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RESUMEN

En este trabajo son investigadas las condiciones del equilibrio entre la orograffa de un planeta y su atmésfera. Un
primer ejemplo relativamente simple es la solucién del problema en una atmésfera barotrépica equivalente, mientras
que el modelo cuasi-geostréfico de dos capas es tomado como segundo ejemplo. El problema puede también ser
resuelto por modelos cuasi-geostréficos de miltiples capas.

El problema que se investiga aquf tiene por objeto encontrar el movimiento que puede existir en una atmésfera
bajo condiciones de estado estacionario en equilibrio con la orografia del planeta. Una solucién trivial es un estado
de reposo, pero es demostrado que soluciones no triviales también pueden ser construidas. La investigacién es
bisicamente diferente al cldsico problema de encontrar la influencia de orograffa sobre un flujo preexistente, el cual
ha sido resuelto en numerosos casos.

En la Tierra con su fuerte gradiente de temperatura meridional creado por el calentamiento diferencial entre el
Polo y el Ecuador y debido a los procesos de calentamiento diabéticos compensados parcialmente por un transporte
meridional de calor sensible, la circulacién general es en una primera aproximacién determinada por los procesos
de inestabilidad baroclinica, derivando su energfa de los campos meridionales de temperatura y manteniendo a su
vez las corrientes zonales mediante transporte de calor y cantidad de movimiento, principalmente a través de las
ondas.

En las escalas globales la circulacién es modificada grandemente por la existencia de continentes y océanos y por
la orograffa.

En otros planetas con menor calentamiento meridional diferencial que la Tierra, la orograffa puede tener una
mayor influencia en el patrén de flujo estacionario.

ABSTRACT

The equilibrium conditions between the orography of a planet and its atmosphere are investigated. A first relatively
simple example is the solution of the problem in an equivalent barotropic atmosphere, while the two-level quasi-
geostrophic model is taken as the second example. The problem can also be solved for multi-level, quasi-geostrophic
models.

The problem under invesigation is to find the motion which can exist in an atmosphere under steady state
conditions in equilibrium with the orography of the planet. A trivial solution is a state of rest, but it is shown that
non-trivial solutions can be constructed as well. The investigation is basically different from the classical problem
of finding the influence of orography on a preexisting flow which has been solved in numerous cases.

On the Earth with its strong meridional temperature gradient created by the differential heating between Pole
and Equator and due to diabatic heating processes compensated partly by meridional transport of sensible heat the
general circulation is in the first approximation determined by the processes of baroclinic instability deriving its
energy from the meridional temperature field and in turn maintaining the zonal currents by heat and momentum
transport primarily by the waves. On the global scales the circulation is modified greatly by the existence of
continents and oceans and by orography.

On other planets, with smaller meridional differential heating than the Earth, the orogrphy may have a major
influence on the stationary flow pattern.

(V™)
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1. Introduction

The investigations reported here started with a study of a picture from meteosat which showed

quite clearly that a cloud band started at the northern edge of the Pyrenees in a southerly air
stream crossing the mountains (Woetman, 1985), see Figure 1. The cloudband was turning to
the right in an anticyclonic direction and had obtained a west-east direction with a slight bend
to the south before the clouds disappeared. The Pyrenees are situated along the Spanish-French
border with the highest peaks reaching a little less than 4000 m. One would thus expect that
the mountains could have an influence on an airstream crossing them.
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Fig. 1. Meteosat infrared picture (30 Nov. 1984, 04.30 GMT). Note the cloud starting at the Pyrenees and bending
to the right going just south of Denmark.

Most investigations have dealt with the passing of a westerly air current over mountains having
the major extension in the south-north direction such as the classical investigations by Charney
and Eliassen (1949) and Bolin (1950). As a start it was natural to explore the passing of a narrow
current across the mountains as done by Bolin (1950) simulating the Rocky Mountains in the
USA. This approximate method assumes the conservation of potential vorticity in a homogeneous
atmosphere. The additional assumption that the vorticity appears mainly as curvature and to
a much lesser degree as shear permits the calculation of an approx1mate trajectory of a partlcle
in the narrow current. In the case of a southerly current crossing a mountain with its major
extention in the west—east direction one finds a marked difference from the classical westerly
current. The reason is that the influence of the mountain and of the change of the Coriolis
parameter work in the same direction when a southerly current crosses a west—east rnountaln
range both trying to force the airstream in an anticyclonic direction. On the other hand,

a northerly current crosses the same mountain the Coriolis effect will create cyclonic vort1c1ty
while the mountain effect still works in the anticyclonic direction.

