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RESUMEN

Se analiza el comportamiento asintético del modelo de Adem como una funcién del forzamiento externo y el coefi-
ciente de disipacién, se prueba la existencia de un conjunto atrayente acotado de las anomalfas de la temperatura de
la superficie del mar en una vecindad de cero. Se demuestra que la solucién de la perturbacién decae exponencial-
mente a cero, bajo una cierta condicién. La razén de decaimiento depende del forzamiento externo y el coeficiente
turbulento.

ABSTRACT

The asymptotic behaviour of Adem’s model is analyzed as a function of the external forcing and the dissipation
coefficient. The existence of a bounded attracting set of the sea surface temperature anomalies in a neighborhood
of zero is proved. It is shown that the perturbation solution decays exponentially to zero, under a certain condition.
The decay rate depends on the external forcing and the turbulent coefficient.

1. Introduction

During the last three decades a Northern Hemisphere Thermodynamic Climatic Model has been
developed and applied to predict mean monthly anomalies of surface temperature (Adem, 1964,
1965, 1970; Adem, 1982; Adem, 1991).

The temperature anomaly predictions were verified over the contiguous U.S., showing a useful
skill (Adem and Jacob, 1968; Adem and Donn, 1981; Donn et al., 1985).

Predictions of the sea surface temperature anomalies and their month-to-month variation over
the Atlantic and Pacific Oceans (Adem, 1970, 1975; Adem and Mendoza, 1988) have also shown
a useful skill. In these experiments a simplified version of the model is used which includes only
as a predicting equation the conservation law for the thermal energy applied to the upper layer
of the oceans. This paper deals only with this ocean model.

Recent fluid dynamics research indicates that the asymptotical behaviour of a model, and a
degree of similarity of the model attractor to that of the physical system is one of the important
criteria to determine the quality of the model (Hale, 1988).

In this work, we investigate analytically the asymptotic behaviour of the Adem ocean tem-
perature prediction model. The description of the model is given in section 2. In section 3, we
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show that under some assumptions on the structure of the external forcing, the temperature
perturbation exponentially tends to zero. The rate of convergence to the attractor depends on
the turbulent dissipation coefficient, geometry of the domain and the forcing structure (Skiba,
1990).

2. Description of the Prediction Model

The Adem Thermodynamic Model for the ocean is defined by a differential equation which
represents the conservation of the thermal energy for the ocean upper layer (Adem, 1970):

or,

at = “VST . VTS + KsVZTs +

(Es — Gy — Gs3) —

it (1)

hpscs

where V is the two-dimensional horizontal gradient operator; Ts, the surface ocean temperature;
ps, the constant density; Cjs, the specific heat; h, the depth of the layer; VST, the normal
horizontal velocity vector of the ocean current; K;, a constant diffusion coefficient; E,, the
energy added by radiation; G4 , the sensible heat given off to the atmosphere by vertical turbulent
transport; G3 , heat lost by evaporation and W, the heat transported down through the bottom
of the layer.

It is assumed that the initial surface ocean temperature has a departure from normal, but
that the atmospheric conditions, the ocean currents and the temperature at the bottom of the
thermocline are normal (Adem, 1970). Observational studies and the numerical experiments
carried out by Adem (1970, 1975) have shown that the prediction of the monthly or seasonal sea
surface temperature anomalies depends mostly on the initial values of the anomalies themselves
(see also Marchuk and Skiba, 1992), so that the other climate variables can be considered
subordinated to the mixed layer temperature.

It is also assumed that the normal ocean temperature denoted by Ts, satisfies equation (1),
provided the normal values of the parameters and heating functions are used.

Then following Adem (1971) and subtracting from (1) the corresponding equation for Ts,,
we obtain the equation

%:AD+TU+HE (2)

for the ocean surface temperature anomaly T' = Ts — T, .

The terms AD, TU, and HE are the parts of the temperature anomaly due to the horizontal
transport of heat by the mean ocean currents (advection), the horizontal turbulent transport,
and the total heating in the upper layer of the ocean, respectively:

.

