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RESUMEN

Se estudia la variabilidad climatica que surge de las interacciones no lineales entre la atmdsfera, el océano y el
hielo continental. Se obtienen soluciones analfticas y numéricas de las ecuaciones de evolucién. Estas soluciones
atestiguan la existencia de auto-oscilaciones discontinuas en el sistema climético. Un rasgo prominente de estas
auto-oscilaciones es la alternancia de variaciones lentas y “a saltos” de la intensidad de direccién de la circulacién
termohalina.

Las variaciones lentas ocurren para un lapso de cerca de 10 x 10% afios en el régimen de circulacién normal
(presente), y para uno de 50 X 102 afios en el de circulacién anormal (invertida). La transicién de un régimen a otro
es llevada a cabo de una manera préacticamente instantdnea (en un lapso de cerca de 10® afios) y se caracteriza por
variaciones “a saltos” de la diferencia en salinidad. Los promedios ocednicos de temperatura y salinidad, asf como
los de masa de hielo continental, sufren las oscilaciones asimétricas, lentas y sin saltos.

ABSTRACT

Climatic variability arising from nonlinear interaction between atmosphere, ocean and continental ice is studied.
Analitical and numerical solutions of the evolution equations are presented. These solutions testify to the existence of
discontinuous autooscillations of the climatic system. A prominent feature of these autooscillations is the alternation
of slow and jump-wise variations of ocean thermohaline circulation intensity and direction.

The slow variations occur for a time of about 10 x 103 years in the regime of normal (present) circulation and
for a time of about 50 x 103 years in the regime of abnormal (reverse) circulation. Transition from one regime to
another is performed practically instantly (for a time of about 102 years) and is stipulated by jump-wise variations
of the salinity differences. The ocean—averaged temperature and salinity as well as continental ice mass undergo
the slow asymmetric oscillations without jumps.

1. Introduction

It has been established in the previous authors report (Kagan and Maslova, 1990) that the
thermohaline circulation in a three—layer ventilated ocean has 16 steady states but neither limit
cycles nor other closed phase trajectories. It follows that the model cannot exhibit self-sustained
oscillations. In the present papcr we show that the interaction between the ocean, the atmosphere
and the continental ice leads to the loss of stability of all above mentioned steady states and

gives rise to discontinuous auto-oscillations with a period of about 60 kyr (1 kyr = 10° years)
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The most remarkable feature of the oscillations is as follows. The slow variations of the
thermohaline circulation are periodically interrupted by rapid transitions from one state to
another. The direction of the circulation changes through these transitions to the reverse. On
the contrary, the ocean average temperature and salinity as well as continental ice mass are

subjected to smooth variations only.

The model investigated in the present paper is governed by the system of equations describing
the evolution of the ocean thermohaline circulation, the evolution of the continental ice mass
and the atmosphere heat budget. The model is presented in the Section 2. The presence of
two large parameters —(1) the ratio of the rates of the heat exchange at the ocean-atmosphere
interface and the heat transport in the ocean, (2) the ratio of the continental ice time scale to
time scale of the ocean thermohaline circulation— allows us to undertake a qualitative exploration
of the solution by means of the perturbation theory. The asymptotic properties of the solution
are described in Section 3. Section 4 presents the results of numerical integration of the full
system. We consider also the model sensitivity to the variations of the involved parameters
and the paleontological data, confirming the possibility of nearly—discontinuous autooscillations.
Conclusion follows in Section 5.