These considerations, treated in details in Section 2, lead to the question of how an extended
mountain range going all the way around the globe would influence the atmosphere. However,
the trajectory method is unsatisfactory due to the assumptions which must be made. It was thus
desirable to use more accurate methods, but to restrict the investigation to the determination
of stationary solutions. Most other investigations of the orographic effects on the atmospheric
flow consider the influence on a given current. On the Earth it is a very reasonable problem
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since we know that some major aspects of the general circulation can be simulated by a model
without mountains as done for example by Smagorinsky (1963) although such a model cannot
account for the very long stationary waves. The reason is apparently that the differential heating
between Equator and Pole and the Earth is sufficiently strong to create baroclinic instability
creating baroclinic waves which in turn maintains the zonal currents in the atmosphere.

On a planet where the differential heating does not exist or at least is much less dominating
than on the Earth the situation may be quite different. Because the baroclinic instability may
be missing on such a planet it is important to compute the stationary flow in equilibrium with
the orographic features of the planet. A trivial solution of no flow at all exists, but in addition
to the solution it is also possible to compute other solutions which are much more complicated.
That will be the main problem in the other sections of the paper. Section 3 will treat the
relatively simple problem of an equivalent barotropic atmosphere, while Section 4 will contain
an expansion to a standard two level, quasi-geostrophic model. These calculations will be carried
out using numerical values for the various parameters taken from the atmosphere of the Earth.
The calculations apply then supposedly to a planet of the same size as the Earth, with the same
gravity, the same rotation rate and with the same basic hydrostatic stability. Having similar
information from another planet will of course permit a repetition of the calculations.

It would appear that this particular view on orographic effects has not been given much atten-
tion. Otherwise, mountain effects are well covered in the meteorological literature. The review
papers by Queney (1960) and Smith (1979) cover the early contributions, but since then there has
been contributions by Buzzi and Speranza (1979); Hart (1979); Eliassen (1980); Frederiksen and
Sawford (1981); Frederiksen (1982); Eliassen and Thorsteinsson (1984); Thorsteinsson (1988),
and by Frederiksen and Frederiksen (1988, 1989 and 1991). The fluid dynamical aspects have
been investigated by Fultz and Long (1951); Long (1953); Warren (1963); Jacobs (1964), and
Jones (1970). The importance of the mountains for the general circulation of the Earth’s atmos-
phere has been studied by Manabe and Terpstra (1974); Derome (1984), while the orographic
influence on the atmospheric energy budget was investigated by Saltzman (1961). Lee cyclo-

genesis as influenced by the topography has been treated by Egger (1972, 1974), Hayes et al.
(1987); Pierrehumbert (1985), and Hartjenstein and Egger (1990), while specific local effects are
treated in many papers as for example Mesinger and Strickler (1982); Tibaldi and Buzzi (1983)
for Mediterranean cyclogenesis, Reuter and Pichler (1964) for the Alps and Egger and Fraedrich
(1987) for Antarctica.

The orographic effect has also played a major role in the investigations of blocking as a possible
stable stationary state in low order systems as first tried by Charney and De Vore (1979) and
later followed by other studies such as Charney and Strauss (1980); Trevisan and Buzzi (1980);
Kallén (1983, 1985). The references given here are by no means complete. Whole areas have
been neglected in the references such as all the numerical aspects of incorporating the orographic
effect in numerical prediction and climate models, the small scale influences by the mountains
and the numerous studies which have been made of individual cases.

In the mathematical treatment we shall abstain from introducing frictional effects in the
calculations. This is also consistent with the fact that energy conservation exists in the models
considered here with the neglect of the heat sources.

2. Elementary considerations

The discussion in this section will be based on a simple model of the atmosphere. We shall
assume that we are dealing with a homogeneous and incompressible atmosphere with a free
surface. Such an atmosphere has conservation of potential vorticity which in this case is the
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ratio of the absolute vorticity and the depth of the atmosphere. i.e.,
st/
H

= const. (1)

where ¢ is the relative vorticity, f the Coriolis parameter and H the depth of the atmosphere.
Denoting the mountain height by h(y) and the undisturbed height by H, we may write

s+f _ Je

where fe is the value of the Coriolis parameter at the point where the “parcel” meets the
mountain. The parcel is in this case a column from top to bottom. (Fig. 2).
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Fig. 2. A schematic figure shiowing the essential aspects of flow over a west—east oriented ridge. The notations are
also shown.

As long as the parcel is over the mountain the denominator in (2) will be smaller than outside
the elevation thus creating a tendency for anticyclonic vorticity. In (2) we have assumed that
the parcel arrives at the mountain from the south and without relative vorticity. As it crosses
the mountain it will gain anticyclonic vorticity partly from the decrease in the effective height
and partly from the increase of the Coriolis parameter with latitude. If it has arrived at the
mountain with sufficient speed, it will leave the northern edge of the mountain with anticyclonic
vorticity, say nn. As long as it is outside the mountain it will obey the equation

s+f=mnn (3)

where only the change of the Coriolis parameter can change the relative vorticity. Eq. (3)
is the basic equation for the so—called constant vorticity trajectory, and (2) is the equivalent
problem, if the ground is not level. To use these two equations to calculate trajectories we
make the additional assumptions that the relative vorticity is expressing itself in curvature, i.e.
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¢ =V/R, where V is the speed and R the radius of curvature. Using the definition of the radius
of curvature from geometry and denoting the angle of the tangent to the trajectory with the
x—axis by o we may write (2) in the form

