabilidad de Liapunov para cualquier onda no
zonal de Rossby-Haurwitz a partir de H; ® Hn, donde n > 2 asf como para cualquier modon dipolar sobre la esfera.
Se demuestra que la inestabilidad de Liapunov es causada por el crecimiento algebraico de la perturbacién debido
a las oscilaciones asincronas de las ondas y no tiene que ver con la inestabilidad orbital. Se prueba que cualquier
modon monopolar Verkley (1987) con solucién exterior que decae rdpidamente, asf como cualquier polinomio de
Legendre son linearmente estables de acuerdo a Liapunov con respecto a subconjuntos invariantes de perturbaciones
de una escala suficientemente pequeiia.

ABSTRACT

Stability of the Rossby-Haurwitz wave of subspace H; @ Hy, and two types of Verkley’s modons is analyzed within
the vorticity equation of an ideal incompressible fluid on a rotating sphere. Here H), is the eigen subspace of the
Laplace operator on a sphere corresponding to the eigenvalue n(n + 1). It is shown that arbitrary perturbations of
the Rossby-Haurwitz wave can be divided into three invariant sets one of which contains a stable invariant subset
Hp. Three invariant sets of small perturbations of the stationary Verkley modon are also found. The separation of
perturbations have been performed with the help of a conservation law for perturbations.

Formulas for determining the distance between any two solutions from the whole set of modons and Rossby-
Haurwitz waves are derived through the energy and enstrophy of the corresponding perturbation. Necessary and
sufficient conditions for the distance between these solutions to be constant are obtained. It is shown that any
super-rotation flow on a sphere (belonging to Hj) is stable independently of choice of the rotation axis. Liapunov
instability of any non-zonal Rossby-Haurwitz wave from H; @ Hy, where n > 2 as well as of any dipole modon on
a sphere is proved. It is shown that the Liapunov instability is caused by the algebraic growth of perturbations due
to asynchronous oscillations of waves and has nothing in common with the orbital instability. It is proved that any
monopole Verkley (1987) modon, as well as any Legendre polynomial, is linearly Liapunov stable with respect to
invariant subsets of perturbations of sufficiently small scale.
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1. Introduction

As is known, the large—scale dynamics of the atmosphere can approximately be described by the
barotropic vorticity equation. A method for obtaining a series solution to this equation was given
by Adem (1956). At present, apart from the stationary zonal flows, there are known two other
classes of periodic solutions of this equation for an incompressible ideal fluid on a rotating sphere,
namely: the Thompson (1982) waves which include all the Rossby—Haurwitz waves (henceforth,
R~H waves), and the solitary waves, or the modons, by Verkley (1984, 1987, 1990) and Tribbia
(1984) (Section 2). The stability study of these exact solutions is of considerable interest for
deeper understanding the low—frequency variability of the atmosphere.

Many works have been devoted to the barotropic linear instability study of the Rossby wave
on the S-plane (Lorenz, 1972; Gill, 1974; Anderson, 1992) and the R-H waves on a sphere
(Hoskins, 1973; Baines, 1976; Haarsma and Opsteegh, 1988). In the first part of the present
work we summarize the results obtained by Skiba (1989, 1991, 1992) on nonlinear dynamics
of arbitrary perturbations of the R-H wave. We emphasize that any perturbation is always
the difference of certain two solutions of the vorticity equation, and therefore the differential
properties of perturbations are completely determined by those of the solutions. Also, since the
system examined is conservative and hence structurally unstable, only exact analytical methods
should be used in the stability study to obtain correct results.

Using the conservation law obtained in Section 3, all the possible perturbations of the R—
H wave have been divided into three invariant, i.e., independent from each other, sets. Thus
it is possible to carry out the stability study separately in each such a set. Both the kinetic
energy and the enstrophy of any R-H wave perturbation increase, conserve or decrease with time
simultaneously (Proposition 1). Also, it is proved that each non-zonal R~H wave containing the
spherical harmonics Yy'(), u) of degree n > 2 and | m |> 1, is Liapunov unstable (Proposition
11).

The Proposition 11 does not contradict to the results obtained by Hoskins (1973) at the initial
stage of interaction of the severely truncated system containing only three waves. Indeed, the
Hoskins necessary and sufficient conditions for the linear (exponential) instability of a Rossby
wave on the B-plane states that its amplitude has to exceed the critical value. The same
statement is also true for the sphere as a sufficient condition. Unfortunately, it is not a necessary
condition for the linear instability of the R~H wave because Hoskins used the periodical functions
in both z and y directions to obtain the necessary condition on the f-plane, and in case of a
sphere this method can not be applied. Therefore, if the R-H wave amplitude is less than the
critical value then the stability of the R—H wave is still a problem to be determined. The new
result proved here is that under the conditions of Proposition 11 any non-zonal R-H wave is
Liapunov unstable independently of its amplitude. It is shown in Section 7 that the instability
is caused by the algebraic growth of small initial perturbations. Such perturbations are always
existing and caused by the asynchronous oscillations of two R-H waves which slightly differ from
each other only by their super-rotational components.

In the second part of our work we examine the stability properties of Verkley’s modon. Modon
properties are mainly of meteorological interest in connection with the phenomenon of atmos-
pheric blocking (McWilliams, 1980; Haines, 1989; Nezlin and Snezhkin, 1990). The structural
stability of the modons has been numerically examined by McWilliams et al. (1981), McWilliams
and Zabussky (1982), Carnevale et al. (1988a, b) and others.

The proof of the linear stability of the Stern (1975) modon by Sakuma and Ghil (1990)
was refuted by Ripa (1992) and Nycander (1992). The linear stability of the 8-plane modons
was studied by Gordin and Petviashvili (1985), Pierini (1985), Laedke and Spatschek (1986,
1988), Swaters (1986), Petviashvili and Pohotelov (1989). But Muzylev and Reznik (1992) and
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Nycander (1992) have shown that the proofs by Laedke and Spatschek (1986, 1988), Gordin and
Petviashvili (1985) and Petviashvili and Pohotelov (1989) contain serious mistakes. Further,
Carnevale et al. (1988) refuted the proofs by Pierini (1985) and Swaters (1986). The reasons of
the Swaters mistakes are discussed in Section 10. Thus the problem of analytical proof of the
linear stability of the two—dimensional modons is so far unsolved.

An extension to the class of barotropic modon solutions on a sphere is offered by Verkley
(1987, 1990). Modons previously obtained by Verkley (1984) and Tribbia (1984), represent
a modification for a rotating sphere of Larichev and Reznik (1976) modons and can become
stationary only in easterly background flows. The new Verkley (1987, 1990) modons, although
much less local, can become stationary in westerly background flows that is more realistic for
midlatitudes of the atmosphere. Note that these modons have no prototypes on the S-plane
because of the different geometrical properties of the f-plane and the sphere. Indeed, the
sphere is a closed manifold bounded in the euclidean space R3, and any two times continuously
differentiable streamfunction on the sphere has a finite energy and enstrophy. Unlike it, the
B-plane is an unbounded set and hence a modon solution of the vorticity equation must have a
rapidly decaying streamfunction ¥ (z, y) as | 2% + y? | = oo so as to posses finite values of the
energy and enstrophy.

In all numerical experiments carried out by Verkley (1987) using the method of normal modes
on a sphere, a stationary modon in a midlatitude westerly zonal flow was linearly unstable.
Another Verkley (1990) modon solution has an inner region in which the absolute vorticity is
uniform. This solution is similar to atmospheric blockings which are characterized by compa-
ratively low and uniform isentropic potential vorticity in blocking regions. Verkley has proved
that the vorticity amplitude of any growing or decaying normal mode is zero within the region of
uniform absolute vorticity of the modon. Therefore, this modon, although also linearly unstable
(Verkley, 1990), yet compared to the previous Verkley (1984, 1987) modon solutions has the best
prospects of survival under the influence of small perturbations.

In order to study the stability of a solution one has to introduce a metric in the phase space
for estimating the rate of convergence or divergence of the paths of the solutions. In the present
work, as a measure of the distance in phase space between any two solutions t(t) and 1/~)(t)
of the vorticity equation we take the square root of a linear combination of the energy and
the enstrophy of the streamfunction difference () — #(t). This choice of the distance is the
most natural. Indeed, first the existence and the uniqueness of vorticity equation solutions were
proved with these norms (Szeptycki, 1973). And second, according to Fjgrtoft (1953), the kinetic
energy and the enstrophy are the main invariant functionals of this equation characterizing the
nonlinear dynamics of the system. In this connection, if a solution is Liapunov unstable in such
a norm, then there is no sense in trying to find some other norm in which the solution would be
Liapunov stable.

Analytical formulas have been derived here for the kinetic energy and the enstrophy of the
difference between a modon and a R-H wave (Section 5) and between two modons (Section
6). These formulas have been applied to obtain the necessary and sufficient conditions under
which the distance between a modon and a R—H wave or between two modons is constant in
time. Also in the case with two modons moving along the same latitude circle (Section 6), the
formula for the enstrophy has been used in Section 8 to prove the Liapunov instability of any
Verkley dipole modon on a sphere (Proposition 12). The proof consists in constructing for the
basic modon another modon close to the first one at initial time such that the evolution of the
distance between them will contradict the definition of the Liapunov stability. We have only
examined Verkley (1984, 1987) modons, however it is easily seen that the same technique can
also be used to prove the Liapunov instability of any Verkley (1990) dipole modon. The formulas
derived here, also enable us to estimate the growth rate of the energy and the enstrophy of any
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unstable perturbation which represents the difference between a modon and a R-H wave (or
another modon).