2. The model

We begin with equations describing the evolution of the ocean thermohaline circulation. As in
the previous paper (Kagan and Maslova, 1990) the ocean is represented by three water masses
(surface, intermediate and deep, Fig. 1) each being not isolated from atmosphere but exchanging
by heat and moisture with it (i.e., ventilated). Each water mass has the volume V}, the area of
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Fig. 1. A schematic cross—section of the ocean model. The water mass 5 has volume V}, the area of ventilation s;,
the salinity 5; and the temperature Tj;.

ventilation sj;, the salinity S and the temperature Tj(j = 0,1,2). Here and elsewhere indices
j = 0,1,2 correspond to surface, intermediate and deep water masses respectively. Symmetry
about equator is assumed for simplicity. The temperature and the salinity in each water mass
are assumed to be constant and water masses themselves immiscible. Following Stommel (1961)
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we use the hydraulic approximation and the linear equation of sea water state to approximate
advective exchange (g;, 7 = 1, 2) by neighbour water masses. We investigate here a modification
of the previous model, including the diffusive exchange by heat and salt with a constant intensity
k. The model equations describing the heat and salt budgets in the various water masses are

dT;

Vi = D Apll ge | +K5) X + 5;Qj/ pucw

k=1,2
V28 o= 3 Aullap | +6)Yi/S" + s, (2.1)
T4t ]/S"_k_12 7k\l Gk k it .

g = cor X' (X3 /X" - §Y;/S%).

The first terms in the right side of the equations (2.1) express the advective and diffusive
transports of heat and salt while the second terms represent the effect of the ocean-atmosphere
interaction. The notation is as follows: A;; are elements of the matrix

-1 0
(Ajk) - 1 -1},
0 1

X = T[k/z] — Ty, Y = S[k/z] — Sk, k = 1,2 — the differences of the temperature and salinity

between the water masses, [k/2] is the integral part of the number k/2; ¢, X*, S* - the reference

values of the volume transport, the difference of the ocean temperature and salinity respectively;

6 = 3—1’, . S:, ar, ag —the th .rmal and the salinity expansion coefficients, py —the density of
the sea water, cw —the heat capacity of the sea water; Q;, F; —the fluxes of heat and salt at the

ocean—atmosphere interface.

We assume that salt flux at the ocean surface is determined by the evaporation — precipi-
tation excess and the continental ice degradation, that the precipitation is controlled by the
local evaporation and that the latter is determined by the difference of the ocean—atmosphere
temperature. Thus we are led to the following parameterization

Qj = Q]j - AT(Tj - Taj)a

Fj = ’\E(Tj - Taj) + Cj - (—M/pws) (2.2)

where Qy; is the flux of absorbed solar radiation, Ap, Ag, C; are constant coefficients. Ty is

the average air surface temperature in the domain of ventilation with number j, —M is the rate
of the continental ice mass degradation, s = E]- s; Is the area of the ocean surface.

To find the planetary average air surface temperature Tq we use the atmosphere heat budget
equation. Assuming that the atmosphere responds to change of external forcing much faster
than the ocean and the continental ice we use the last equation in its quasistationary form:

F(Ta’ SI) - ZQ]'S]'/Z) =0 (2-3)

where 1 (Tq, sy) is the difference between the absorbed and the outgoing infrared radiation at
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the top boundary of the atmosphere, sy is the ice area; p is the area of the hemisphere. The
second term in the left side of (2.3) expresses the heat flux at the ocean surface. The dependence
of H on T'q and sy is taken to be linear.

To describe the meridional distribution of the air surface temperature Tz we adopt two-mode
approximation (North et al., 1981) with the coefficients depending on T's and the intensity of the
thermohaline circulation in the intermediate/deep water mass system (Spelman and Manabe,
1984), i.e.,

Ta(z) = Ta — [by — ba(gz — ¢3) — b3(Ta — Ta)| Po(2) (2.4)

where b]-(j = 1,2, 3) are constants, z = sin p, ¢ being the latitude, P;(z) is a Legendre poly-
nomial, here and elsewhere the subscripts * refer to stationary values of functions. A similar

two-mode approximation is used also for the meridional distribution of the absorbed solar ra-
diation (North et al, 1981):

Q1(z) = (1= x)(1 = ao)[H(Ta, s1) + HyPy(z)] (2.5)

The absorption coefficient x of solar radiation, the ocean surface albedo o and the coefficient
H, are assumed to be constants. To obtain the functions T, Q;; we use the s;~averaging of

the functions Ta(z), Q;(z).