Bly —ye | h(y)(fo -+ Bye)
cos(a) = 7 + VL (4)
where we have introduced the beta-plane approximation, and where ye is the ordinate at the
point where the parcel meets the mountain. Specifying h(y) we may integrate (4) either analyt-
ically or numerically to obtain the direction of movement as a function of y. The trajectory
may then be completed by noting that the following equation follows from the definition of the
derivative:

dz _ cos(a)
dy — (1- cos?(a))1/2

(5)

Eq. (4) and (5) are the basic equations for the computation of the trajectory. They are most
conveniently treated by numerical integrations in such a way that « is determined from eq. (4)
followed by £ = z(y) from eq. (5). In very simple cases it is of course possible to obtain analytical
solutions, but they are in any case quite complicated. Figure 2a shows the angle o as a function
of the non—dimensional width y* = y/W where W is the half width of the mountain which in
this case has two linear slopes meeting at the height hy. The parcel starts from the south with
the velocity V = 30 ms™!. The mountain is restricted to the region between -1 and +1 on
the ordinate. At the end of the trajectory the parcel has returned to the mountain and crossed
it once more. The curve has negative angles whenever the parcel moves southward. Figure
2b displays the analogous calculation on the beta plane calculated without paying attention to

the mountain. This trajectory was started at y* = —1 with the same speed (30 ms_l). The
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Fig. 2a. The wind direction in degrees for a parcel starting at the southern edge of the mountain.
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anticyclonic effect of the mountain is clearly seen since the parcel with the mountain present has
larger anticyclonic curvature and reaches a smaller distance to the north of the mountain.

APPROX. TRAJECTORY WITHOUT OROGRAPHY
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Fig. 2b. As Fig. 2a, but without the mountain.

Figures 3a and 3b show the trajectory itself in the non-dimensional coordinates z« = z/W
and Y* = y/W. The curve with the lower amplitude (3a) is influenced by the mountain while
the other curve (3b) is the trajectory as it would be without the mountain. The effect of the
mountain is thus to create a path with a lower amplitude and a longer wavelength. It is also
seen that if the mountain were to reach all the way around the planet the escillatory motion
would continue with the low amplitude.

TRAJECTORY WITH OROGRAPHY

Y. NON-DIM.

Fig. 3a. The trajectory of a parcel starting at the southern edge of the mountain.
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TRAJECTORY WITHOUT OROGRAPHY
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Fig. 3b. As Fig. 3a, but without the mountain.

In the simple case illustrated in Figure 2 and Figure 3 it is straightforward to integrate the
equation for o. In particular, when we calculate the angle of the wind direction at the northern
edge of the mountain range we find that

w? o — BW)  hm
cos(aN):zﬂV LU VB )*};To

(6)

Eq. (6) can be used to calculate the minimum speed required if the parcel should cross the
mountain. The requirement is that the cosine function at the northern edge is less than unity.
For a width of 200 km, a maximum mountain height of 4 km, the height of the atmosphere equal

to 10 km we find a minimum speed of 4.3 ms™ L.

Among the mountains of the Earth which can be considered in these elementary considerations
are, in addition to the Pyrenees, the Alps and the mountains complexes forming the Himalayas
in Asia. A qualitative understanding can be achieved using the methods developed in this section
where an equation equivalent to (4) was used by Bolin (1950) in considering a narrow current
crossing the Rocky Mountains. However, only a limited quantitative application can be made of
the equations due to the severe assumptions of which the restriction to the curvature effect in
the vorticity probably is the most severe. In the following sections we shall take a more general
approach to the problems.

3. Mountains in an equivalent barotropic model

The orography effect enters an atmospheric model through the lower boundary condition. Con-
sidering the forced flow due to the mountains and requiring that the velocity component per-
pendicular to the lower surface shall vanish we may write the condition in the form:

Wm = 0o - Vh (7)

The forced vertical velocity depends therefore on the slope of the lower surface an the hori-
zontal wind at the level of the surface. In this section we shall make use of a coordinate system
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with pressure as the vertical coordinate. It is thus necessary to convert the vertical velocity in
(7) to the appropriate quantity in this system. We do this by noting that

fO gfo _
Jo,—_ . Vh 8
Po R, (8)

where g is the acceleration of gravity, f, a standard value of the Coriolis parameter, B the gas
constant for air and T, a standard value of the temperature close to the surface of the Earth.
It has to be decided how one relates the surface wind to the other parameters in the model. As
indicated in the title of this section we shall make use of the equivalent barotropic model in this
section. Such a model is built on the assumption that the horizontal wind at the various levels
is a function of pressure only, i.e.

v = A(p)va (9)

where A(p) is given by a mathematical expression or calculated from data. Using eq. (9) it is
clear that

