Atmésfera (1994), T, pp. 89-103

Second order nonlinear interactions among Rossby waves

FEDERICO GRAEF

Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Apdo. Postal 2732,
22800 Ensenada, BC

{Manuscript received June 8, 1993; accepted in final form Aug. 31, 1993)

RESUMEN

En la teorfa de interacciones de ondas de Rossby (OR) débilmente alineales, se busca una solucién perturbativa para
la funcién de corriente cuasi-geostréfica de la forma ¢ = (/)(0) +et/1(1) +€211)(2) +...,donde ¢ es el nimero de f—Rossby.
Si la solucién a orden cero ¢(0) es cualquier superposicién de OR, la ecuacién de perturbacién a segundo orden

para 1/)(2) siempre tiene un forzamiento resonante. El hecho de que a 0(52) siempre haya resonancia se contrasta
con interacciones alineales a primer orden, donde las trfadas resonantes forman un conjunto muy restringido entre

todas las posibles interacciones. Como ejemplo se toma a i,b(()) igual a la suma de dos OR arbitrarias en un océano
sin fronteras laterales. A segundo orden, el método de escalas de tiempo miiltiples da lugar a un efecto Doppler de
0(62) en la frecuencia de cada onda proporcional al cuadrado de la amplitud de la otra onda. Usando pardmetros
realistas para la onda-1 y la amplitud de la onda-2, se encuentra que el cambio en la frecuencia no es despreciable
en regiones del plano de niimero de onda de la onda-2 cercanas a resonancia a primer orden. Es entonces concebible
tener un campo de OR, débilmente interactuando, tal que a O(¢) no haya interacciones resonantes; sin embargo,
el ef;cto Doppler en sus frecuencias, aunque pequefio, siempre tendra lugar, debido a que siempre hay resonancia a
O(e*).

ABSTRACT

In the weakly nonlinear interaction theory of mid-latitude Rossby waves (RWs), a perturbative solution for the
quasi—geostrophic (QG) streamfunction is sought in the form ¢ = !/)(0) + e¢(1) + 62¢(2) + ..., where ¢ is the
B-Rossby number. If the leading order solution '/J(o) is any superposition of RWs, the second order perturbation

equation for ¢(2) always has resonant forcing. This is in contrast to first order nonlinear interactions where resonant
triads form a very restricted set of all possible interactions. An example is worked out in a laterally unbounded
ocean and taking t/J(O) as the superposition of two arbitrary RWs. At second order, multiple time scales lead to an
0(52) Doppler shift of the frequency of each wave, proportional to the amplitude squared of the other one. Using
realistic wave parameters for wave-1 and the amplitude of wave-2, the frequency shift is not negligible in regions of
wavenumber space of wave-2 near resonance at first order. It is thus conceivable to hawe a field of weakly interacting
RWs, such that at O(e) there are no resonant interactions; however the Doppler shift in their frequencies, albeit
small, will always take place due to resonance at 0(52).

1. Introduction

Waves occur in Nature in an astonishing variety of physical systems. Linear theories of wave
motion were developed during the XIX and XX centuries to a high degree of sophistication, parti-
cularly in hydrodynamics (Craik, 1985). Since the governing equations and boundary conditions
of fluid mechanical systems in general are nonlinear, the linearized approximation restricts at-
tention to sufficiently small wave amplitudes. But even during the XIX century, progress was
made in understanding some aspects of weakly—nonlinear wave propagation, in which linear
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theory is considered to provide a good starting point in the search for better, higher—order,
approximations. A celebrated accomplishment was that of Stokes (1847) for surface gravity
waves.

In weakly—nonlinear wave theories there is great interest in studying resonant interactions,
mainly for two reasons. First, all nonresonant interactions only produce a small amplitude
background noise of forced waves whose amplitudes are small compared to those waves produced
by the resonant interactions (Podlosky, 1987), although there is experimental evidence that
dynamically non-resonant interactions might be important in surface gravity waves (Hammack
and Henderson, 1993). Second, unlike nonresonant interactions, resonant interactions can cause
significant energy transfer among waves and profoundly affect wavefield evolution.

The theory of resonant interactions among planetary Rossby waves (RWs) has had a long
history. Longuet-Higgins and Gill (1967) studied resonant interactions of barotropic, divergent
(free surface) RWs in a laterally unbounded ocean. Resonant triads are possible and all wave
vectors can participate in a resonant triad with a family of wave vectors. If the RWs are
baroclinic, account must be taken for the nonlinear coupling between vertical normal modes.
In Graef-Ziehl (1990), the nonlinear interaction between an incident and the reflected RW at
a straight coast was studied. Resonance at first order (Graef, 1993), in which the incident,
reflected and forced RW (with frequency twice that of the incident wave) form a resonant triad,
is severely limited. There could be resonance only if 0 <| sina |< 1/3, where « is the angle
between the reflecting wall and the eastern direction. In such case, the wave amplitudes are
slowly varying periodic functions of the offshore coordinate. At the next order, i.e. at 0(62),
where ¢ is the —Rossby number, there is always resonance (Graef-Ziehl, 1990), which leads to
a shift in the offshore wavenumbers; the wave amplitudes remain constant.