Now we turn to our method of evaluation the ice area s;. As usually it is assumed that the
sea ice boundary coincides with the -10°C isotherm. Adopting for simplicity the linear relation
between the mass and the area of the continental ice we can represent the radiation flux H as a
function H(Tqa, M). According to the law of water conservation in the climate system we shall
accept that the mass budget of the continental ice is subjected to the equation

aM
W‘ = Z Sj'pr]' (2'6)
J

It is well known that the continental ice degradation is governed by mechanical and thermic
factors. In the present model it is assumed that the basic mechanical factor is the iceberg

discharge with a constant rate —Ml and the basic thermic factor is the ablation. Therefore
—M = —Mj + (—M,;) where —Mj, is the ablation rate. The heat budget equation at the
continental ice surface leads to the relation

M= pL7* [ A@Q)s

where Ly is the heat of ice melting, A(z) is the nondimensional zonal land extent normalized
by the length of latitude circle, sq is the ablation area. The boundaries z = zs, ¢ = z; of the
ablation zone sq are given by the equalities (North et al., 1981)

2o = 1/VE [1 4+ 267 (T + 271 Que)]

1
s% = p/ A(z)dz
zr
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The first equality determines the snow line that is attached to the 0°C isotherm of the surface

temperature Tq(z); the second expresses the relation between the area sf’ and the meridional
extent z; of the continental ice with the mass M. We recall that the linear relation between

M and s% is suggested. From the relations (2.6), (2.4), (2.2) we obtain the following linear
approximation for the degradation rate of the continental ice mass

—M = by +bs(q2 — q3) + b6(Ta — Tq) (2.7)

where b;(j = 4,5,6) are constant coefficients. Let us note that the constant by coincides with

the degradation rate —M* in a stationary state. This constant is uniquely determined by the
equation

ZSJ""”F; =0
3

Using the equations (2.2), (2.5), (2.7) we obtain the set of coupled differential equations
(2.1)-(2.6) for the functions M, T}, S; (5 = 0,1,2) describing the evolution of the atmosphere-
ocean—continental ice system:.

3. Asymptotic solutions

Despite the simplifications the complexity of the system (2.1)—(2.6) remains considerable. Thus
we now turn to qualitative study. We first switch to scaled variables defined by

(Tas Tas T)) = (Ta — Ta, Ta — Ta, Tj — Ta)/ X",

S;=(S; —8")/8", M' = (M- M")/M",

(Q;c, 'CI) = (qka 'C)/q*a t, - tq*/VO

where ¢* = cap X* (we recall that subscript * denotes stationary values of the variables.) The
resulting system is

T 1% s:Vo ~
J o J . . .
Ft— — Z Ajk?ﬂ 9k | +’C)Xk - soV-/\(T] Ta]) +Ql] (3'1)
k=12 ] J
ds; V. -
d—t] =y Ajlcf}(' Q. | +x)Y, + Fy (3.2)
k=1,2 7
dM Vj - ¥
My Y-8 (3.3)
7=0,1,2

qr = Xk — 0¥ (3.4)
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~1 |5 _7 So ~ S5 —

A [H — 7:Q } > T~ Tay) =0 (3.5)
7=0,1 J

where the strokes of scaled variables are omitted and the following combinations of initial para-

meters are involved

S Vo P— Vo 8
Qlj_Qlejsj//’wcwq X7 F = Fy q—v

fI:Hsop/spwcwq*X*, s = Z 85
J=0,1,2

Vi =M"/pw, A= Arso/pwewq’

Let us note that the equations imply the relations

dTy s Vo d
— = H T —(Sy — =0 .
di oV ( ay )a dt( |4 Vo M) (3 6)

where V = ZV]- is the ocean volume,
7

Ty = & Z 5155 Sy == ZVJSJ
7

are the ocean—-averaged temperature and salinity respectively.