Vo = A(Po){fa (10)

where it as usual has been assumed that the wind at 1000 hPa is a representative value of
the wind close to the surface of the Earth. Following hereafter the standard procedure for the
derivation of the basic vorticity equation for the equivalent barotropic model (see for example
Wiin-Nielsen, 1972) we may write

S 1 5-V(s+ 1) = ~T7-Vh (11)

where T' is defined by the expression

= A(PO););:; (12)

Assuming stationary conditions and non—divergence in the horizontal wind we may write eq.
(12) in the form:

J(@,f+ Vi +Th) =0 (13)

where VU is the streamfunction. The simplicity of eq. (13) is due to the adopted model and to
the neglect of any form of friction. If eq. (13) shall be satisfied it is necessary that the two
components in the Jacobian are proportional to each other which may be written in the form:

f+Vi0+Th= 20 (14)

where uz is the proportionality factor. We shall use eq. (14) in the following, and we shall
apply it on the sphere. The proportionality factor would normally be determined “upstream” or
where the current meets the mountain, but such a procedure is not applicahle in this case where
we are trying to obtain a solution over the complete sphere. We note, however, that eq. (14)
should apply in each point of the sphere, and it must therefore also apply for the average over
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the sphere. Now, both the Coriolis parameter and the relative vorticity vanish when averaged
over the sphere. Denoting the area average by an overbar we find from (14) that

~ (15)

In (15) it has been assumed that the streamfunction is related to the height field by the simple
relation ¢ = gz/fo. Since the equivalent barotropic model normally is applied at the 500 hPa
surface we shall use a standard value for the height of this surface to calculate the numerical value
of the proportionality factor. The area average of the orography depends on the assumptions,
but is should in any case be calculated with respect to the area extent of the mountains under
consideration.

In the remaining part of this section it is the intention to specify the mountains in various
ways by analytical expressions and to use eq. (14) to calculate the streamfunction as a function
of longitude and latitude over the whole glebe. The windfield described by the streamfunction
will, due to the method of calculation, be in equilibrium with the assumed orography.

For a given specification of the orography by the function h(), ¢) we may calculate the
proportionality factor and proceed to solve eq. (14). One may select to solve this equation
by a use of finite differences on a suitable grid, or one may want to use an expansion of the
streamfunction and the orography in series of associated Legendre functions. Both procedures
have advantages and disadvantages. A single isolated mountain may be difficult to represent with
accuracy using the spherical harmonic functions, but the saving factor is in this case that the
calculated amplitude of the spherical harmonics decrease rather fast as the spherical planetary
wave number, i.e. n(n + 1), increases. As long as we are satisfied with the large scale response
to the orography the method of series expansion work well, and it has been adopted in all the
calculations presented later in this paper. Before we enter the just announced program for
the remaining part of this section we shall make a brief deviation to consider time- dependent
solutions.

3.1 Influence of mountains on Rossby—Haurwitz waves

The classical Rossby—-Haurwitz solution of the non-divergent vorticity equation is obtained
on the sphere by assuming a basic current with a constant angular velocity A- from the west.
Solving the linearized vorticity equation using spherical harmonic functions one obtains the
famous formula:

_2(04 )

S W S 4
¢ n(n+1)

(16)

where the denominator in the last term is the square of the spherical wave number. One may ask
how the wave speed is influenced by the orography of the Earth. This question cannot normally
be answered by using linearization procedures because the mountains are time-independent.
However, in the special case where the mountain height does not depend on longitude, it turns
out that one may obtain solutions. We shall demonstrate this procedure by using eq. (14)
inciuding mountains. Denoting n = sin(yp) and using the same basic current as in the classical
solution we linearize and obtain the equation:
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d¢ d . dh 1 8h>6\1/
o2 AT (Al IR VD e Bl 17
8t+/\<8/\+ 3/\>+a2<( + Hran EDN (17)

where ¢ and ¢ are perturbation quantities. It is seen that the term containing the derivative of
the mountain height does not fit into a perturbation scheme. Restricting ourselves to mountains
depending on latitude only we may however proceed in the usual way. The streamfunction is
developed in a series of spherical harmonic functions containing the factor exp (im(A —ect)) where
¢ is the phase speed. We find then that the problem reduces to a standard eigenvalue problem
of the form:

n mazx

<)‘ _2A2EA) c) U(m, n) — Q(m, n) Z I(q, n)¥(m, q) =0 (18)

n(n+ 1) m+1

In this equation we have introduced the following notations:

2n+1(n—m)!