The motivation behind this work is to answer the questions: Does resonance at 0(62) happen
in the RW reflection problem only, i.e. having as primary waves an incident and the reflected

RW? What happens at 0(62) if there are no lateral boundaries? It will be shown that the

answer to the first question is negative, by proving that if the leading order solution, 1,[)(0), is a
superposition of two arbitrary Rossby waves, then the second order perturbation equation for

1/)(2) always has resonant forcing. The method of multiple scales is then used to remove the

secular terms from the forcing of ¢(2)’ which leads to an 0(52) shift of the frequency of each
wave, proportional to the amplitude squared of the other one. This frequency shift is reminiscent
of a widely known nonlinear effect on surface gravity waves, namely that the frequency exceeds
that of linear theory (see e.g. Lamb, 1932), or to be more precise, that in Stokes wave the phase
speed depends on the square of its amplitude.

This paper is organized as follows. In Section 2 the solution up to first order in ¢ is given.
The appearance of resonant forcing at 0(52) is shown in Section 3, where the method of multiple
scales is used to show the frequency shift, and the results are illustrated with some examples.
A discussion and conclusions are presented in Section 4. In the appéndix, an easy graphical
method is given to find resonant triads at first order in the case where two members of the triad
have the same frequency.

2. Solution up to first order

The coordinate system is cartesian with z eastwards, y northwards and z vertically upwards.
The governing equation is the quasigeostrophic potential vorticity equation (QGPVE) (see e.g.
Pedlosky, 1987). In the weakly nonlinear interaction theory of mid-latitude Rossby waves, a
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perturbative solution for the quasigeostrophic (QG) streamfunction is sought in the form

Y= w(o) + 51/)(1) + 521/)(2) + ... (2.1)

We consider the case where the ocean is laterally unbounded, and for simplicity, we restrict
the waves to be barotropic. Then, let 't/)(o) be the superposition of any two barotropic RWs:

I

1/)(0) = Ay cos(ky - T — wit + ¢1) + Agcos(ky - £ — wat + $2)
= Ajcos©p + Ajcos O3, (2.2)

where ¥ = (z, y) and each RW satisfies the dispersion relation, viz.
1i=1, 2, (2.3)

in which EE is the unit vector in the eastward direction, B is the northward gradient of the

1
planetary vorticity and re = (¢H)2 / fo is the barotropic or external Rossby radius of deformation,
where g is the acceleration of gravity, H is the water depth and f, is the Coriolis parameter.
Typical values of re are in the range 2000 km to 4000 km in the open ocean.

Although each RW is an exact solution of the nonlinear QGPVE, the sum will not be, in
general, a nonlinear solution. The nonlinear interaction of these two waves will produce a

forcing in the problem for z/)(l) wich oscillates with the sum and difference of their two phases,
i.e.

J (¢(0), V2¢(0)> = —A1 Ay (| ];2 |2 — | El |2) ]:3 El X E2 sin ©1 sin ©9

= —A1 AT 2[cos(01 — ©32) — cos(O; + O3)], (2.4)

where J(A, B) = (9:A4)(8yB) — (9yA)(dzB) is the Jacobian operator, k is the vertical unit
vector and I'yy = % (| ko |2 — | Ky |2) k - k1 x ky is the coupling coefficient. For completeness, if
the waves are baroclinic, i.e. if

,¢)(O) — AI‘I’"I (z) cos 61 -+ AZ\I’n2(Z) CcOSs @2, (25)

where ¥y, (2) and Uy, (2) are eigenfunctions of the vertical Sturm-Liouville problem with eigen-
values Ap, and Ap, and w; = on, (k;) = —Bk; - 15/ <| k; |2 +f3/\n‘.) , 1 =1, 2, then the nonlinear
interaction of these two waves is

2
J {w“”, vy 4 o, [rﬁ‘zz)azw("’} } =

— A1 AT 1" Wy W, [cos(0) — ©3) — cos(©1 + Oy))], (2.6)

where 71" = 1 (] ky 12 4 fEan,— | kq |2 ~f3)\nl> k-kj x ky and N(z) is the Brunt-Vaisila fre-
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quency. I'T3"? is symmetric in the indices 1 and 2, but it is not in El, 2 nor in ny 9 individually.

