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RESUMEN

Se dan explicaciones para demostrar la exactitud del enfoque del método adjunto usado por Marchuk y Skiba (1992).
Varias observaciones también son hechas sobre el desarrollo histérico de los métodos adjuntos y su aplicacién en
los trabajos de Cacuci (1981), Cacuci y Schlesinger (1993), Hall (1986), Hall y Cacuci (1983) y Hall et al. (1982).

SUMMARY

The correctness of the adjoint approach used in Marchuk and Skiba (1992) is demonstrated. Remarks are made on
the historical development of the adjoint methods and its application in the works by Cacuci (1981), Cacuci and
Schlesinger (1993), Hall (1986), Hall and Cacuci (1983) and Hall et al. (1982).

On the validity of the Marchuk and Skiba (1992) adjoint model

I now want to correct two acc.dental errors made by me in the Marchuk and Skiba (1992) text
(henceforth, “MS92”). Unfortunately these errors resulted in incorrect conclusions by Cacuci
and Schlesinger (1993) (henceforth, “CS93”) on the invalidity of formula (25), and hence, the
adjoint model (14)—(20) obtained in MS92.

Two main formulae based on integration by parts and applying Green’s formula are used in
MS92 to obtain (25):

/ T*pVZ-VszD:/ T*ugds
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where D; is the atmosphere domain (spherical layer) with the boundary dD; consisting only
of the surface z = h; and the parts of the surface z = 0; Dj is the oceanic domain with the
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boundary dDj being the union of the lateral boundary Q) and the parts of the spherical surfaces
2z =0and z = —~hy; V3 is the 2-dimensional gradient written in the srherical coordinates (A, 9);
V3V, is the scalar product of the gradients; uyp is the component of iie velocity vector @ in the
direction of the outward normal 7 to the boundary surface dD; U 9D, (the union of 8Dy and

0D,); and 8_86 is the derivative along the normal 7. In the model, the ocean lateral boundary
(1 is composed only of the parts parallel to either the surface \ — Const or the surface 9 =
Const. Therefore the normal component uy of @ on 0 always coincides with either +u or +v

components of ¢ along A or ¥. Similarly, the derivative 867 on {1 coincides with either :L-a-ax or

el
+3

Mistake 1. In fact, u = p(z, t). The form u(z, t) is the misprint made in the MS92 text (see
Marchuk and Skiba, 1990, p. 336, where u = #(2)). As was mentioned above, the geometry of
the ocean lateral boundary ) and independence u(z, t) of A and 9 enable us to use in MS93 the
form pVy - V37T instead of the common form Vo - (1V3T) (used in Marchuk and Skiba, 1976,
1978, and Skiba, 1980). Thus the boundary conditions (5) and (18) of MS92 lead to the zero
values of the first two integrals over {1 in the right-hand side of (1).

Mistake 2. The vertical component w of the wind and current velocities in MS92 satify the
condition w = 0 (or up = 0) at the parts of the boundary dD;U3D, that coincide with the
surfaces 2 = hy, 2 = 0 and 2z = —h,. These conditions (given by Marchuk and Skiba, 1990, p.
336, just after the continuity equation) are accidentally overlooked and absent in the MS92 text.
In fact, the normal component uy, is zero everywhere on the boundary D, UdD,. As a result,
the first integral in the right-hand side of (2) is zero.

Section 4.1 of CS93 shows that Cacuci and Schlesinger do not separate two completely different
moments: 1) any initial condition for the ajoint problem (14)-(20) given in MS92, must be put
at the moment T = { (not at the moment ¢t = 0) so as to obtain a well posed adjoint problem;
2) the function T*(z, t) in the initial condition (15) in MS92 was specially taken as zero so as
to obtain

/D a(2)T (¢, )T (z, 1)dD - 0 (3)

that allows us to eliminate this term from the formula (25).

We emphasize that the orography is not taken into account in our linear model. These
arguments show the validity of the formula (25) and the adjoint problem (14)-(20) in MS92,
and show that within the model limits mentioned above, all the conclusions made by Cacuci and
Schlesinger (1993) are incorrect.

2. Remarks on the adjoint method development

It should be pointed out that the model considered in MS92 was linear. Therefore it comes as no
surprise that the references given in MS92 do not go into the perturbation theory for nonlinear
problem. However, since the priority question on applying the adjoint approach in the nonlinear
problem sensitivity study was raised in CS93, T would like to remind that the adjoint method
in the perturbation theory for quasilinear problems was developed by Marchuk (1973; 1974a, b;
1975a, b), and for discrete nonlinear atmospheric systems by Penenko (1975, 1977, 1979).