Qm, )= r2E1T) (19)
and
o2 ah
I(g, n) = %Prf"(n)PJ"(n)dn (20)
No—A

Only numerical procedures can be used to solve the problem, but a standard eigenvalue
procedure will suffice. The only remaining point is to specify the form of the mountain. To pick
something which is rather easy to work with we have selected:

h=h 2 zn—%)
m COS <2 X (21)

In (21) hym is the maximum height at n = no, while A is the width of the mountain. In using
the formulation given above it should be remembered that the longitudinal wave number is fixed
in each calculation. The integrals entering the formulation were calculated by numerical means
using a trapezoidal form with good resolution. Several calculations were made. The main result
is that the influence of the mountains as specified by eq. (21) is of a minor nature only when
A is small. Figure 4 shows the difference in the wave speed between the mountain case and the
case of the wave speed of the non—divergent wind. Expressed in longitudes per day it amounts
to less than one of these units. The order of magnitude does not change for relatively smali
changes in the width of the mountain range or in the height of the mountain.

This result depends, however, on the horizontal scale of the mountain, but, in agreement with
earlier investigations (Bolin, 1950), the scale has to be large to have a major impact. We may
see this by going to an extreme case. Suppose that we were to replace eq. (21) by the expression
h = hmn. This expression represents the largest possible scale on the planet. It has a constant
derivative, and the integration has to be extended over the whole globe. A direct solution is
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possible in this case, because we can use the orthogonality of the spherical harmonic function.
We get:

2(Q + )\) +Thm
A —
n(n+1)

¢ = (22)
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Fig. 4. Difference in phase speed, measured in longitude per day, with and without the mountain as specified by
eq. (21).
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Fig. 5. As Fig. 4, but for a mountain described by h = hm7n.
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Figure 5 shows the difference between the wave speeds with and without the mountains for
hm = 1.0 x 10°m expressed in the unit long/day. We find now a considerable difference for
small values of the wave number n, but the difference decreases rapidly as n increases. Another
example has been computed. For this example we have selected the following height profile:

h=2Thmn?(1 - n?) (23)

where we have a vanishing height at both poles and at the Equator. In both hemisphere there is
a single maximum which occurs at about 35 degrees of latitude. The result is shown in Figure
6 for the same value of the maximum height and for a longitudinal wave number 1 as in the
previous figure. We note again a considerable reduction in the retrogression of the very long
waves, but a vanishing influence on the small meridional scales.

We may thus conclude that on a planet with a large scale mountain whose position is a
function of latitude only we find a considerable reduction of the wave speeds for the truly
planetary motion, while the change in the same parameter for the small meridional scales is
negligible.

PHASE SPEED DIFFERENCE

0 —
- 32 \

124

6]

4]
OI|I|I]I|I]I|1|I|I|I|I]
o 1 2 3 4 5 6 7 8 9 10 M

WAVE NUMBER, NON-DIM.
Fig. 6. As Fig. 4, but with the mountain specified by eq. (23).

8.2 Equilibrium conditions

We return to the problem of finding the stationary motion which is in equilibrium with the
orography. As a first example we take the specification of the height given by eq. (21). In this
case where the orography specification is independent of longitude it is seen that the resulting
streamfunction can be a function of latitude only. The problem is solved by developing the
orography as well as the streamfunction in series of ordinary Legendre polynomials and solving
for the amplitudes of the components of the streamfunction. At the end the streamfunction is
obtained as a function of latitude by summing the series. An example is shown in Figure 7. In
this calculation it was assumed that the mountain was centered at 30 N with a width of about
300 km and a maximum height of 2000 m. zps was taken to be 5500 m and the coefficient Ao
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as low as 0.1. A similar mountain is placed at 30 S. Considering first the region between the
two mountains we observe that the region between the Equator and the mountain to the north
has easterlies while the region north of the mountain in the Northern Hemisphere has westerlies.
The rapid change from easterlies to westerlies takes place over the mountains. The wind field
is a-symmetric around the Equator. The maximum zonal wind is only 3.8 ms_l, but since it is
proportional to the height of the mountain and to the coefficient Ao, it could easily be increased
by a factor of 4 to 5.

A result of a similar nature can be obtained in a channel as seen in Figure 8. In this figure
it has been tried to keep the conditions as close as possible to those of Figure 7 by selecting
the same width, height and position of the mountain and selecting a channel width equal to
the distance from Equator to Pole. From the previous examples it may thus be concluded that
characteristic wind systems are necessary to stay in equilibrium with the orography as long as
the height of the mountain is a function of latitude only.
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Fig. 7. The zonal wind profile as a function of latitude for iwo mountains centered at 30 S and 30 N with a width
of about 300 km and a maximum height of 2000 m.

In the following we shall look at some examples of isolated mountains where the dependence
on longitude comes in as well. To solve this problem it is necessary to extend the integrations
over longitude and latitude and therefore to use the spherical harmonic functions. A calculation
has been made for the following specification of the mountain:

h— hyn cos? (gA ;jo) (g%ﬂz) (24)

where the notation are analogous to those used earlier.