We emphasize that the Liapunov instability of any non—zonal R-H wave or arbitrary dipole
modon has nothing in common with the orbital (or Poincaré) instability (for a definition of the
orbital instability see, for example, in Zubov (1957)). The main reason of the Liapunov instability
is the existence of asynchronous oscillations of waves even if their orbits are very close to each
other in the phase space. Actually, because of different phase velocities, the representative points
on the orbits of two waves which are very close to each other at initial time, will diverge from
each other.

Invariant sets of small perturbations of any stationary Verkley modon are got in Section 9.
An invariant functional for small perturbations obtained by Laedke and Spatschek (1986) and
Swaters (1986) for the beta—plane modon with rapidly decaying exterior solution, was derived
here for more wide class of the modon solution on a sphere containing all Verkley’s modons.
Note that each modon can be made stationary by choice of corresponding moving coordinate
system. Results obtained show that structure of the invariant sets of small perturbations of the
R-H wave and the stationary modon are similar to each other. Principal peculiarities of the
Liapunov stability analysis in an invariant set of perturbations are shortly discussed in Section
10. In particular, Zubov’s criterion of the Liapunov instability in metric space is given here. This
criterion is used in Section 11 to show that any Verkley (1987) monopole modon as well as any
Legendre polynomial are linearly Liapunov stable with respect to perturbations of sufficiently
small scale (Propositions 14 and 15). Linear Liapunov stability of a solution of a nonlinear
problem means that this solution is Liapunov stable for the case in which the original problem
linearized about such a solution is analyzed.

2. R-H waves and modons on a sphere

The non-dimensional vorticity equation describing the dynamics of an invicid incompressible
fluid on a rotating unit sphere S can be written as

ST AV I, Ag+24) =0 M

Here 9(t, A, p) is the stream function, u = sing, ¢ and X are the latitude and longitude of
a point (A, u) on S, Aty and Ay + 2 are the relative and absolute vorticity respectively, A is
the Laplace operator on S and

_%oh _ oy oh

T B =53 Au  Oudr

is the Jacobian. Let us introduce a Hilbert space L? (S) of square integrable functions on S with
the inner product and the norm defined as

<, h>= /S YhdS, gl =< v >1/? (2)

Here h and h are the complex conjugate functions (Marchuk, 1982). It is well-known
Richtmyer, 1982) that
y

L*S)=H 0 Hi o H4®...0 Hn &...,
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i.e., LZ(S) is the direct orthogonal sum of the eigen spaces

Hp={¢: -A¢ =n(n+1)¢} (3)
of the Laplace operator A. Each Hy corresponds to the eigenvalue
xn =n(n+1) (4)
and 2n + 1 spherical harmonics
Yo' (0 1) = Qu'(w)e™ (5)
of the degree n (—n < m < n) form an orthonormal basis in Hp:
k
< Ynm()‘a 1), Yo' (A, p) >= bpi- (6)

Here 8,,) is the Kroneker symbol,

Qn (1) = Cnm Py (1) (7)
where
m 1— 2 m/2 Jntm "
PR = S W ) )

is the associated Legendre function of the first kind, and

_ [2n+1(n—m)!
C’"’"\/ ir (ntm) ®)

is the normalizing factor.

Note that every function f(A, u) of LZ(S) can be represented by its convergent Fourier—
Laplace series,

FOL )= f m)=D> > MY, p) (10)

n=0 n=0m=-—n

where fn(A, p) is the orthogonal projection of f(\, u) on H, and

frrln =< f(A’ V’)a Ynm(Aa l“) > (11)

is the Fourier coefficient of f. Besides, each eigen subspace Hy, is invariant under the Laplace
operator and also with respect to any rotation of the sphere (Helgason, 1984). This result, as
well as the theoretical results on convergence of Fourier-Laplace series on a sphere (Skiba, 1989)
show that mathematically the triangular truncation of a series is more correct operation than
the rhomboidal one.

We will make use of the relations

<J(Y, f)y h>=<J(f, h), ¥ >=—<J(, ), f> (12)
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<J(y, h), F(¢) >=0 (13)

<J(, ), Ap >=< J($, Ap), p>=0 (14)

which are valid for arbitrary real sufficiently smooth functions v, f and h on a sphere (Skiba,
1989). Here F(¢) is any continuously differentiable function of ¢ (for example, F (%) can be a
polynomial of ). The relation (12) represents the rule of transposition of 1, f and h. Taking
in (13) F(4) =1 and F(v) = ¢ successively, obtain

/S J(, h)dS =0 (15)
and

<I(W, B, >= [ I, hypds =0 (16)

Using (12)-(14) it is easy to show that the kinetic energy % | V¥ ||, the enstrophy

% || Ay ||2, the integral vorticity [g A4dS, the angular momentum < A, p >= [guV1 — p2dS
and [g F (At + 2u)dS are constant in time for any solution ¥(t, A, p) of Eq. (1). Here F is an
arbitrary function of the absolute vorticity whose differential properties are the same as in the
identity (13).

For any constant coefficients w and f;; the R-H wave

7 A p)=—wp+ > fm¥a'(A—Cnt, p) (17)

m=—n

consists of the solid body rotation component belonging to H; and the homogeneous spherical
polynomial of degree n of Hn. The wave (17) of the subspace H; @ Hy, is an exact solution of
Eq. (1) if

w — 2(w+1)
Xn

Cn = (18)

Here w is the super-rotation velocity and Cp, is the speed of the R-H wave (Thompson, 1982).
Obviously in each subspace Hy the set of all R-H waves is identical to that of all Thompson
waves. Note that

Af+2u=—xnf— xnCnp (19)
and
(A1, )= (nCn+2) 2 (20)

for any R-H wave (17), (18).

In addition to the coordinate system (A, p), let us consider a primed coordinate system (', u’)

whose pole N’ with coordinates A = o and 4 = po moves along the latitude circle with constant
velocity C according to the law: Ao = Ct, po = const.
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In the primed coordinates the Verkley (1984, 1987) modon has the form

p(N', 4') = R(y) cos N + G (') (21)

where
R(4) = A;Pa(u') + wi\/1 — pd P (')

G(u') = BiPa(y') — wipo P{ (4') + D; (22)
in the inner region S; = {()', u)eS : ' > pa} and
R(4') = AoPy (—p') + wor/1 — p3Pi (')
G(1') = BoP3(—p') — wopo P (u') + Do (23)
in the outer region Sp = {(), p')eS : ' < wg}. Here D; and D, are constants, the circle

p! = pg is a boundary between the regions S; and S, of the sphere, and the coefficients 4;, Ao
and B;, B, of the modon are defined as

Ai = (C - wo)a,-, Ao = (C - wo)ao

poAi = —\/1—pdB;,  poAo=1\/1— pdBo (24)

where the constants a; and a, depend only on the parameters «, o, pa and po:

o bo(o) B B 1

1
ao=\1—-p2\/1—-p2 ———0 25
o \/ a \/ 0 Pol-(—lla) (25)
We used here the Verkley notation

bi(a) = xa =2, bo(c) =xs —2 (26)

Note that the Legendre functions Pg'(u) used here coincide with those of Verkley (1984)
except for the factor (—1)™. As a result, the formulas given on the second line of (24) differ by
the sign from those obtained by Verkley (1984).

We denote as xa = a(a + 1) and xo = o(0 + 1) the eigenvalues of the Laplace operator
corresponding to the spherical harmonics Py'(u)cosA and P;"(u)cos mA respectively. The
modon (21) is the exact solution of Eq. (1) provided its angular velocity C is

Xo

C =wo — (27)
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(Verkley, 1984). Besides, the dispersion relation

_50(0)P5 (—pa) _ bi(@)Pa(pa)
P2 (—ta) P(1a)
between three parameters o, o and pgq, is the necessary condition for the modon (21) to exist
(Verkley, 1984).

Note that the degree o of the Legendre function Py'(u) is real (a > 2) and xo > 0. Unlike
a, the degree ¢ may be not only real, but also complex value: o = —% + ¢k where k > 0. In the
last case the modon is localized only in a small neighbourhood of the inner region S;, besides,
xo = — (k% + 1) < 0. In the particular case when a = o, the modon (21) is the R-H wave. If
Xa # Xo then the Jacobian term of Eq. (1) can be written

(28)

I, Ay) = —r(X, H ¥ (29)
g
where
Cxa+2, if (N, u')esS;
/\’ ! :{ Xa ) 3 t
r( ) #’) CXO'+2, if (AI’ ,.I.I)CSO (30)

Thus the Jacobian is continuous on S only if the modon % is stationary (Skiba, 1989).
Therefore the stationary modons, as well as the R—H waves, are the classical solutions of the
vorticity equation (1), and a non-stationary modon represents the generalized solution of this
equation.

If | go |= 1 then the modon (21) has the only monopole component and respresents a zonal
flow in the unprimed coordinate system: (u) = G(u) (Verkley, 1984). Modon is called dipole
if | po |# 1. The dipole modon has the purely dipole structure

YN, 4') = R(n) cos X'

if uo = 0, and both the dipole and monopole components otherwise. At the boundary point
p# = pa the functions R(u) and G(u) have continuous derivatives only up to the second order.

Note also that in case o = —-% + ik, the permissible velocities (18) and (27) of R-H waves and
modons do not intersect (Verkley, 1984).

3. Conservation law and invariant sets of perturbations of the R—H wave

In this section, we obtain a conservation law and find invariant, independent, sets of perturba-
tions of the R-H wave (17), (18) (Skiba, 1989). Suppose ¥(¢, A, p) is a solution of Eq. (1)
different from f(t, A, u). Then their difference

P, A, p) =ty A, w) = f(t, A, w) (31)

satisfies the equation

SAY LI, M) +IWs AT +20) + I, AY) =0 (22
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with the initial condition

A¢,(0, Aa “) = Ad’(oa Aa /l') - Af(oa ’\a :u') (33)

Thus the stability problem of the R—H wave f(¢, A, u) is reduced to that of the zero solution
of (32).