The system (3.1)—(3.5) contains the parameter A, characterizing the ratio of the rates of the
heat exchange at the ocean—-atmosphere interface and the heat transport in the ocean. We
adopt the rather reasonable assumption that this parameter is large (Welander, 1986). The
limit A — oo in the above equation leads to the system

T; =T,; (3.7)
d Viia  mey
—1 =% A]k (l qr | +6)Y + Fj = fs, (3.9)
k=1,2
dTV SVO ~
2V _ M) = 3.10
Tl v H(Ta, M) = f1,, (3.10)
g = Xak — 0¥k (3.11)

Xok = ¢k + dxTa + ex(g2 — 92) (3.12)
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Ty =cy +dyTa+ey (g —q3) (3.13)

where the constants ¢y, di, ey, cy, dy, ey are nondimensional combinations of the previous
parameters.

It should be noted that the equation (3.1) contains the small parameter A lina singular
way. Due to this fact there exists an “initial layer” where the reduced system (3.7)-(3.13) is not
valid. However it can be proved that each solution of the full system satisfies the relation

T; = Tgj + O(1/X) + O(exp{—ait}) (3.14)

with a positive constant a. It follows that each solution of the full system is attracted to the
solution of a reduced system and the initial layer is of width O(/\_1 In A). Therefore the reduced
system can be used to investigate the long time behaviour of the full system.

It follows from the equations (3.9)—(3.14) that

~

fae = —bs(q2 — ¢3) — b6Ta

where bs = b5(Vo/Vas)/pw, b6 = (Vo/Var)beXs/pwq*.

The parameter l~>5 = ¢ describes the ratio of the relaxation time of the ocean thermohaline
circulation to the continental ice relaxation time. Introducing the “slow time” r = et and new
variables Y7, Yy, Ty, M we obtain the system

de ]
Sg;:fyj ]:1,2 (315)
dTy
= 3.
€ o fr, (3.16)
aM . __
—_— = = - —dr 3.17
5 (92 — 92) a (3.17)
where ij - fS[j/Z] - fS[j}’ d= g6/I~)5'
In the limit € — 0 we have
fy;=0,57=12 (3.18)
H(Tqa, M) =0 (3.19)
dM _
= = (@ —a)-dTa = fi (3.20)
.
The equations (3.18) imply
Y]' = (l q; | +I€)_11/)]', J=12 (3.21)

where the constants ¥, are linear functions of C;
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It follows from the equations (3.11), (3.13), (3.21) that

-1 —
’590(’{' 45, 13_7) — ¢y~ CJ'((]2 - q;) = djTa, (3'22)

the function ¢ and the constants 8; being defined by

‘P(’c—lqja /3]) = 'C_IQ]’ + ﬂ](l n_lqj ’ +1)—1a ﬂj = 6¢j/"92

Since H is a linear function of M we can write the equation (3.19) in the form

~ —1 ~
dH P dH
=—| = H(Tq, M) — | — = 3.
with the right side depending on T4 only.

We suggest that the continental ice mass decreases as the average surface temperature Tq
increases, thus, dgps/dTa < 0. Hence the equation (3.23) has the unique solution given by
Ta = gp(M) where gr is the inverse of gps. Then the equations (3.22), (3.20) imply the system
for the functions M, ¢

dM

= = —(02— q2) — dgr (M) = f(M, q) (3.24)

M = gp(dy k(™ ggy B2) — ¢z — ealgz — ¢3)] = h(M, g3)

The phase portrait of the system (3.24) is outlined in Figure 2, where the arrows show the
direction of the phase point movement. It can be seen, that there exists only one point of

M

Fig. 2. The phase plane of the system (3.24). The solid curves mark the continuous time evolution, the dashed
lines mark the jump-wise changes. The arrow shows the direction of the phase point movement. The circle
represents the present state of the system.
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intersection of the curve h(M, g¢;) = M and the straightline f(M, q3) = 0 corresponding to a
unique steady solution of the system (3.24). This steady state is unstable for reasonable values
of ¢5. Tt is also essential that any trajectory sets up in a finite time at one of the extremal points
of the curve h(M ¢) = M, but there are no trajectories outgoing from these points.