AD = -V .VT
TU = KVT
HE = -§;T (3)

where V is the ocean current and K is the turbulent coefficient in the model. In this work, for
simplicity, the notation V and K is used instcad of Vs, and K, respectively.
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The term HE is written as in Adem (1971), with

ﬂl—:L88x10‘6LX%ﬂl (4)

where | V4, | is the normal value of the surface wind speed.

Initial and boundary conditions are the following:

T(Oa z, y) = To(x’ y) (5)
aT
onlsa =" ©

where 91 is the boundary of the domain (1 and is the temperature anomaly derivative in the
direction of the normal vector 7 to the boundary (Fig. 1).

X

Fig. 1. Integration Domain. Here 7 denotes the outward normal vector at the boundary 3Q of Q, V,, is the

normal component of the ocean current on the boundary, and d¢ is the infinitesimal element of length along the
boundary line 31Q}.

We assume that the normal component of the ocean current is zero on the boundary:

N

and the flow is incompressible:
divV =0 (8)

Due to conditions (6), (7), and (8), the temperature anomalies T'(¢, z, y) satisfy the equation

ad
5£</QT(t’ x, y)dﬂ+ﬁl/{2T(t’ z, y)dﬂ -
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and hence,

[ 7t 7, yan = | To(a, ) exp(-p1t)

Thus, if fq To(z, y)dQ = 0 at the initial moment then

/QT(t, z, y)d =0 (9)

for all times.

In this work we consider only such perturbations which satisfy the condition (9). It is equi-
valent to the assumption that the average value over the whole domain  of the monthly mean
temperature anomaly is zero. This assumption is physically not so restrictive if {1 is the whole
ocean.

3. Study of the Asymptotic Behaviour of the Thermodynamic Model

We assume that K and ) are constant parameters in equation (2).

Let (1 be the domain of integration (Fig. 1), and L%(Q2) be the Hilbert space of square
integrable functions on (2, with the scalar product

<T, g >:/ T gdQ (10)
0
where T'(z, y) and g(z, y) are two arbitrary functions defined in the domain {? and the norm

T =< T, T >'/2 (11)

where
d(l = dzdy, (z, y)efl.

The scalar product of equation (2) with T gives
orT
<E,T>:<AD,T>+<TU,T>+<HE,T> (12)
where from (3)

<HE,T>=-p) <T, T >=-4|T| (13)

Using the boundary condition (6) we obtain

<TU, T >= K < VT, T >= —K||vT|? (14)

for the turbulent diffusion term.

For the term of advection by ocean currents we have

<AD, T >=—- <V .VT, T>:—%/ V. v(T?)dn (15)
Q
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Taking into account the continuity equation (8) and Green’s formula (Sokolnikoff, 1958),
equation (15) can be written as

<AD, T >= —1/ V.- (VThHda = —1]( VaT2d:
2 Ja 2 Jan

where § is the curvilinear integral over Q1 and d: is the infinitesimal element of length along
the boundary line 90 (Fig. 1). Thus the boundary condition (7) leads to

<AD, T>=0 (16)
Finally, for the storage of thermal energy we obtain

oT
T >= 20 |y —HTII T (17)

<_
ot’ 2at

Substituting (13), (14), (16) and (17) in (12) results in

—||T)® = —-K||VT|? - BT 2 18
We now use Poincare inequality (Chipot, 1984)

1Tl < CIVT (19)

with the constant C' > 0 that depends only on the geometry of the domain 2. The constant
C is positive in our case, because of the assumption (9) for the temperature anomalies T (see
Appendix A). Then

K 2 2
—CﬁHTH >~ K|Vt

Substituting the last inequality in equation (18) we obtain

K 2 2
oI < — 25T ~ BT

or
K 2
||T||—HT|| < =B+ I

Dividing by ||T|| we obtain

ST+ B+ Sl so (20)