Let us take the scalar product (2) of Eq. (32) with ¢’ and A4’ successively. Using the relations
(12), (14) and (16) we obtain

d

ZE® =-<J, Ay, 1> (34)
Ln(t) =< I, AY), Af> (35)

where
K@) =V @7 and  n() = 2| ()]? (36)

are respectively the kinetic energy and the enstrophy of arbitrary perturbation ¢’ of the wave
f.

Note that time-derivative of the energy of any perturbation which is zonal or belongs to a finite
dimensional subspace Hp is zero. The same is true for arbitrary perturbation of the form F(f),
i.e., funciionally related to the basic R-H wave (17). Here F(f) is a differentiable function of f.
Therefore, such perturbations belong to a boundary separating the domains of the generation

(%K(t) > 0) and dissipation (%K(t) < 0) of the perturbation energy in the phase space.
Taking into account (14) and (19), (34) and (35) lead to

L0(t) = xn 2K (1) (37)

where xn is defined by (4). Thus, we have (Skiba, 1989)

Proposition 1. Any perturbation of the R-H wave (17), (18) evolves in such a way that its
energy K(t) and enstrophy n(t) decrease, remain constant or increase simultaneously according to
(87).

As known, the perturbation enstrophy contains information not only about the amplitudes
but also about the spectral composition of the perturbation. Therefore, it is generally a stronger
integral characteristic than the kinetic energy. However, according to Proposition 1, for analysing
the stability of the R-H wave (17), (18) it is sufficient to examine the tendency of the perturbation
kinetic energy only without taking into account that of the enstrophy. The functional

Ul ()] = n(t) - xn K (2) (38)

where n > 1, is constant due to (37), i.e.,

LUy )] = S ~ xnlK(@H)} =0 (39)
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for any perturbation ¢’ of the wave f. Here xn is defined by (4), and

x(¥') = n(t)/K(2) (40)
is the mean spectral number of 4. Eq. (39) can be written as

k

o] k
3 xelk—xn) > WE®P - Zxk(Xn—Xk) S re)? =

k=n+1 m=—k m=—k

(o) k n—1
=Lo= Y xilxk—xn) D 120> =D xelxn — xx) Z 1'% (0))?

k=n+1 m=—k k=1 m=—k

In the space of the perturbation Fourier coefficients {(¢/')*} (see (11)) the hypersurface defined

by the last equation does not contain coefficients (1/)'),,'" where |m| < n. It means that the law
(39) describes the perturbation dynamics in the subspace orthogonal to Hp.

The property (37) was originally established by Gill (1974) for an infinitesimal disturbance
of a stationary planetary Rossby wave on the beta—plane. In case of a sphere, the same prop-
erty for infinitesimal perturbation of a stationary solution from Hy was obtained by Dymnikov

and Filatov (1988). Proposition 1 generalizes these results to arbitrary perturbations of any
nonstationary R—-H wave of H; @ Hy,.

If we introduce the notation

p(t) = x(¥') — xn (41)

then Eq. (39) can be written as
p(t)K(t) = Lo = p(0)K(0) = const (42)
where the constant L, is determined by the values of X(’(/)') and K of an initial perturbation

¥'(0). The law (42) represents a hyperbolic interdependence between the mean spectral number
and the kinetic energy of any perturbation of the R-H wave (17), (18).

Due to (42), the whole space of perturbations of the R-H wave (17), (18) can be divided into
three invariant sets:

M2 = {¢": x(¥') > xn}
= {¢': x(¥') = xn}
2= {¢': x(¥') < xn} (43)
Remember that, by definition, a set M of perturbations 1/)’(t) of a solution is called invariant

if ¢'(to)eM implies ¢'(t)eM for all t > t,. Further, according to (37) and (40),

GXW) = ZO/KO) = 050 = xWHZE O (44)
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and hence, the energy cascade of growing perturbations of the R-H wave has the opposite
directions in the sets M” and MZ}: the derivative —a%x(d)') is positive in M” and negative in
M?%. Besides, due to (42), the closer the mean spectral number x(%') to xn, the larger is the
perturbation energy. Note that, by definition (43), the energy cascade of perturbations in the
set M" to the smaller scales is bounded.

Let us now consider all the possible solutions 9 of Eq. (1) which belong to an energy surface
with the energy level Ky = asz where o > 0 and Ky is the energy of the basic R-H wave

(17). In other words, the solutions considered have the same kinetic energy a2Kf defined by the
parameter o. Then the kinetic energy of the corresponding set of the perturbations (31) may
vary within the limits (Skiba, 1989)

Kpmin = (e — 1)’ K; < K(t) < (e + 1)K} = Kmaz (45)

In particular, the minimal level K,,;, and maximal level Kyqz of the perturbation energy
correspond to the R—H waves ¢4 = af and ¥ g = —af respectively. The case &« = 1 (when the
solutions f(t) and #(t) belong to the same kinetic energy surface and the line K = K,,;;, =0
coincides with the p-axis) is presented in Figure 1, taken from Skiba (1989). During the evolution
process a point (p, K) showing the current values of the kinetic energy K(t) and the spectral
distribution x(%') of a perturbation (see (41)) may move only along the definite hyperbola (42)
in both the directions within the limits (45).

We now prove the next assertion (Skiba, 1989):

$

Fig. 1. Relation between the kinetic energy and mean spectral wave number of the R-H wave perturbations (o = 1
Kppin = 0).

2
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Proposition 2. The subspace Hy being a subset of My, is a stable invariant subset of perturba-
tions of the R-H wave (17), (18).

Indeed, using (19) we can rewrite Eq. (32) as

DAY +T(f, AV +xa¥) + I(#, AY' = xnCnp) = 0 (46)

Therefore, if an initial perturbation 3’ belongs to Hy then it will evolve according to the
equation

0

! a 1
S AY = xnCn' =0

Obviously, the perturbation will belong to Hy, for all time and its energy K (t) and enstrophy

n(t) will be invariant in time. QED.

4. Distance between two R—H waves

By Szeptycki (1973) theorem on the existence and uniqueness of a generalized solution of the
vorticity equation, the most suitable norm for determining the distance in the phase space is

19'lls = (e1 K + egn)*/? (47)

where /() = f(t) — ¢(t) is the difference between two solutions %(t) and f(t) of Eq. (1), the
constants e; and ey are non—negative, and K (t) and n(t) are defined by (36). By Proposition 1,
we will take ez = 0 in this section. The energy K (t) of the difference (31) can be written as

K(t) = JlIV/ () - VI = Ka— < $(2), AS(2) > (48)

where

Ko =Ky + Ky = 2 |9)% + 2|V 1]* (49)

is the constant as a sum Ky + Ky of the kinetic energies of the solutions ¢ and f (Fjgrtoft,
1953). Due to (48), the energy of the perturbation (31) is completely defined by the current
projection of the solution ¥(t) on the R—H wave f(t). Suppose now that 1 (t) is a R-H wave of
the subspace Hy @ Hy:

k
d)(ta A, ll') =—@p+ Z 1/}mYkm(A - ékta N’) (50)
m=—k
Then, by (48),
2 il = im(C.—
K(t) = Ko = 500 —bnixn 3. $mfme ™) (51)

m—=—n
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where 6, is the Kroneker symbol. The formulas (47) and (51) can be used for determining the
distance between any two R—H waves in the phase space. Besides, Eq. (51) leads to

Proposition 3. Let f be a R—-H wave (17) of H; @ Hy and let 1 be a R-H wave (50) of H; ® H,
where n, k > 2. Then the energy K(t) of the difference between these two waves is constant in
time if and only if at least one of the following conditions 1s fulfilled:

1) k#n;
2) k =n and Cp = Cpn (waves oscillate synchronously);
8) k=n and Ymf,, =0 for all m # 0.

5. Distance between a R—H wave and a modon

We now derive a formula for determining at any time the distance between a modon (21) and
the R—H wave (17) in the phase space of solutions of Eq. (1) (Skiba, 1991). Let us again consider
the norm (47) under e; =1 and e; = 0. By (47) and (48) we have

9" )12 = K(t) = Ka — xn < ¥, &), f(t, X, p) > (52)

for the difference ¢'(t) between the modon (21) and the R-H wave (17). Since < t, u >= const,
we suppose that w = 0 (i.e., the R-H wave f belongs to the subspace Hy, and Cyp, = _Xln. < 0).
The case w # 0 differs from that considered here, by the constant K4 only.

Fig. 2. The fixed coordinate system (z, y, z) and moving coordinate system (:c', v, z'}) connected with the
Rossby-Haurwitz wave (17) and modon (21) respectively. Coordinate system (£, §, #) demonstrates a position
of system (z’, y', 2') at initial time.
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Since the modon and the R—H wave are written in the different coordinate systems, we rewrite
the R-H wave in the modon coordinates and then calculate the inner product < 1/)( ), f(t) >
To this end, we consider two Cartesian coordinate systems (z, y, z) and (:z: T z') whose
common origin is in the centre of the sphere S (the point 0 in Fig. 2). Let (A, u) and (), ')
be the geographic coordinate systems used for constructing the R-H wave (17) and the modon
(21) respectively. Suppose the axes Oz and 0Oz' of two Cartesian systems coincide with the
polar axes ON and ON' of the geographic systems (X, u) and (), u') respectively. Thus the
primed system (z', y', z') rotates together with the modon whereas the system (z, y, z) is

fixed. Denote as v(t) the angle between the axes Oy and Oy'. If originally these axes coincide,
i.e., 7(0) = 0 then

v(t) =

for any ¢t > 0 where C is the velocity (27) of the modon. Unlike «(t), the angle ¥ between the
axes Oz and OZ' is fixed, besides cos 9 = p,.