Rigorously speaking to describe the behavior of the trajectories in a vicinity of the extreme
it is necessary to investigate the full system. Yet it seems reasonable to suggest that it happens
a rapid reorganization of the ocean thermohaline circulation accompanied by slow change of
continental ice mass. It follows that the jumps B — C, D — A take place. This conjecture
can be proved. Indeed the full system has a stable limit cycle in a vicinity of the curve ABCD.
The asymptotic formula v = (s_lh, f) for the phase velocity vector v is valid. The limit € — 0
in the full system gives rise to the discontinuous oscillations with the smooth variations of the
ocean thermohaline circulation on the parts AB and CD of the limit cycle ABC D interrupted
by instant transitions B — C, D — A.

Let us note that the steady state O is the saddle point. It has a stable manifold with dimension
1. Hence the trajectory may set up in the point O, but this event occurs with a small probability.
There exists another possibility of the disappearing of the limit cycle. It happens if ¢5 > gam; q2m

is the point where the function h reaches its minimum. If this inequality is valid, the unique
steady state is stable and any trajectory sets up at the point corresponding to this state.

We return now to the case ¢; < ga,,, when the discontinuous oscillations occur. The period
7o of the limit cycle is determined by the time of the phase point movement along the continual
parts of the cycle. Therefore 7, = 74 + 7_, where 7+ and 7_ are the life times of the normal
(g2 > 0) and abnormal (¢; < 0) ocean thermohaline circulation respectively. These quantities
are given by

3 dM B dM
=g fla, M) = f F(a2, M) (5.25)
AB CD

Once the functions g3, M are determined, the equation (3.22) can be used to find the inten-
sity of the thermohaline circulation in surface/intermediate water masses. In general case the
equation has three solutions given by

q£m) = /cu(m)('y, B1), m=1,2,3 (3.26)

where v = [Cl + e (‘IZ - q;) + dlgT(M)]/’“

Y
U(l)(% B1) = 1—+2—7— \/Q_Tﬂ+ﬂ1’ B1 >
_ / 2
u(Z)(')’a IBI):'_lzﬁ’y_ (lh-zi_ﬂla 181 <(1+7)2/4
(3) -1 (1+)? 2
ut (, 'Bl)__i_+ ——4——,31, B < (1+7)°/4,

the functions u(?) being the solutions of the equation o (u, B1) = 7.
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It follows that the degenerate system has three limit cycles 1(m) (periodic solutions) deter-
mined by the functions {qgm)(:’), g2(r), M(7)}, m =1,2,3, two cycles (I(l), 1(3)) being stable
while the third (I(Z)) is unstable. The circulation in the surface/intermediate layer is normal

within the cycles I(Z), I®) and abnormal within the cycle I(1). The fast transition from one
stable cycle to another are possible but they haven’t been obtained in the numerical simulations
with chosen values of parameters.

4. Numerical results
Let us now confront the theoretical predictions with the numerical simulation of the full system
(3.1)—(8.5) for the following values of the involved parameters: by = 19,2°C, by = 10714 m3
year °C, b= +1,0, ¢ = 5,6 - 10!* m®/year, X* = 10°C, $* = 35 0/00, so/s = 0,8, s1/s = 0, 16,
s9/s = 0,04, Vo/V = 0,09, V;/V = 0,16, V3/V = 0,75, ap = 0,1, B, = 16,5, k = 0,6 - 10'4
m3 /year, Ay = 45W/m? °C, Az = 0,36 m/year °C, x =0, 3.