REPLY TO THE PAPER BY D. G. CACUCI AND M. E. SCHLESINGER

~l
-]

Before Cacuci (1981), the interpretation of the adjoint solution as “an influence function” and
“the value of information” was given by Marchuk and Orlov (1961) for linear problems, and by
Marchuk (1975a, p. 26) for nonlinear problems. Note that the method used by Hall et al. (1982),
Hall and Cacuci (1983) and Hall (1986) is analogous to that earlier developed by Penenko (1975,
1979), Marchuk et al. (1978) and Marchuk and Penenko (1979 a, b).

One rigorous mathematical definition of the adjoint operator for nonlinear problems was given
by Vainberg (1979) at least one year before Cacuci et al. (1980) and Cacuci (1981). Another

definition of the adjoint operator was suggested by Vladimirov and Volovich (1984). The adjoint
equations in nonlinear problems were also studied by Marchuk and Agoshkov (1988), Marchuk
et al. (1991), Shutyaev (1991a, b, c; 1992).

In addition to the works cited in MS92 and CS93, the adjoint method was used in various linear
and nonlinear problems by Marchuk (1958), Marchuk and Orlov (1961), Marchuk (1986; 1992),
Barkmeijer (1992), Ehrendorfer (1992), Robertson (1991, 1992) and many others. Unfortunately,
I can not comment them for reasons of space.

3. Remarks on the method by Cacuci, Hall and Schlesinger
Remark 1

The linearized matrix form of the main and adjoint small perturbation problems in the interval
(0, t) can be written as

¢ - = 0 | +~_ A
o TAS=F, 5 tAG=GC (4)

where A depends on the basic solution of nonlinear problem, and hence, may have arbitrary
structure. If A is positive semidefinite (A > 0) then the adjoint matrix A* is also positive

semidefinite (A* > 0), and the main ¢-problem (4) (solved from t = 0 to t = £) as well as the
adjoint §— problem (solved in the opposite time direction from ¢ =t to t = 0) are well posed in
the Hadamard sense:

o - 9, .. .
5ol =0 and -5 llgll <0 (5)

for the unforced (F = 0, G = 0) problems (4) where lgll = \/#*¢ is the norm in the complex
Euclidean vector space. In the MS92 model these conditions are fulfilled since the problem is
simple and specially formulated. But typically, and also in Hall and Cacuci (1983), Hall (1986)
and Hall et al. (1982), the matrices A and A* are of arbitrary structure and have both the stable

and unstable modes. Hence there are both stable and unstable manifolds of perturbations 5 as,
for instance, in the very simple example with the symmetric (2 x 2)-matrices

A:A*:<(2) _03>. (6)

Then both the problems (4) are ill posed in the Hadamard sense regardless of the direction
in which they are solved. The unstable component ¢ of the perturbation 5 = (o1, ¢2) grows

exponentially, and the solution (;?(t) leaves very fast the domain of infinitesimal perturbations
where the adjoint approach is the only applicable. Cacuci, Hall and Schlesinger apparently ignore
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this 1mportant problem. It seems very likely that the eigenvalue problems should be solved first
for A and A* to determine the stable and unstable manifolds. Then the sensitivity analysis can
be carried out separately for each such manifold.

Remark 2

Consider now a numerical scheme used by Cacuci, Hall and Schlesinger to solve the adjoint

problem (4). Given G = 0, the scheme (Hall and Cacuci, 1983, p. 2545; Hall 1986, p. 2647) can
be written as

gn+1) = [E - AtA*|g(n) (7)

where E is the unit matrix, and n is the number of time steps. Let us consider simple and very
favorable for the authors example when A* is the skew symmetric (2 x 2)-matrix

AT = (Z‘(I)2 —?R\* ®)

where R > 0, and ¢ is the imaginary unit. Then, for any R, there is the conservation law ||§(t)|| =
= Const for the homogeneous different problem (4). But the von Neumann stability analysis
leads to

9k (n +1)] = [1 + (AtR))2|gi ()| (9)

i.e. the scheme (7) is absolutely unstable for any time step At. Moreover, the larger R is, the
faster is the growth of the vector components gi(n) of the solution (k = 1, 2). Besides, even
infinitesimal step At can not remove the instability. Obviously, the situation is much worse in
case of the general matrix A.

Thus Cacuci, Hall and Schlesinger try to study the sensitivity of their model to very small
perturbations by solving the ill posed adjoint problem with the help of the absolutely unstable
scheme (7). In other words, the good theoretical work by Cacuci (1981) is accompaniend by
rather bad practical realizations.
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