In order to write the R—-H wave (17) in the primed coordinate system (), u'), we make a
rotation of the system (z, y, z) so as to bring three axes Oz, Oy and Oz into coincidence with
the axes Oz', Oy' and Oz’ respectively. In our case total rotation consists of two successive
elementary rotations of the system (z, y, z) through the Euler angles v and 9: first about the
axis Oz through the angle 4(t), and then about the axis Oy’ through the angle ¥ (Richtmyer,
1982; Nikiforov and Uvarov, 1984). Note, that after the first rotation the axes Oy and Oy’ will
coincide with each other.

As a result, in each subspace Hp(n > 1), the equations

Y, p) = Z DXi(v, 9, O)Y,F(N, 4) (53)

k=—n

(Im| < n) link the spherical harmonics Y;"*(A, u) and Y,¥()', ') for two geographic coordinate
systems. The generalized spherical functions

D:lnk (7, v, O) = exp{im'y}dnmk (ﬂo),

also called Wigner’s D-functions, form the elements of an unitary matrix D(~, 9, 0) of finite
rotations in the subspace Hy (Nikiforov and Uvarov, 1984). Here

dn~
dun~

(1) = Ol — ) 7" (1 + )~ 7" [(1 — )" R+ )t (54)

and

(=)™ [(n+m)!(n—m)!

Crmk = 2t(n—m)!\ (n+ k)!(n — k)! (55)

Taking account of the spatial structure of the modon (21) and the relations

27
/ cosAsinmA dA =0 forany |m|<n (56)
o
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and
/2” Acosmadr={ ™ Hm=1 (57)
, cosaces ~lo, ifm#1
we will use the form
1 k [} !
'
YA, w) = 3, Dy 9, 0)Qn(n) cosmd’ +Ug* (X, 1) (58)

k=-1

of Eq. (53) for calculating < %(t), f(t) >. Here terms UM (XN, u') are orthogonal to the modon
(N, u).

Let us use Eq. (21) and the result obtained after substituting Eq. (58) in (17) so as to
calculate the inner product < t(t), f(t) >. Several simple transformations lead to

< 9(t), f(t) >=Gn Y Tmdmo(po) exp{im(Cn — C)t}

+% Y [t (o) = (=1 " (—ho)]Tm explim(Cn — €)1} (59)
where
1
Rn = /_ 1Jf'e(u)ceh(u)dm, Gn = /le(u)Qg(#)du (60)

are the Fourier coefficients of the zonal functions R(u) and G(r) which define the modon (21).
To derive (59) we used the relations (Nikiforov and Uvarov, 1984)

dh(p) = (~1)™Fd2,, _g(n)
m, —k(1) = (1) "dpy(—n)
A1) = (1) F R (w) (61)

Fourier coefficients Gy, defined by (60) can be excluded from (59) due to the following assertion:

Proposition 4. Let ¢ be any dipole modon (21). Then

—-1/2 Mo Rn, (62)

e V1 -1

for all Fourier coefficients (60) of 1.
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Proof. Indeed, using the recurrence formulas

Qn(n) = xEI/Z\/ 1- uzgdﬁQﬂ(u) (63)

and
1 d
Pa(u) = 1 - w22 Pa(w) (64)
for the associated Legendre functions and Egs. (60) we obtain
—1/2
Bu= =i [ 0 Ry (65)
and

%{\/1 — u2Pa(n)} = APY(n) = —xaP2(p) (66)

It is easily seen from (22)-(24) and (66) that

\/‘2@ V1= p12R(u)} = —-AG(p) (67)

Substituting (67) in (65) we have

1
—1/2 —
xn'P—te__p, :an/ AG(R)Q (u)du
1- 43 -1

1
=xa' [ WA = —c
-1

QED. The next assertion follows immediately from the formula (59) and Proposition 4.

Prop051t10n 5. The projection < ¢(t), f(t) > of the R—-H wave (17) of Hy, on the dipole modon
(21) is

<O, SO >=Rn Y {5[dm (ko) = (1) "l (o)
—1/2 Ko

—Xn | —====dmo (o)} [ 1 exp{im(Cn
V1-—pd

In case ¢ is a purely dipole modon, uo = 0 and the formula (68) is considerably simplified:

— O)t}. (68)

n

<$(), f()>=Rn Y ' dp(0)Tmexp{im(Cn — C)t} (69)

m—=—n
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The symbol 3/ means that the summation in (69) is performed only over such m that n —m
is odd.

Thus Eqs. (52) and (68) (or (69)) enable us to determine at any time ¢ the distance between
the dipole modon (21) and the R-H wave (17) from the subspace Hn.

If 4(u) is a monopole modon, then |uo| = 1 and R(p) = 0. Since dpmo(po) = 0 for all m # 0
and djby(1t0) = P3(po), the inner product < ¢, f >= G foPr(1o) does not depend on time in
this case. That is in agreement with the well-known fact that the norm (47) is constant if Y is
the difference between a zonal flow and any solution of Eq. (1) which represents a fixed spatial
structure moving in the A-direction with constant velocity (Skiba, 1989). The next assertion is
a corollary of Proposition 5 (Skiba, 1991):

Proposition 6. The enstrophy and the energy of the difference between a R-H wave (17) and a
dipole modon (£1) are constant if at least one of the following conditions 18 satisfied:

a) Rn = 0 (orthogonal solutions);

b) fm =0 if m # 0 (zonal R-H wave);

¢) Cn = C (synchronous oscillations);

d) n =1 (R-H wave belongs to subspace Hy);

e) o = 0 and simultaneously fm = 0 if n — m s odd (purely dipole modon and symmetrical
(about the equator) R—H wave).

6. Distance between dipole modons

We now derive a formula for the enstrophy and energy of the difference between two dipole
modons (Skiba, 1991). Let the centre of a dipole modon % move along the latitude circle
it = po = b and the centre of another dipole modon,

(A1, 1) = B(ui)cos Ay + G(p1), (70)

move along the latitude circle 4 = po = a. Let us link the poles N’ and Nj of the geographic
coordinate systems (A, u') and (A1, p1) of the modons ¢ and 4 with Cartesian coordinate
systems (z', y', 2') and (z1, y1, 21) (see Fig. 3). Denote as C and C the velocities (27) of ¢

and 1 respectively. Suppose the longitudinal angle v between the poles N' and Nj at initial
time to = 0 is 4o. Then it equals

~(t) =0+ (C - O)t (71)

at any time t. Also denote as 3, p and 9 the angles N;ON', AOB and BOC respectively.
The enstrophy 7(t) of the difference ¢'(t) = 4(t) — P (t) of two modons is

7(0) = 218917 + AT < Ap(r), AG(E) > (72)

Here the constant

1 2 1 ~9
ne = S1AvI? + 21ad ©

is the sum of the enstrophies of two modons.
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Fig. 3. Disposition of modons (70) and (21) written in geographical coordinate systems (A;, p1) and (X', ¢')
whose poles Ny and N' move along the latitude circles 2 = a and u = b respectively. The curve AB belongs to
the equator u; = 0 and the curve BC is part of the equator u' = 0. The axis Oy, is orthogonal to the axes Oz'
and Oz;.

For calculating the inner product in (72) let us rewrite the modon (70) in the system (A, u')
at any time t. To this end, we should make a rotation of the system (1, y1, 21) so as to bring
it into coincidence with the system (z', ¥/, z') (see Fig. 3). This rotation can be represented
by the matrix D(p, —B, 9) (see Nikiforov and Uvarov, 1984) and consists of three successive
rotations through the Euler angles p, —8 and ¢ which depend on ¢. These angles are determined
in Appendix A.

The rotation D(p, —B, 9) results in the relations

Ya'(A1, m1) = Y. Dpyle, —B, 9V, ') (74)

k=—n

where (Nikiforov and Uvarov, 1984)

Dpk(p, =B, 9) = exp{i(m + k)r} exp{i(mp + ko) }dpy (u) (75)
with u defined by (A.1). Since the solution (70) can be written as

$(A1, p1) = D BnQh(u1)cos A + > GnQi (1), (76)

n=o n=o

we will need the formulas
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0 —_— dn 0 ! 19dn 1 ! AI
Qn(l‘l) = OO(U)Qn(/»" ) + 2 cos 10(“)Qn(l‘ ) cos

+Un (N, 1) (77)

and

QL (1) cos Ay = —dTo(u) cos pQR (')

Fha(w)QL (1) cos A + Ug (N, 1) (78)

obtained from Eqs. (74) and (75). Here Un*(X, p') (where m = 0, 1) are the functions

orthogonal to the spherical harmonics Q%(1') and QL(y') cos X' with n > 1. Besides, dio(u) =

-1/2
Pg(u), dPo(u) = xn / P,%(u) and

hn(u) = cos(p + 9)df (u) + (~1)" cos(p — 9)df; (—) (79)

Writting both modons in the form (76), using (77) and (78) and taking into account the
relations (62) for Gn and Gn, we obtain

< Ap(t), AP(E) >= > wn(u, a, b)RaRn (80)
n=1

where
_ Xn 1
wn(u, a, b) = Xn{Thn(“) + (cos 9 — cos p) Py (u)

+ ab P3(v)} (81)

/(1 - a?)(1 - b?)