Long-time behaviour of solutions T'(t, z, y) will be analyzed now. Multiplying the inequality
(20) by

K
exp(B1 + =5t
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leads to

2 Tl exp(81 + )] < 0

Integrating (21) over time from ¢t = 0 up to a moment ¢ results in

1T, z, y)ll <[To(z, y)llexp[—(B1 + %)t]

Since B is positive (see (4)), the zero solution is the only attractor in our system:

T, z, yy -0 as t— o0

As T'(t) = Ts(t) — Tsp (t), it means that

Jim [I75(8) ~ Tan (8)] = 0

(21)

(22)

(23)

Thus, the ocean temperature Ts(t) will eventually tend to the normal climatic value. Schema-

tically it can be represented as in Figure 2.

MONTHLY MEAN OF NORMAL S.S.T.

22

I ) T SRR

L) e A

14 L1 i I n 1 ] i i ; i | 1
J F M A M J J A S ¢} N D

TIME (MONTHS)

— 5.8.T. —t= ANNUAL NORMAL

Normal Sea Surface Temperature

Fig. 2. Evolution of the anomaly of the surface ocean temperature, according to (23).
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4. Conclusions

It is shown that the zero solution is the only attractor of equation (2), i.e., any solution T'(¢, z, y)
of the equation (2) eventually tends to zero. It means that the ocean temperature Ts(t) (see
Eq.(1)) approaches the normal climatic value Tsp (2).

Thus, any bounded neighborhood of the zero is an absorbing set for the equation (2) solutions.

Note, that the smaller are 8 and K, the slower is the rate of convergence of all solutions
T(t, z, y) to zero and vice versa. Besides, as it follows from (22), the rate of decreasing also
depends on the constant C of the Poincaré inequality (19).

As a simple example, suppose that our domain ) coincides with the whole Northern Hemi-
sphere, the parameter B3, is defined by (4), and the diffusion coefficient K is equal to 3 x 108
2 -1
cm” sec” .

V. —
We obtain l—';lAL’ =10"! sec” !, considering the pairs of values: with | Vay |= 5 m sec 1 and
h =50 mor|Vy, |=10msec™! and h = 100 m (Adem, 1971).

In this case, the eigenvalues of Laplace operator on the hemisphere are equal to N(N + 1)/R2
where N is natural and R = 6.37 x 10 m is the radius of the sphere. Since l/C'2 is equal to the
lowest nonzero eigenvalue, 1/C? = 2/R? . Then this leads to a factor K/C? = 0.01478 x 1077
secl,

As a resuit, 8] + % =1,894 x 1077 sec™! = 7.

Therefore the e-folding time of decreasing the norm (22) of the perturbations is equal to
1_-609 days ~ 2 months.

=
We now make an important note.

We have analyzed the behaviour of the perturbation Eq. (2). The term HE in this equation
is a result of the linearization of the forcing (see Appendix B)

! w
h

J(L) = = (Ea — Gy — Gy) - (24

Exponential decreasing of any small perturbations obtained in the previous section (see Eq.
(22)) has been shown for the particular case B1 = constant > 0 that corresponds to a linearized
heating term. In the non-linearized case, f1 is not constant, and perturbations will exponentially
tend to zero if

K
—5 > t 25
C? zfn;tz(ﬂ mta'x f /81( » T, y) | ( )

The condition (25) also takes into account the case of a stationary, periodic and bounded (in
time) non-stationary normal solution Tsy(t, z, y) (see appendix B).