Using (24) we proceed to solve eq. (14) by developing the mountain heights and the unknown
streamfunction in terms of spherical harmonics. The unknown amplitudes for the streamfunction
are determined from the linear equation, and the field representation is obtained by summing the
series. Since standard procedures can be used in the whole procedure, it will not be necessary to
reproduce the details of the mathematics involved. In using (24) we have to specify the maximum
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height and the horizontal dimensions of the mountain as given by the other parameters. Most
of the calculations have been carried out with the following values:

hm = 4.0 x 10°m; A} =T11/6; Ay = I1/18 (25)

Figure 9 shows the computed values of the zonal average of the streamfunction as a function
of latitude. Figure 10 contains the corresponding zonal winds. The mountain was in this case
centered at 30 N, and it is thus seen that the effect of the mountain in the equilibrium solution
is to create westerlies north of the mountain and easterlies south of it.

ZONAL WIND PROFILE
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Fig. 8. An example similar to the one in Fig. 7, but calculated in a channel flow, where the mountain is centered
at 0.3.
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Fig. 10. The zonal wind corresponding to Fig. 9.

4. The two-level model

The considerations in Section 3 are easily extended to the normal two-level, quasi—geostrophic
model. The reason is that, just as in the equivalent barotropic case, we can write the governing
equations for the two-level case in a conservative form when we disregard the external heating.
The neglect of the external heating is natural in our case where we are trying to isolate the
equilibrium conditions between the orography and the atmosphere, but it is of course not justified
for the Earth.

The parameterization of the orography effect follows the presentation given in Section 3, but
also in this case it is required to relate the wind at the mountain level to the wind at one of
the two levels. It seems natural to use the assumption that the surface wind is half of the wind
at the lower level in the model, i.e. at 750 hPa. With this assumption we may write the two
equations in the form:

[+V20 - (¥~ U3)/2 = —pd T, (26)

Th+ V283 + ¢* (U1 — 3)/2 = p} s (27)

where the standard parameters for the two-level model are

_glo. o 25 28
=g 1= p (28)

Equations (26) and (27) express the conditions for equilibrium between orography and the
model atmosphere in a stationary state. The first problem is to obtain the numerical values for
the two parameters which are introduced as proportionality factors between the conservative
quantities at the two levels and the streamfunctions at the same levels. The procedure is the
same as in Section 3. We average both of the equations over the whole globe and note that the
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Coriolis parameter and the Laplacians average to zero. We get then

¢’ (W1 — ¥3)/2 = 30, (29)

TR+ ¢* (@) — U3) = 35 (30)

where the overbar means a global average. These formulas are used to calculate the two propor-
tionality factors. For this purpose we use a conversion to height by relating the streamfunction
to the geopotential by

— gE
v = 31
g (51)
The resulting formulas are;
2 221 — 23
p = I (32)

2 foh | 271 — %3

= = -+ 32
Hg=T ot = (32)

Values taken for instance from the standard atmosphere are used to estimate the values of
the geopotentials. By using such values and otherwise standard values for the other parameters
it 1s seen that the first term in (32) is almost two orders of magnitude smaller than the second
term, but there is no reason to disregard it since it is easily calculated from the given orography.

The remaining calculations are carried out by obtaining the spherical harmonic amplitudes for
the orography from the specified or measured heights of the mountains followed by a calculation
of the spherical harmonic amplitudes for the two streamfunctions from the equations (31) and
(32). The field distributions of the two streamfunctions are finally obtained by summing the
series of spherical harmonic functions. Since these two equations are linear, it is a standard
matter to obtain these results.
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Fig. 11. (a) The middle level streamfunction for the mountain given by eq. (24) (b) the thermal streamfunction;
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(c) the zonal wind at the middle level; (d) the thermal zonal wind.
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Our first calculation will use the same specification of an isolated mountain as in the equivalent
barotropic calculation, see (24). Looking first on the zonally averaged part of the atmospheric
state we see from Figure 11a that the streamfunction for the vertical mean flow has a maximum
at the northern edge of the mountain resulting in a zonal wind profile as given in the lower
part of Figure 11c. The maximum for the thermal streamfunction, see Figure 11b, is located
somewhat further to the north at about 50 N. The corresponding profile of the thermal zonal
wind is given in Figure 11d. Since the streamfunctions at the upper and lower levels are obtained
as the sum and the difference, respectively, of the two curves in Figure 11 we see that the result
at the two levels are of the same type as in the equivalent barotropic case resulting in easterlies
to the south and westerlies to the north of the mountain. The strength of the zonal winds are
somewhat smaller than in the earlier case, but this is due to the use of a rather large value (0.4)
of A, in the barotropic calculation.