Substituting (80) in (72) we arrive at the following assertion:

Proposition 7. At each moment t the enstrophy of the difference between the dipole modons (21)
and (70) 1is

i N
n(t) = '2‘ Z[wn(la a, a)Rﬁ +wn(1’ ba b)erz.
n=1

—2wn(u, a, b)RnRn] (82)

It can similarly be shown that the kinetic energy between two dipole modons is
1o~ -1 52 2
K(t) = E Z Xn [’(Un,(l, a, a)Rn + ’U)n(l, b, b)Rn
n=1

—2wn(u, a, b)RnRn) (83)
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Due to (72), n(t) = Const if and only if the inner product (80) is invariant. Therefore, (82)
and (83) lead to .

Proposition 8. The enstrophy n(t) and the energy K(t), and hence, the norm (47) of the
difference between the dipole modons (21) and (70) are conserved in time if and only if at least one
of the following conditions is satisfied:

a) C = C (synchronous oscillations);
b) RnRp = 0 for alln (the case of orthogonal modons).

We now consider the particular case when two dipole modons move along the same latitudinal
circle po = @ = b (see Fig. 4). Then, according to (A.1)

u=cosf=a’+ (1 — a?) cos ~(t) (84)

Fig. 4. Special case of Fig. 3 when poles N; and N’ move along the same latitude circle (go = a = b). Spherical
triangles ANB and BNC are equal to each other. Curves AB and BC belong to the equators ;3 = 0 and ¢’ =0
of the systems (Ay, u1) and (X', ') respectively.

and p = 9 = /2. Besides, if follows from (81) and (79) that

a2
1—a?

wn(¥) = wa(u, @, @) = xn{ X hn(u) + P3(u)} (85)

and
1 (0, 2) (2, 0)
hn(u) = 5{cos 2p(1 +w)P, 2" (u) — (1 - u) P2 (u)} (86)

where P (u) is the Legendre polynomial (8), and
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(0, 8)(,y_ F(nta+1)
Fu (u) = n!l'(a+ 1)

1—u

F(-n; n+a+B+1; at+1; ) (87)

is the Jacobi polynomial (see, for example, Nikiforov and Uvarov, 1984) defined through the
hypergeometric function

F(pirssio) = Yo @nn ™ -y g (58)

= () nl’
here I'(s) is the gamma function and (s)n = I'(s + n)/T'(s) is the Pochhammer symbol.

If poles N; and N' of two modons coincide then v = p = ¢ = 0, u = 1, and hence, P,EO’ 2 (1) =
1 and hp(1l) = 1. And if v = 7/2 then u = a? and cos2p = %—;—3 due to (A.6), (A.7). In Section
8, in order to prove the Liapunov instability of the dipole modon we will need the following
assertion:

Proposition 9. Let u = a%. Then |hn(a®)| < 1. (89)

In combination with (85) the strict inequality (89) will enable us to obtain the inequality
(106) and hence select the positive number € (see (104)). The proof of Proposition 9 is given in
Appendix B.

7. Liapunov instability of non—-zonal R—H wave

It is well known that the zero solution of (1) is stable in the norm (47) with respect to arbitrary
perturbations because of the existence of two conservation laws for the kinetic energy and the
enstrophy (Fjgrtoft, 1953) The same is also valid for arbitrary solution of the subspace Hj.

Proposition 10. The kinetic energy and the enstrophy of arbitrary perturbation of any solution
of Eq. (1) from the subspace Hy are conserved in time.

The proof of this assertion is given in Appendix C. Proposition 10 shows that any super-
rotational flow on a sphere is Liapunov stable with respect to arbitrary perturbation. But the
stability properties of the R-H wave (17) are quite different if n > 2 (Skiba, 1991). First we
review the concept of Liapunov stability of the solution (Liapunov, 1966; Zubov, 1957).

Definition. A solution f(t) of Eq. (1) is Liapunov stable if for any € > 0 and any initial time
to there exists such a number § = é(e, to) > 0 and such time t1 > to that

17() —»(@®)lls << (90)
for allt >t and for any solution (t) of the equation (1) which satisfies at t = to the inequality

1 (o) — ¥(to)ll+ <6 (91)

The following assertion is proved in Appendix D.

Proposition 11. If n > 1 then any non-zonal R-H wave (17) from the subspace H; @ Hp 1s
Liapunov unstable in the norm (47).
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As is known, there are a few mathematical definitions of the solution stability with respect
to initial perturbations. In practice, especially in numerical experiments, a concept of the linear
(or spectral) stability of a solution is the most popular because of its comparative simplicity
(Lorenz, 1972; Gill, 1974, Baines, 1976 and others). In case of a stationary basic solution, the
linear stability analysis is carried out by means of the method of normal modes. To this end,
an eigenvalue problem is solved for the linearized operator of the problem in order to find the
time-space structure of stable and unstable modes in the field of perturbations. There are two
main restrictions for the linear stability study, namely: all the amplitudes of perturbations are
infinitesimal and only the initial stage of the instability process can be analyzed. If the basic
solution is non-stationary then the linear stability analysis becomes more complicated.

From mathematical point of view, the stability of a solution in the Liapunov sense is the most
strict and strong concept (Liapunov, 1966). The Liapunov stability guarantees the absence of
the exponential as well as algebraic growth of perturbations. Thus a solution can be Liapunov
unstable, even if there is no exponential growth of its perturbations. The Liapunov method of
the stability study is equally applicable both to non-stationary and stationary basic solutions.
Besides, the Liapunov stability characterizes the behavior of perturbations over the whole infinite
time interval (to, co) where t, is an initial time moment. Note also that the Liapunov stability
study of any non-stationary R-H wave or a modon, without loss of generality, can be reduced
to the stability study of the corresponding stationary solution (see (34), (35) and Proposition
10).

Let us compare the linear stability with the Liapunov stability in the initial stage. The main
part of the method of normal modes, the eigenvalue problem, is usually solved numerically or
by another approximate method resulting in approximation errors, rounding errors and others.
Moreover, a set of matrices whose eigenvectors are linearly dependent, have the zero measure
in the whole space of matrices of the same size, i.e., the probability of meeting such a matrix is
zero. Hence, because of different errors mentioned above, the matrix of the eigenvalue problem
in the method of normal modes is always simple in structure, i.e., its eigenvectors are linearly
independent. It means that the algebraic growth of perturbations is excluded from consideration,
and only the exponential growth of infinitesimal perturbations is taken into account. Therefore,
an approximate method of spectral analysis, especially in weakly unstable cases, can not give
full information about the dynamics of the perturbations. It will be shown in this section that
just such weak instability always takes place for the non—-zonal R—-H wave.

We now consider a very simple example so as to bring to light the mechanism of Liapunov
instability of non-zonal R-H waves and to illustrate more clearly the proof of Proposition 11.
Consider the R-H wave

ft, A, p) = FQu'(1) cosm(A — Cnt) (92)

where Qp'(1) is the normalized associated Legendre function (7), and F is the real amplitude
(m > 1, n > 2). The kinetic energy of the wave (92) is Ky = 7xnF? where xn = n(n+ 1). Let

g = 4Ky (see (D.2)), and let é > O be as small as we like. As another solution of the vorticity
equation we take

B(t, s 1) = =2 ¥ (1) + FQR (k) cos m(A — Cnt) (93)

where Cy, is the same as in (D.3), and Cyp — Cp is defined by (D.5).

Remember that m and n are fixed. Therefore, Cy, — Cy is a very small number. The corre-
sponding perturbation ' of the wave (92) is
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¢'I(ta A’ /") = ¢(t, Aa l‘) - f(t’ Aa Il‘) =

8 : Cn+C
= =5 Y7 (¥) + A@)Qn (W) sinm(A — -L‘z——nt) (94)
where
A(t) = 2F sin m-C—";%El‘-t = 2F sin mwt (95)
Then the kinetic energy K (t) of the perturbation (94) is
2 2 -
K(t) = % + 7anA2 (t) = 6—4— + 4Kf Sinz{m§(14—2/xn)t} (96)

Hence, if to = 0 then the amplitude A(0) = 0 and K(0) = g, and (91) is fulfilled. However,

att=r; = m_26((11+T2217);(1r_5 where j =0, 1, 2,... we have A(r;) = 2F and (90)is invalid:
62 2

6
K(r) = vy +4K; = R +&2 > &l (97)

Within the interval (to, 7o), the representative point of the perturbation +'(t) will move

along a definite hyperbola, according to the law (42), from the point (p1, 6;) up to the point
whose energy K(7o) is just slightly larger than 4Ky (Fig. 1). Thus the amplitude A(t) of
the perturbation (94) as well as its kinetic energy K (t) increase monotonically within the time
interval (to, 70). Since the perturbation (94) is periodical it is impossible to choose a moment
t; so as to satisfy the Liapunov stability definition. Therefore, the R-H wave (92) is Liapunov
unstable. This example shows that the instability is possible even if two sums in the left side of
the formula next to (40) are invariable. It conforms the point by Shepherd (1988) in his dispute
with Petroni et al. (1989) on the double cascade mechanism.

We now analyze the result obtained. Due to (95), the amplitude A(t) of the perturbation (94)
varies in direct proportion to the amplitude F of the basic solution. Besides, the maximum of
the amplitude A(t) is twice that of the basic wave (92) and does not depend on é. Therefore,
if the amplitude F of the basic wave (92) is large then the growth of the amplitude A(t) of the
perturbation (94) is considerable and evident independently of the very small initial distance
5 between two R-H waves (92) and (93). And if F is small then the growth of A(t) is not so
visible. In addition, since 6 is very small, the growth of the amplitude A(t) is so slow due to
(95) (i.e., the time interval (¢o 7o) is so large) that in practice the R-H wave can be mistakenly
considered as stable. However, by the definition of the Liapunov stability, this wave is unstable.
It follows from (95) and (96) that the larger the zonal wavenumber m of the basic solution, the
faster is the growth of the amplitude A(t) and the energy K(t) of the perturbation, all other
things being equal.