For example, since the behaviour of the normal monthly mean values T, (¢) is approximately
periodic during the year, the solution Ts(t) of Eq.(1), will tend to the climatic cycle independently
of the initial condition Ts(0, z, y), (Fig. 3).
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Fig. 3. Evolutions with a cycle attractor of the surface ocean temperature anomaly. All the trajectories located
inside the limit cycle tend to move asymptotically to it, just as the trajectories on the outside drift inward to
the limit cycle.
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APPENDIX A

THE POINCARE INEQUALITY

Due to Eq. (14), we obtain

<-ViT, T>=|vT|? >0 (A.1)

for any function T. It means that -v?is nonnegative operator.
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The spectral problem
2 _
~Vipn = WnPn

3tpn
On

laq =0 (A.2)

gives us an orthonormal basis of the real functions {en(z, y)}.
Thus

T = Z Thpn(z, y) (A.3)

for any function T where

Tn =< T, ©n >

is the Fourier coefficient.

Suppose that the eigenvalue problem (A.2) is solved, and the basic functions on(z, y) are
known. Let us substitute the series (A.3) in (A.1). Then

IVTI? =3 T Y Tm < =V20n, om >
n m
Using (A.2), we obtain
”VT“2 = anTnZTm < ©n, Pm >
n m

Since the functions oy, are orthonormal, i.e.,

1 n=m

< ©n, Pm>:6nm:{0 n+m

where 6mp is called the Kronecker delta (Dennery and Krzywicki, 1967), we obtain
VT =" waT2 (A.4)
n
It follows from (A.1) and (A.4) that w, > 0.

Let us numerate all the eigenvalues in the order of increasing their values, i.e., wy < Wpyl, 1=
1, 2, 3,...

We will show now that in fact all wy, are positive under the condition (9), and hence,

min{wn} =w; >0

Indeed, for the spectral problem (A.2), the eigenvalue w is zero only if

©n(z, y) = constant.
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But, due to Eq.(9), such constant functions are excluded from our consideration. Actually, if

/TdQZO
Q

with T = constant we have

T/ dl =0
Q

where [, df} is not zero, so that T = constant = 0

As a result,
VT2 =Y wnTi > w D TF (A.5)
n n

for any function 7.

Taking into account that

N1 =<T, T >=|T1)?
n

the equation (A.5) can be written as
2 2
IVTI® = w[|T]]
or

IVT)| > VwrlT|

We now can obtain the Poincaré inequality (19)

1
1Tl < —=IVT|| (A.6)
VeI
with
1
C _ /i
V@i

APPENDIX B

THE FORCING STRUCTURE

The equation (1) can be written as

0T,
ot

= —Vsp - VTs + KV2Ts + f(Ts) (B.1)



ON THE ASYMPTOTIC BEHAVIOUR OF THE ADEM THERMODYNAMIC MODEL 115

Substracting from (B.1) the corresponding equation for Tsy s

oT.
L= Vap - Viey + KVTs, + [(Toy) (B.2)
we obtain
oT
T ~Vsp -VT—I—KV2T+f(TS) — f(Tsp) (B-3)

for the ocean surface temperature anomaly T = T — Tsp.

In the linearized heating function that we have used, we have assumed that

Ts =Ts, + T} Ts, >> T}
T_gN :T30+T.;N Tso >> T';N
where T, is the constant mean annual surface temperature.
Therefore,
af(Ts,
51 = 1(15,) + 2LTse) gy (B.4)
aTs
If(Ts,
[(T) = 1(13,) + 2T Loed gy (B.5)
8

Subtracting (B.5) from (B.4), we obtain

H(Ts) = f(Tsy) = —B1 T

where
of(Ts,
g (L)
T,
The previous analysis has been performed for the linearized case f(Ts) — f(Ts,) = -5 T,

where 3 is a constant. But for the non-linearized case f(Ts) — f(Ts,) has a more complicated
form,

In this case, let us suppose that ||T|| is sufficiently small so that we can use Newton series
truncation by the linear term

1T = 1(Tay) + L) oty

It means that

f(Ts) = f(Tsy) ~ =1 T (B.6)
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where

_9f(Tsn)

B = ETS

and

Tsyy = Tsy (t, =, Y)

In this case, in which B; is not constant, the condition (26) is the sufficient one for the
exponential decrease of small perturbations T'(t, z, y).
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