The results are presented in the Figure 3. It_can be seen that the model exhibits self-
sustained oscillations with the period 7o = 62 kyr. The continental ice mass M decreases

monotonically and rapidly enough as long as the thermohaline circulation state is normal (¢; >
0, g3 > 0). M reaches its minimum at the moment of the fast transition to the abnormal

Jo0 |
g5+
g0
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T

1 1 1 L 1 1 2 1 ]
ted 0 L34 S0 S 4 830 we 230 00 as P2

g S00 JI7 o0 x4 V24 57 o0 50

Time, /ije:é} Time, 103 year
Fig. 3. Time evolution of the climatic characteristics: a —the continental ice mass M; b — the surface—averaged ocean
temperature T',; ¢ — the volume-averaged ocean temperature 7y ; d and e — the intensity of the thermohaline
circulation in the surface/intermediate (g;) and intermediate/deep (qz) water mass system; f, g, h and i -
the temperature and the salinity differences in the surface/intermediate and intermediate/deep water mass
system respectively; j — the volume averaged ocean salinity Sy . Time unit is 1 kyr = 10® years. All climatic
characteristics are normalized by their present values.
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(g1 > 0, g2 < 0) thermohaline circulation. Then a slow increase of the continental ice mass
starts. It coninues until the thermohaline circulation returns to its normal (present) state. The
gaps in the continuous variations of the ocean thermohaline circulation are determined uniquely
by the gaps of the salinity differences. On the other side the gaps are absent in the oscillations
of the ocean—averaged temperature, the ocean—averaged salinity and the continental ice mass.
The remarkable feature of the oscillations is the asymmetry. According to the numerical results
the time scale of the abnormal circulation is greater than the time scale of the normal one. We
notice also a decrease of the ocean—averaged temperature and opposite changes in the intensity
of the thermohaline circulation (its amplification in the surface/intermediate water masses and
attenuation in the intermediate/ deep water masses) in the stage of the continental ice growth.
These results are verified by paleontological data indicating that the deep ocean temperature
decreased by 3-7°C at the glacial maximum (Yansen and Veum, 1990). On the other side
the deep water production either markedly weakened or ceased and the intermediate—water
production strengthened in this time (Streeter and Shackleton, 1979; Boyle and Keigwin, 1987).
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There exist the paleontological evidences that are in agreement with another feature of the
present solution, namely the rapid changes in the thermohaline circulations. According to our
results the time scale of the normal circulation is 15 x 103 years, the time scale of the abnormal
circulation is 47 x 103 years while the duration of the transition from one type of circulation
to the other is about 1 x 103 years. Indicators of the abrupt transitions are the change in
the relative abundance of benthic foraminiferal taxa with time scale of order 1 x 10° years
(Streeter and Shackleton, 1979) and the variations of Cd/Ca, 613 C and 6'® O ratios in benthic
foraminiferal shells with time scale of the order 0,5 X 103 years {Boyle and Keigwin, 1987).
The exhaustive survey and analysis of the evidence for the abrupt reorganization of the ocean
thermohaline circulation can be found in the paper of Broecker and Denton (1989).
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The above mentioned asymmetry in the oscillations implies the richness of the spectrum
which contains not only main eigenoscillation with frequency fo = 0,0156 kyr—l, but also
the combination modes with frequencies f; = 0,0312 kyr"l, fo = fo+ f1 = 0,0468 kyr—l,
f3= fo—fo+f1 =0,0624 kyr_1 and some their side harmonics with lower and higher frequencies

(Fig. 4). Let us note that the first-mode frequency f; is determined by the difference between
the time scales of the normal and abnormal circulations.

5. Sensitivity to changes in model parameters

Now we discuss the sensitivity of the model results to changes in model parameters. For the sake
of simplicity we consider the problem for the degenerate system (3.24). Moreover, we assume

that eg = d = 0 and the function gps is linear, i.e. gps = k"lTa, where k™! = %%,-M for Tq = T;.