Note that the Liapunov instability of the non-zonal R—H wave has nothing in common with
the orbital (or Poincaré) instability. Indeed, due to (91), the orbit of the solution (93) will always
be in the tube of the radius § which envelops the orbit of the basic wave (92). It means that for
any time t; there is a time t3 such that the norm (47) of the difference ¥(t;, A, p) — f(t2, A, )
is not larger than 6. The reason for the Liapunov instability is the non-zero shift Cp — Cp of
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the velocities of two R—-H waves whose paths are close to each other in phase space, i.e., the
asynchronous oscillations of the waves.

Finally, the choice of the Liapunov functional is essential in the Liapunov stability study. In
our opinion, due to the existence and the uniqueness theorem for the vorticity equation solution
(Szeptycki, 1973), the norm (47) is the most natural and correct. Anyway, the formulas (94)
and (95) give conclusive evidence of the growth in amplitude of the perturbation, and hence, of
the instability.

8. Liapunov instability of dipole modons

As an example of using the formula (82) we now show that any dipole modon is unstable in the
Liapunov sense. Before formulating the main assertion let us obtain several auxiliary relations.
Taking account of (24)-(27) and the formula

bo(a)
b;i(e)

(Verkley, 1984), the function R(u) of the modon (21) can be written as

w; —wo = (C — wo){1 —

} (98)

R(p) = (C = wo)T() + wo\/1 — udy/1 — 42 (99)

where

T(“):{aipé(ﬂ)+{1_%§%\/l—ﬂgvl— 2, if u > pa (100)

a0 Py (—p), if p < pa
is infinitely differentiable function within the intervals [—1, pa) and (ua, 1], but at g = ug it has
continuous derivatives up to the second order only. Suppose that the dipole modons (21) and

(70) move along the same latitude circle p = po = a (see Fig. 4) and have the same parameters
o, o, pg but different velocities wo and &o. Then because of (27),

D = —101—630
C-C=(1 Xa)(o ) (101)

for the modons (21) and (70). Further, due to (22)-(26), the functions R(u) and R(u) of these
modons have the form (99) with the same function 7'(u), and hence,

R(u) — R(k) = (wo ~ @o)F (k) (102)

where

F(0) === T() + V1 - udy/1- 2 (103)

We are now in a position to prove the following assertion (Skiba, 1991):
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Proposition 12. Any dipole modon (21) is Liapunov unstable in the norm (47).

Proof. Since the norm generated by the enstrophy 7(t) is stronger than that generated by the
energy K(t), we take the norm (47) with e; = 0 and e; = 1. Let t, = 0 and

e = {3 Y [wa(1) - wa(a®)|R2}/? (104)
n=1

where Ry and wn(u) are defined by (60) and (85) respectively and a = u, is the latitude of the
pole N' (Fig. 4). Due to (85)-(88),

Xn o’
1) = —+ —=5}>0 105
wn(1) = xn {32 + —2 ) (105)
Taking into account Eqs. (85), (105), Proposition 9, and the estimate | Py (u)| < 1, we obtain

lwn(a®)| < wa(1) (106)

Thus € > 0. Let 6§ be an arbitrary positive number, as small as we like.

We now use the same method as in the Proposition 11 proof. Namely, we show that for € and
any 6 chosen, there always exists a solution f(t) = f(¢, 6) of Eq. (1) such that the condition (91)
is fulfilled but despite that, it is impossible to find a moment t; so as to satisfy the inequality
(90) for all t > t;. It gives evidence that the dipole modon ¢ (t) is Liapunov unstable.

As a solution f(t) we take the modon (70) whose parameters a, o, ug and po = a coincide
with those of the modon (21), and besides,

o0
— @0 =6/{3 wa(1)F2}!/? (107)
n=1
Since the functions F(u) and T'(x) and all their derivatives up to the second order inclusive

are continuous within the interval [—1, 1], the series in the formula (107) converges to a finite
value (Skiba, 1989). Moreover, since § is small, due to (24)-(26) and (101), two modons will

have the slightly different speeds C and € and the amplitudes Ao, A; and Ao, A~.

Suppose that the poles N’ and N; of the modons (21) and (70) coincide originally at t, =
0, i.e., ¥(0) = 70 = 0. Then, according to (82),

1)1 = n(0) = 5 3~ wa(1){Bn — Ra}? = (w0 ~50)’ 3 wn(1)FE
n=1 n=1

Further, due to (107), n(0) = 'T’ and hence, the condition (91) is fulfilled. However, if t = 7;
where
_ w2+
Ty = ~ 25
20— 01— )

(=01, 2,..) (108)

then v(r;) = 7/2 due to (71) and (101). Therefore, u = a? (see Section 6 just before Proposition
9), and (82) and (104) lead to
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19 IE = n() = 3 O wn({RE + B2} = 3 wn(a’)RaFin
n=1 n=1
> 2 Y {wn(1) — lwa(a)HER + R2)
n=1

=43 ) {wn(1) - [un(@)} B (109)
n=1

Thus n(r;) > ¢? due to (106), and the inequality (90) is false at t = ;. Since the sequence
{r;} tends to co as j — oo, it is impossible to find a moment t; to satisfy the Liapunov stability
definition. QED.

9. Invariant sets of perturbations of stationary modon

By definition, a set M of perturbations ¢'(t) of a particular solution is called invariant if the
initial condition t'(to)eM implies ¥'(t)eM for all t > to. As shown in Section 3, all kinds of
perturbations of any R-H wave can at least be divided into three invariant, independent, sets.

We now find invariant sets of small perturbations of any stationary Verkley’s modon. Unlike
the case of the R—H wave, the invariant sets will be obtained here only in a small neighbourhood
of the Verkley modon. As before, we construct a nonlinear invariant functional which is analogous
to that obtained by Laedke and Spatschek (1986) and Swaters (1986) for the beta—plane modon.
It is easy to show that the equation

g

DAY I+, AY) +a@I( ) - Cgpvy =0 (110)

holds in the domains S; and S, for any perturbation ¢ of an arbitrary modon (21). Here C is
the volocity (27) and

3 ! !
— o\ ) = {Xa, if (X, p)esS;
q(z) = q(X, #) oy i (V. u)eS, (111)

because of (29). It is known (Szeptycki, 1973) that not only the classical but also the generalized
solutions of Eq. (1) have continuous derivatives on the sphere up to the second order. Since
any perturbation ¢’ satisfying the Eq. (110) is the difference between two solutions of Eq. (1),
see (31), it is assumed here that all the derivatives of ¢ up to the second order are continuous
on the sphere S. Due to (12) and (34), the perturbation energy equation for the modon can be
written as

9K =~ < I, ¥),8¢' > (12)

Let

n(t) = mi(t) + no(t) (113)
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where

= [ 1av'Pas, no(v) = [ |ay'as (114)

are the portions of the perturbation enstrophy corresponding to the inner and outer regions S;
and S, respectively. Multiplying Eq. (110) by A4’ and integrating the result first over S; and
then over So, we obtain

d ! !
Gt xe [ 0, ¥) -0 greavas

= [ I+, 1avs (115)

and

Gnotxe [ L, ¥) - O geuyavias

- [ I+, (ayPs (116)

Integrating by parts the last term of both Eq. (115) and Eq. (116), and combining the
equations obtained with Eq. (112), we have

d K -1_ -1 S| -1 ZWZA' a\
g E X mi—Xo M0} =(Xo —Xa) (A, ka) (117)

o

where the function

2N, i) = 2(2) = [%(x) + %(m)] Ay (@) (118)

is continuous on S. We emphasize that (117) is true for any perturbation 9’ of an arbitrary
modon (21).

Let xa = xo = Xn, i.e., ¥ is a R-H wave. Then (114) and (117) imply (37), and again we
make sure that the functional (38) is invariant.

Suppose now that xa # Xxs. Using the expressions (21)-(26) and (98), we obtain

o
aj\/)'( ,ﬂa)*—C\/l—ua \/1“#051n)\ (119)

for the modon (21). Thus

%(,\’, Ka) =0 (120)
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for any stationary (C = 0) or monopole (1 — p2 = 0), modon 4, i.e., the boundary u' = p,
between S; and S, is a streamline for such modons. Hereafter we will not distinguish in this
section the stationary and monopole modons.

We now assume that perturbation 1’ is small. Neglecting the second term in (118) and taking
into account (120), we obtain Z()\', ua) = 0. Then (117) leads to the conservation law

d d -1 -1
U )] = —{K — xa'ni — xa 'm0} =0 (121)
dt dt
for small perturbations of the stationary modon (21).
Let us define two functions x;(¢) and xo(t) through
ni(t) = xi(W)K(t), mo(t) = xo(t)K(2) (122)

Then x(t) = x;(t)+xo0(t) is the perturbation mean spectral number and all small perturbations
of the stationary modon are divided into three invariant subsets M, M, and M_ defined as

M_={y' : p(y') <1}
M,={y' : p(¢') =1}

My ={y' : p(y') > 1} (123)

where the non-dimensional number

p(¥") = xa xi(t) + x5 x0(2) (124)

characterizes the spectral composition of the perturbation '
Using (112), (115) and (122), we obtain

0 = 7 - N SE ) (125)

If Xa = xo then (125) is identical to (44). If xa # Xo then (125) is valid only for small
perturbations. By (125), the energy cascade of growing perturbations of the stationary modon
has the opposite directions in the sets M— and M. Since U[¢/(t)] = K (t)[1 - p(¢')] is constant,
the closer p(¢') to 1, the larger is the perturbation energy. Thus there is a structural similarity
between the invariant sets of small perturbations of the stationary modon and the R~H wave.