The eddy streamfunctions could have been presented again in the form of maps, but it has
been preferred to show the profiles at selected latitudes. Figures 12 a, b, ¢, and d diplay the
vertical mean of the streamfunction at selected latitudes (0, 30, 60 and 80 N) as a function of
longitude. At each latitude we observe a ridge at the position of the mountain which is centered
at 250 degrees of longitude. The minimum is found close to 70 degrees such that wave number
one again is dominating. The largest values for the ridge are found at 30 N indicating that
we obtain an anticyclonic circulation around the mountain. Removed 180 degrees of longitude
from the mountain we observe a much less intense cyclonic circulation. An example of the
corresponding curves for the thermal streamfunction are found in Figure 13. The amplitude is
somewhat smaller, but the distribution is very similar to the one found in Figure 12. We can
therefore conclude that the response will be larger at the upper level (the sum) than at the lower
level (the difference) and also that the waves will be in phase in the vertical direction.
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It is of interest to investigate the changes in the streamfunction due the dimensions of the
mountain. Keeping the maximum height of the mountain in the same position (30 N) we may
look at the changes in the streamfunction due to changes in the longitudinal and latitudinal
dimensions. The latitude of the maximum value of the streamfunction is then also occurring
at 30 N, and it is sufficient to consider this point. The value of the maximum is directly
proportional to the maximum height of the mountain as one can see from the formulas. Figure
14 shows the increase in the maximum value of the streamfunction as the longitudinal dimension
of the mountain increases. It is seen that an almost linear relation exists. Figure 15 displays
in a similar way the dependence on increasing dimensions of the mountain in the latitudinal
direction. Also here we note an almost linear response except for the very largest dimension
where the mountain reaches from Equator to Pole.

RESPONSE TO CHANGE IN OROGRAPHY

0.0 0.1 0.2 0.3 0.4 0.5
CHANGE IN LAT. DIM., NON-DIM.

Fig. 15. The maximum value of the streamfunction at the middle level as a function of the latitudinal dimension
of the mountain.

5. A global calculation

In this section we shall describe the results of a global calculation based on the orography of the
Earth. The starting point is a representation of the orography in spherical harmonic amplitudes.
Using the theory developed in the earlier sections we may compute the corresponding values of
the equilibrium amplitudes of the streamfunctions, and the total field of the streamfunction is
finally obtained by summing the double series of the spherical harmonic functions multiplied
by the amplitudes. The present calculation is restricted to the equivalent barotropic case. It
is on the largest scale only that we may assume that the assumption of stationarity may be
approximately fulfilled. The results are therefore restricted to the values m < 4 and n < 4 for
the associated Legendre functions included in triangular approximation.

The results are summarized in Figure 16 a to f where the eddy streamfunction in each case is
shown as a function of longitude for a selected latitude. One notices a characteristic difference
between the low and the higher latitudes. For the latitudes 20, 30 and 40 N the response shows
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three waves with troughs at about 3, 140 and 270 degrees of longitude. The first of these waves
counting from Greenwich and eastward decreases in amplitude as latitude increases, and at 50
degrees north it has essentially disappeared. The same trough-ridge system is present in the
observations and was also found by Charney and Eliassen (1949) in their calculation which
applies to the channel centered around 45 N and with a width much smaller than the distance
from the North Pole to the Equator.
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The second of the three waves corresponds to the marked trough observed in the western part
of the Pacific ocean close to Japan with the ridge at about 200 E. The amplitude of this wave
is large in the low and middle latitudes, but decreases markedly from 50 N and has a srnall
amplitude only when the latitude has become 70 N. For the first two waves we observe only
small changes in the positions of the trough and the ridge with respect to longitude.
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The third of the three waves corresponds to trough-ridge system observed on the climatological
maps at 500 hPa in the eastern part of North America and the Atlantic sector. The intensity of
the trough decreases also in this case as latitude increases, but only to about 50 N. At 60 N the
intensity is larger than at 50 N supposedly due to the effect of Greenland. We notice also for
this trough that as latitude increases the trough is displaced eastward which is also in agreement
with the presence of Greenland.

With repect to the computed values of the streamfunction we find that they are somewhat
smaller than the observed climatological values. The latter are given in terms of geopotential
heights, but a conversion is easily accomplished by multiplying the streamfunction values by
fo/g. For example, the observed depth of the trough close to Japan is -160 m while the computed
value is 110 m only at 30 N. A much closer agreement is possible by using a larger value of the
parameter A(po) which in the present calculations was 0.1. Other authors have used a value as
large as 0.4. However, the purpose of this study is not to vary the parameters to obtain the best
possible agreement.

We find thus a qualitative agreement between the results of the equilibrium calculations and
the observed features of the climatological maps restricting ourselves to the global scales. One
may of course wonder why the agreement is qualitatively correct in the sence that the position of
the various troughs and ridges agree with the climatological positions, since the standard theory
involves both a given zonal current and a specification of the frictional dissipation. A direct
comparison is not possible since it is known that the theory formulated by Charney and Eliassen
(1949) is essentially a linear theory in which the zonal wind is specified, but more importantly
this theory gives acceptable results only when the meridional scale (also specified) is relatively

small (Derome and Wiin-Nielsen, 1971). The strength of the zonal wind and the intensity of
the frictional coefficient have naturally also some influence, and these parameters can be used as
tuning parameters for the solution. However, they have minor influence compared tc the width
of the channel.