These simplifications do not change qualitative features of the solution since the constants ey, d

are small (e3 = 0,3, d = 0,05) and the function g,y is nearly linear in our numerical experiments.
Under these assumptions we obtain

=@ -a)
dr Q92

-1 ,—1 -1
M =k “dy [cp(s g2, B2) — c2) (4.1)
The solution of the system (4.1) depends on six parameter ¢3, k, d k, B, e3. It is useful to

perform the scaling transformations

M' =k (ey + kdyM), v = klqy, u* = k¢, 7' = kdyx?r and represent the system (4.1)
in the form
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% =@ —d), M=, 6) (4.2)

displaying two dimensionless parameter u* and B3 only. The limit cycle exists if the relations
playing P y

Br>1, O<ut<(B/i-1)

are fulfilled. The amplitude a’ and the period 7} of the limit cycle are

1/2 2
d=plp-plp=B -1 =+ (4.3)

where 7’ and 1'_'+ are the time scales of the abnormal and normal circulations respectively.

Returning to the system (4.1) we conclude that it has the limit cycle with the amplitude
a= kl(,@;/z —1)? and the period 7, = kao(r + 74) where ky = k(kdy) ™Y, kg = nz(kdzzs)_l.
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Fig. 5. Sensitivity of the limit cycle characteristics to the variations of the model parameters: a — the period (solid
line) of the limit cycle and the life-time of the abnormal circulation (dash-dotted) as functions of the parameter
Bz2; b and ¢ - the same as in fragment a, but for the parameters u* and k; respectively
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It occurs that only four parameter ky, kg, B2, u* are essential. The limit cycle disappears if
the vector with components ky, k3, B3, u* reaches the boundary of the domain

ﬂ2>1,0<u*<,8;/2—1,k1>0,k2>0 (4.4)

It follows that the effects of the diffusion, the dependence of the pole-to—equator air-surface
temperature difference on the heat transport and the haline constituent of the ocean thermo-
haline circulation play the crucial role in arising of the limit cycle. On the contrary, small
variations of the parameters inside the domain (4.4) imply only small variations in the limit
cycle parameters.

The numerical investigation of the full system (3.1)—(3.5) confirm these statements. It follows
from Figure 5a that the period of oscillations 7, increases as ; increases. The change in 7o is
related mainly with the increase of the abnormal circulation time scale 7—. On the contrary, the
increase of u* results in the decrease of 7_ and the corresponding diminution of period 7, (Fig.
5b). The Figure 5c shows the model response to the ky increase: the ratios 74 /70, 7—/7, do not
change, while the period 7, grows.

6. Conclusions

It is shown both analytically and numerically that discontinuous autooscillations can be raised
in the atmosphere-ocean—continental ice model. The important property of these oscillations
is the occurrence of the fast transitions between two different regimes corresponding to nor-
mal and abnormal thermohaline circulations in the intermediate/deep water masses, i.e., to a
temperature-controlled and salinity—controlled one respectively. The system under considera-
tion spends about 10 kyr in the normal (present) thermohaline circulation regime, then a jump
to abnormal (reverse) circulation follows. The duration of the second regime is approximately 50
kyr. The cycle is closed by the jump to the normal regime. The slow changes in the thermohaline
circulation are accompanied by slow changes in the ocean-averaged temperature and salinity, as
well as the continental ice mass. The time of transition from one regime to the other is of the
order 1 kyr.

The jumps in the ocean thermohaline circulation are determined uniquely by the jumps of
the salinity differences in the intermediate/deep water masses. The ocean—averaged temperature
and salinity and the continental ice mass do not undergo any jumps. The continental ice mass
increases (decreases) monotonically in the abnormal (normal) regime.

The occurrence of the abrupt transitions between the different thermohaline circulation regi-
mes by itself is not unexpected (Broecker and Denton, 1989) although the phenomena can be
seen unusual from the view point of the classical theory of the ocean thermohaline circulation.

But what is actually surprising is the Fourier spectrum of the solution. According to the
numerical results it is characterized by the peaks at 62, 32, 21 and 16 kyr. The presence of
the harmonics with these periods may lead to resonant amplification of the climate variations
of astronomical origin. We emphasize that the model exhibits self-sustained oscillations mainly
as a result of the circulation intensity — salinity difference feedback. As an outgrowth of these
results we are led to reconsider the role of the other feedbacks (in particular, the atmospheric
CO3,) in the climate dynamics.
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