10. Liapunov stability in an invariant set

Remember that the Liapunov method for the stability study means an analysis of the stability
properties of a solution with respect to all the perturbations from a sufficiently small neighbour-
hood of the solution. Sometimes, it is interesting to consider stability of a solution only with
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respect to a certain subset of perturbations of such a neighbourhood (Swaters, 1986). In this
connection, we would like to emphasize that the Liapunov stability method can be used correctly
to this subset of perturbations only if it is the invariant set. Invariant sets of perturbations of
the R-H wave and the stationary modon have been found in the sections 3 and 9.

It is easy to show that the difference of two elements from the invariant set M; defined by
(43), does not always belong to M. The same is also true for the invariant set M™. Hence the
invariant sets M} and M” are not linear spaces. Therefore, if we study the Liapunov stability
of R—H wave in the set M} (or M) only, then this set must be considered as the metric space.
The Liapunov stability method in the metric space was developed by Zubov (1957).

Since Eq. (110) reduces the stability study of the modon 4 to that of the zero solution, we
now give Zubov’s criterion for the zero solution to be Liapunov stable in the metric space.

Proposition 13. The zero solution is Liapunov stable if and only if there exists a differentiable
positive functional V[ (t)] defined in a small neighbourhood O, (0) = {y' : p(¥', 0) < r} of the
zero and such that

1. Cip(y', 0) S V[¢'(2)] < Cap(w',0) for all ¢! (1)1 (0);

2. SV[y'(t)] <0 for all t > to while ¢ (t)eOy(0).

This statement is a particular case of Theorem 12 by Zubov (1957). The metric p(%’,0)
denotes the distance between the zero solution and a perturbation ¢'(t). We emphasize that the
constants C; and Cjy are independent of time.

Recall that the proof of Proposition 10 was based on using the properties of the orthogonal
projector on Hy, in the space L2(S )- But this assertion can also be proved by applying Proposition
13. Let n(t) and K (t) defined by (36) be the energy and the enstrophy of perturbation ' of
a solution ¢ of Hj. Then the functional U[¢'(t)] = n(t) — 2K(t) is conserved in time for any
¢! due to (39). Further, the projection of ¢'(t) on the subspace H, @ Hj is also constant in
time because of (C.2), (C.3) and invariability of < ', u >. Thus we can assume, without loss
of generality, that each perturbation ¢’ is orthogonal to H, & H;. Therefore, we can use the
inequality

Vgl < 671/2)|ag]| (126)

that holds for any function g(), p) of L2(S) that is orthogonal to H, & H; (Skiba, 1989). Then
we obtain

0 < Cin(t) < U[Y'(t)] < Can(2) (127)

where C; = % and Cy = 1. This estimate means that two different metrics introduced in the

space of perturbations by means of U [’(/J'] and 7, are equivalent to each other at any time. Since
U[y'(t)] is constant, ¢ is Liapunov stable due to Proposition 13.

We now show that the estimate (127) is false in the set M” if n > 2. Indeed, the proof of
Proposition 11 shows that any nonzonal R-H wave (17) of H; @ Hn(n > 2) is Liapunov unstable

with respect to a certain perturbation ' from the invariant set M™. At the same time, because
of (39) and (43),

U ®I=0 and -UW@®]>0 (128)
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for any perturbation ¢’ of M”, and hence, the second condition of Proposition 13 is satisfied.
Therefore, due to Proposition 13, the estimate (127) is false in the set M”.

Note that the sets of the modon perturbations considered by Swaters (1986) are non-invariant
and they are not linear spaces. Besides, he proved the estimate CyK(0) < V[¢'(t)] < C2K(0)

instead of C1 K (t) < V[¢/(t)] < CoK(t). Therefore, Zubov’s criterion (Proposition 13), can not
be used in this case.

11. Stable invariant sets of small perturbations of the monopole modon and the
Legendre polynomial

It is known that the norm (47) of the difference between a zonal flow on a sphere and a R—H wave
(or a modon) is conserved in time. According to Kuo (1973) criterion, all the Legendre polyno-
mial Pp(u) of degree n > 3 satisfy the necessary condition for the linear instability. Numerical
analysis of the linear stability of the Legendre polynomials was carried out by Baines (1976).

The linear stability of monopole modons representing zonal flows and being a combination of
two Legendre polynomials of real degrees can be analyzed in the same way.

We now extract invariant subsets of stable small perturbations of the Legendre polynomials
and monopole modons. We use Proposition 13 in order to show that each monopole modon
with xo > 0 as well as an arbitrary Legendre polynomial are linearly Liapunov stable (see the
definition in Section 1) with respect to any small amplitude perturbation whose spatial scale is
small enough.

Let us fix an integer number m and denote as I,; the subspace of all possible functions on the
sphere S whose zonal wavenumber is m. Spherical harmonics {Y;"(), ) : n > |m|} form an
orthonormal basis in Ir;. As is known, each Iy, is the invariant set for infinitesimal perturbations
of any zonal flow on S. Let us define for any natural k the invariant set

Fr= & Im (129)

|m|>k

as the direct orthogonal sum of such subspaces Iy, that |m| > k, i.e., Fy contains only the
functions f(A, u) of L%(S) whose Fourier coefficients f}*, see (11), are zero if |m| < k.

Proposition 14. Let ¢ be a monopole modon with xo > 0, and let a = maz{xa, Xo}. Then ¢
is linearly Liapunov stable with respect to any initial perturbation of Fy if k(k + 1) > a.

Proof. Let xx = k(k +1). We have p(¢') > x(¥')/a > xx/a > 1, and hence, Fy is the
invariant subset of M. Further, the functional

V') = -U' ()] = K@) {p(+') - 1}

satisfies the conditions (128), and thus, the second condition of Proposition 13 is fulfilled. We
now estimate V [¢'(t)]. Let b = min{xa, Xo}. Then we obtain

Vig'@)] = K(2) {X(;”') - 1} > {3- stz {3- 1}
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and

viv'e] < kX = 2oe)

Thus the first condition of Proposition 13 is also valid, and the monopole modon is stable to
small perturbations of F. QED.

Proposition 15. The Legendre polynomial ) = Pn(p) s linearly Liapunov stable with respect to
any initial perturbation of the invariant set Fy, if k > n.

Proof. If k > n then this assertion follows from Proposition 14 as the particular case when
Xa = Xo = Xn. Let k = n. Obviously, it is sufficient to prove the stability of Pn(u) regarding
the small perturbations of the set In only. By Proposition 2, the Legendre polynomial Pn(u)
is Liapunov stable with respect to perturbations of the invariant set Hp. Therefore, Pn(u) is
linearly stable with respect to perturbations from the set Hyn N In. The set Hn N Iy is invariant
as it is the intersection of invariant sets. It is a one-dimensional set with the single spherical
harmonic Y,'(), p) as its basis. Thus, without loss of generality, one can consider only the

perturbations of I, which are orthogonal to Y;*(\, u). Then again x(%') > xn, and the same
method as in case k > n can be used. QED.

Since the linear Liapunov stability excludes the algebraic growth of infinitesimal perturbations,
it means that under conditions of Propositions 14 and 15 all the eigenvectors of the set Fj of
stable pertubations are linear independent, and the algebraic multiplicity of the corresponding
eigenvalues coincides with their geometric multiplicity.

It is now easy to show that the Legendre polynomial P,(u) is linearly stable. Indeed, the

perturbations ¢'T*(t)(m = —1, 0, 1) of any solution of Eq. (1) are constants. Hence, due to
(39),
! — k ! 2
- !
U’ =3 xklxk —6) D WE®)"=UW'(0)] = const
k=3 m=—k

o0
for any small perturbation of the invariant linear space F = , @ Hj. Therefore, U [4'(t)] can be
taken as the Liapunov functional. Since the set F' is a linear space, it is not necessary to apply
here Proposition 13. As a corollary we have that any R—H wave of H; @& Hj is Liapunov stable
in the invariant subspace F'.

12. Summary

In this paper, a stability study of periodic solutions (the R-H waves and the Verkley modons)
of the vorticity equation have been carried out within the framework of an ideal incompressible
fluid on a rotating sphere. We have derived the conservation law for arbitrary perturbations of
the R—H wave (Proposition 1) and found invariant sets of such perturbations. The conservation
law and the invariant sets have also been obtained for the stationary Verkley modon, but only
for small perturbations (see (121), (123)). It follows from these results that there are certain
common features in the structure of small invariant perturbations of both the R-H waves and
the stationary modons.
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For estimating the rate of convergence or divergence of paths of the solutions of Eq. (1) in
the phase space, we have introduced the metric (47) through a linear combination of the energy
and the enstrophy of the perturbations. In Section 4-6, we have derived formulas which enable
us to find at any moment the distance between two R-H waves, between a R-H wave and a
modon or between two modons in the phase space. The formulas have been used to obtain the
necessary and sufficient conditions for the distance between any two solutions from the set of all
R-H waves and modons to be constant (Propositions 3, 6, 8). These formulas have been applied
to prove the Liapunov instability of two types of exact solutions of the vorticity equation on a
sphere: non-zonal R-H waves of the subspace H; @ Hy if n > 2 and dipole modons (Propositions
11, 12).

It is shown in Section 7 that the Liapunov instability of any non-zonal R-H wave as well
as dipole modons is caused by algebraic growth of perturbations. Such perturbations are the
difference between the basic wave and another periodical solution such that their paths are very
close to each other in phase space. However these two solutions oscillate asynchronously because
of different velocities (18) or (27). This kind of instability is not connected with the orbital
instability, does not exist in the linear stability problem and is typical for periodical solutions of
the nonlinear conservative pendulum equation.