On the other hand, in the present theory we need not specify such parameters, because the
only parameters that are needed to calculate the proportionality factor are the mean height of
the 500 hPa surface and the factor A(po). It would thus appear that the present more general
theory shows that the large scale stationary disturbances at 500 hPa can be explained in the
first approximation as the perturbations necessary to stay in equilibrium with the orography. It
is stressed that the theory can be a first approach only since the results apply to a climatological
state. No seasonal variations can be incorporated.

6. Concluding remarks

The present paper is written primarily for pedagogical purposes. Much more complete inves-
tigations of the flow over various kinds of obstacles can be found in the literature cited in the
references. It is felt, however, that it may be useful to present the problem of the equilibrium
between the flow and the effects of orography in a pure form. It is for this reason that the
investigation is kept as simple as possible, and it is deliberate that heat sources and dissipation
has been neglected. The study is furthermore restricted to scales for which the quasi-geostrophic
assumptions hold.

The main problem in the present investigation has been to determine the flow which is in
equilibrium with the orographic influence. To isolate the influence of the mountains it has been
necessary to neglect heat sources and dissipations. It has furthermore been assumed that the
quasi-geostrophic assumptions can be applied. It has been stressed that although it is of interest
to know the flow in the planetary atmosphere strictly due to the mountains, the reality of the
solution will depend on how well the assumptions apply to the planet in question.
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On the Earth we should not expect to observe the computed equilibriurn flow because the
differential heating between Pole and Equator is so large that baroclinic instability is dominating
the atmospheric flow of the Rossby waves, while the differential heating is of about the same
importance as the orographic effect on the planetary scale. A brief look at the other inner planets
indicates that two of them, Mercury and Venus, have to be excluded. Mercury has almost no
atmosphere, which makes it uninteresting in this connection, while Venus rotates so slowly that
the quasi—geostrophic assumptions are unlikely to apply.

Some possibilities for application of the present theory seem to exist on Mars. It is generally
assumed that the differential heating in a winter hemisphere is sufficiently strong to create
baroclinic instability in the Martian atmosphere, but this may not be so in a summer hemisphere.
The orography on Mars is sufficiently well known to permit a calculation of the equilibrium flow.
It is furthermore known that the height of the orography is very large in places dominated by
extinct vulcanoes, which may reach about 25 km into the Martian atmosphere.

For Mars it is furthermore known that the center of gravity does not coincide with the geomet-
rical center of the planet. One may consider this peculiar feature as a special orographic effect
that in the most simple case will give rise to an equilibrium flow that should be dominated by
wave number one. The problem of determining the equilibrium flow on Mars will be reported in
a future contribution.

The equivalent barotropic flow is in the first approximation independent of the heat sources.
It may therefore be of some interest in future investigations to calculate the equilibrium flow for
the whole globe using this model for a number of planets, where the orography is known.

In the present contribution the emphasis has been on the procedures to calculate the equilib-
rium flow on the sphere. This has been done for the equivalent barotropic atmosphere and for
a two-level quasi-geostrophic model. Two procedures have been used. The first emphasizes the

Lagrangian approach where an approximate trajectory is calculated. This has been done under
the assumption that the vorticity expresses itself as curvature and not as shear. Trajectories
over west—east oriented mountains have been emphasized because in that case it is possible
to include the beta—effect in an easy manner. These trajectories have been compared with
the trajectories which would exist if the mountains were removed, i.e., the well known constant
vorticity trajectories, with the result that the effect of the mountains is to decrease the latitudinal
extent of the paths.

The second and more general procedure is to calculate the streamfunction field created by the
mountains under steady state conditions. For this purpose we have used mountains specified by
relatively simple mathematical expressions. The zonal as well as the eddy parts of the flow has
been considered. The results have been obtained for isolated mountains and for configurations
reaching around the whole globe. In the resulting zonal flow we observe a westerly flow north
of the mountain and an easterly flow to the south of the obstacle. The zonal flow is the only
component created by a mountain which varies in latitude only. The steady state eddy flow
has an anticyclonic circulation centered on the peak of an isolated obstacle with a weaker, but
broader cyclonic flow removed about 180 degrees of longitude from the peak of the mountain.

The general description given above for the equivalent barotropic case applies also to the
results obtained from the two—level model, but with the important addition that the thermal flow
behaves in a similar way. We may therefore conclude that the effect of the mountains increases
with altitude also in the equilibrium cases treated in the present study. The dimensions of the
mountain are important for the strength of the resulting equilibrium flow. We find in this regard
an almost linear dependence.

As indicated above the future work should be calculations of the equilibrium flow on various
planets considering the real topography. A calculation of basic interest would be one in which
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the heating of the planet would be kept at a level low enough to prevent baroclinic instability.
One can therefore imagine using a general circulation model for the Earth where the heating is
reduced, but where the mountains are represented in the usual way to simulated the circulation
which would exist if for some reason the temperature difference between Pole and Equator were
greatly reduced as compared to the present values.
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