According to Eq. (39), the whole space of perturbations of the R-H wave from the subspace
H\| @ Hy, consists of three invariant sets M2, Mg and M} defined by the magnitude of the mean
spectral number of perturbations. Therefore, the dynamics of perturbations can be analyzed
in each of these sets independently. The proof of Proposition 11 shows that the R-H wave is
Liapunov unstable with respect to certain perturbations from M. It is likely that the same

assertion is also true for the set M2, nevertheless it is still to be determined. We would like
to emphasize that the energy cascades of any growing (or any decaying) perturbations have the
opposite directions in M} and MZ. As for M}, it includes the invariant subset Hy, all the
perturbations of which are stable (Proposition 2). The question, whether the other part of M}
contains unstable perturbations or not, also remains to be explored. Due to Proposition 1, the
kinetic energy and enstrophy of any perturbation of the R—-H wave increase, decrease or remain
constant simultaneously, and hence, the interdependence between the kinetic energy and the
concomitant mean spectral number of a perturbation is hyperbolic. Also note that the largest
amplitudes of perturbations of the sets M” and MY are in the immediate proximity to the set
M.

Due to Eq. (121), there is an invariant nonlinear functional for small perturbations of the
Verkley stationary modon (Verkley, 1984, 1987), and a small neighbourhood of such modon
can be divided into three invariant sets (123) by analogy with the R-H wave case. But unlike
the law (39), the conservation law (121) is valid only for small perturbations of the stationary
modon. For the particular case of Verkley (1984) (or Tribbia (1984)) stationary modons, this
law coincides with that found by Laedke and Spatschek (1986) and Swaters (1986) for small
perturbations of the beta—plane modon with rapidly decaying exterior solution. The conservation
laws (39) and (121) and Zubov’s criterion (Proposition 13) have been used in Section 11 to show
that any monopole modon with xs > 0, as well as any Legendre polynomial P,(u), is linearly
Liapunov stable with respect to special invariant sets of perturbations of sufficiently small scale
(Propositions 14 and 15).

APPENDIX A. THE EULER ANGLES

As mentioned in Section 6, to bring the system (zj, y;, 21) into coincidence with the system
(2:’, y', 2') (see Fig. 3) it is necessary to execute three successive rotations through the Euler
angles p, —0 and ¢, The first rotation of the system (z;, y;, 21) is performed about the axis 0z;
through the angle p. After that the axis Oy; will coincide with the axis Oy,. The second rotation
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is performed about the axis Oyo through the negative angle —f so as to bnng into coincidence
the axes 0z; and 0z'. The last rotation is carried out about the axis 0z' through the angle 9.
Note that two rotations defined by matrices D(p, —3, 9) and D(r + p, B, 7+ ) are equivalent
(Nikiforov and Uvarov, 1984).

We now show how to find the angles p, 8 and 9 provided the values a, b and -« are known. Since
the angles NyOB and BON' are direct, the cosine theorem (Berger, 1978) being successively
applied to the spherical triangles NiNN', NyNB and BNN', gives

u=u(t)=cosf=ab+V1—a?V1-blcosy (A.1)
0=app+V1—a? /1 - pfcosy (A.2)
0=bup+V1-1b%4/1—pu}cos(y— 1) (A.3)

where v; is the longitudinal angle between the points A and B and pp is the u-coordinate of
B. It follows from (A.2) and (A.3) that

tgm1 = (bV1 — a? — aV'1 — b2 cosv)/(aV'1 — bZsin~) (A.4)
sz—\/1~a2cos'71/\/a2+(1—a2)cos271 (A.5)

The cosine theorem used for the spherical triangle ANB and Eq. (A.2) gives

cosp=—pug/V1—a? (A.8)

Relating the coordinates of the point B in the systems (A, u) and (Ay, p;) with the sine

theorem (Berger, 1978) we obtain
sinp=4/1—p Bsm’yl (A.7)

The angle p is uniquely defined by Eqgs. (A.6) and (A.7). Similar analysis for the spherical
triangle BN'C yields

cos¥ = —pug/V1-—b2 (A.8)

sin? =1/1 — p4sin(y — 1) (A.9)

Since 8 is within interval [0, 7], the angle ~; is uniquely defined by Eq. (A.4).

APPENDIX B. THE PROOF OF PROPOSITION 9

As was mentioned before, the case u = a? corresponds to the angle v = 7 /2, and hence,

() = 5 (1 = w){P) (w) - P20 () (B.1)
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for such a value of u. Due to (87), we can rewrite (B.1) as
hn(u) = v{F(-n+ 15n +2;1;v) — %F(—n +1;n+2;3;v)}
where v = (1 — u)/2. Using the functional relation (Olver, 1974)
v—_lF(p;r;s —1;v) + L{s —1—(2s—p—r—1)v}F(p;r;s;v)
I'(s—1) I'(s)
i P IF (s 1) =0 (B.2)

we obtain

hn(u) = F(—n+1;n +2;1;0) — F(—n+ 1;n + 2;2;v)

We now use one more relation for hypergeometric functions from Korn and Korn (1968):

s(s+ 1){F(p;r;s;v) = F(p;r;s + 1;0)} — proF(p+ ;7 + 158 + 2;0) = 0
Then

hn(u) = 2(~n+1)(n +2)F(—(n — 2);n+ 3;3; v)

Applying again (87) we obtain

hn(w) = =222 (1 - u) P D (w) (B.3)
Since 1 — u < 1 — u?, (B.3) leads to
2
hn(w)] < ZE2(1 - o) P D (w) (B.4)

Taking into account the relation

(1 -ty R ) = 2T pn

= m n (1) (B.5)

between the Jacobi polynomials and the associated Legendre functions (Nikiforov and Uvarov,
1984) we obtain

[R(w)] < 2xz | P (u)] (B-6)
The addition theorem for the spherical harmonics (Richtmyer, 1982) yields
n

S lerwpE=2tt

47
m=-—n
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and hence, the inequality

2n+1>1/2

21l < (22

holds for all m # 0. Therefore, using (7)-(9), we obtain finally

n ! 1/2
|hn(a2)| = |hn(u)| < x,fl {En%g:} < 1.

QED.

APPENDIX C. THE PROOF OF PROPOSITION 10
According to (34), it is sufficient to prove that

< J(¢’ Ad’)) f>=0 (Cl)

for any smooth function 1, if the solution feH;. To this end, we define a projection of ¢ on Hp
as (see Helgason, 1984)

¥n(z) = (2n + 1)(¥ * Pa)(2) (C.2)

where the operation (¢ * Pp)(z) called a convolution of the function ¢ and the Legendre poly-
nomial Py,(u), is determined in the following way (Helgason, 1984):

¥+ P)(@) = 5 [ )Pa@- Dy ()

Here z and y are points on the sphere S and # and § are the radius-vectors. The scalar
product Z - ¥ is equal to cos @ where @ is the angle between two vectors Z and §. The point z is

taken in (C.3) as the North pole of new geographic coordinate system in which - § = cos 8 = u.
Note that f(z) = 3(f * P;)(z). So

<IW, BY), [>=3<T(W(), Ap@), (f * P)() >=
= o <T@, Av@), [ JWPE- Dy >=
47 > Jg

=3 < (J(¢, AY)* Pi)(y), f(y) >

Here we change the order of the integration over z and y and used the definition (C.3). Since
Py(u) = u, we obtain (C.1). Actually, for every fixed y we have

T, A9) < PO = 5= [ IO, 1), AV, w)udS =0

due to (14). QED.
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APPENDIX D. THE PROOF OF PROPOSITION 11

We will use the formula (51). By Proposition 1, there is no loss of generality because of choice
of the norm (47) as a square root of K(t). Also, due to Proposition 10, suppose, without loss of
generality, that w = 0, and hence, the wave (17) belongs to the subspace Hy only:

ft A m)= Y fi¥a(A=Chnt, p), (D-1)

k=—n

Since the R-H wave (D.1) is non—zonal, f; # 0 at least for one k satisfying 1 < k < n. Let
for definiteness, such & is odd and

P
e={4xn > |far_1/3'2, (D.2)
k=1

in the definition of the Liapunov stability. Here p is the largest integer number such that

p< (n+ 1)/2. Let an initial value of the energy of perturbations does not exceed 62 where 6
is an arbitrary positive number, as small as we 11ke We now show that independently of § and
the moment t; chosen, there is a perturbatlon iy of the wave (D.1) and a time moment 7 > t;

such that the kinetic energy K(r) of ¢’ exceeds 2. For the ¢ given by (D.2), and for any small
6 chosen, we take as another solution ¢ = (§) of Eq (1) the R-H wave

¥(t, A, u)z——Yl (1) + Z feY (A = Cut, p), (D.3)

k=—n
from H; ® Hy where Cp = Cp(6) = % — (6 + 2)/xn. Then, according to (51), we obtain

2
K(0) =2 +2xn Y- k{1 - cosk(Gn — Cu)t) (D.4)
k=1

for the perturbation ¢' = ¢ — f of the wave (D.1). Here

Cn=6 (_ - 1/xn) . (D.5)

If n > 1, then xn > 2, and hence, Cp —Cy, # 0. Note that the case n = 1 (when Cp, — Cy = 0),
confirms Prop051t10n 10. Due to (D 4), the condition (91) is satisfied at the initial moment to =0

2
since K(0) = 67 However, if t = r; = M (where 7 =0, 1, 2,...) then K(r;) = —4— + €2,
and the inequality (90) is false. Since the sequence {r;} tends to co as j — oo, it is impossible
to find such a moment t; > t, so as to satisfy the mequahty (90) for all t > t;. Therefore, by

definition, the wave (D.1) (and hence, the wave (17)) is Liapunov unstable. QED.
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