Therefore, two Rossby waves will not interact if their coupling coefficient vanishes, i.e. if either

1. Their wavenumber vectors are parallel (k; x ky = 0).

2. The waves have the same vertical mode (i.e. same vertical structure) and the same wavelength.

3. The waves have the same total wavenumber, i.e. the same | k |2 +72),. From the dispersion
relation this is equivalent to say that the waves have the same zonal or z—slowness (Ripa,

1981), which is k - 1 g /w.

Obviously condition 2 = condition 3 but 3 # 2 so condition 2 is more restrictive. Notice
that in condition 1 each advection is zero independently and then their sum is zero. In contrast,
when condition 2 or 3 occurs, it is the sum of the two advections which exactly cancel each other
giving zero interaction. It is difficult in these cases 2 or 3 to see geometrically why there is no
interaction. The discussion just presented for baroclinic waves complements that in Pedlosky
(1987) for barotropic waves.

The first order [O(e)| perturbation QGPVE is

At (Vzd’(l) - re_zl/’(l)) + B3z = A; 43T 5[cos(0; — ©3) — cos(©; + ©3))]. (2.7)

A particular forced solution for 1,[)(1) is

1,/,(1) = B‘(il) sin(©; — ©3) + Bgl) sin(©; + 0,), (2.8)
where

—A1A3T 2

(1) _
B! I S
[o(ky — k) — (w1 —wa)|(] k1 — kg |2 +re*)

(2.9)

B(l) A1A2F12

— _ _ _ _ —50s (2.10)
[o(k1 + k2) — (w1 + wa)](| k1 + kg |2 +re”)

unless there is resonance, i.e. unless the frequency of any of the forced waves coincides with the

frequency of a free; linear wave, i.e. unless w; — wy = o(k; — k3) or w; +wy = o(ky + k). The

resonant case at this order has been extensively studied (Longuet-Higgins and Gill, 1967; Ripa,

1981; Pedlosky, 1987). The problem of finding resonant triads in the particular case w; = wjy,

for which only the term ~ cos(©; + ©3) could be resonant, is examined in the appendix.

We now insist that wave-1, wave-2 and either of the two forcing terms do not form a resonant
triad. This is usually the case since for a given wave the geometric locus of the other two wave
vectors participating in a resonant triad is a curve. In other words, if one chooses two arbitrary
RWs at random, chances are extremely high that neither of the forced waves is going to be a free
RW. It should be kept in mind that philosophically, it is generally assumed that the lowest-order
resonant interactions that occur will dominate wavefield evolution. In principle, this mitigates
interest in higher—order effects. Also in practice, the labor involved in the dynamical calculation
of higher—order resonances is daunting. However, it is the issue of this paper to show that second
order resonance always occur, leading to a shift in the frequency of the primary waves.
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8. Second order: resonant forcing

The second order problem for w(z) has the following forcing, produced by the nonlinear interac-

tion of d)(o) and 1,[)(1):
J (1!5(0), V2¢,(1)) +J (1/’(1), V2¢(0)) —
f1sin©®1 + f9sin Oy + f3 sin(2®1 — @2)+

f45in(203 — ©1) + f5sin(20; + O3) + fsin(20; + ©4), (3.1)

where the first two coefficients are

1 a - -~
fl:EAZk'kl Xk2

Y (o T ) (0F TuE
B¢(1 ) <2k1 ky— | k1 |2> +B{Y (2k1 kot | k1 |2>] ) (8.2)
1 - - - . - . .- -
f2 = A1k ky x ky [Bgl) (2 - ko~ | ky |2) — B\ (2k1 kgt | R |2)} . (3.3)

Clearly, the nonlinear interaction of 1[)(0) and ¢(1) has produced two resonant forcing terms
(unless their coefficients f1, f vanish; in general they do not). The terms are resonant because
they are themselves free RWs or homogeneous solutions of (2.7). Except for their amplitude
and a phase shift of /2 (from cosine to sine), the resonant terms are precisely the two primary

waves (¢(0))

A particular solution to the resonant forcing terms grows linearly in time and is called secular®.
A uniformly valid solution (in time) to 0(52) is sought using the method of multiple time scales

(Bender and Orszag, 1978; Nayfeh, 1981). A new (slow) time scale is introduced: Ty = e2t. There
is no need to introduce T; — &t, since it was assumed that there are no resonant interactions

at first order. The straightforward or pedestrian expansion solution that grows linearly in et
suggests that the amplitudes and phases of the primary RWs be functions of T3, so that the
leading order solution is written now as

1/)(0) = Ai(T2) cos©1 + Az(T3) cos Oy, (3.4)

where now ©, = k; - £ — w;t + ¢;(T3), ¢ = 1, 2, and the QGPVE at O(€?) has the following
additional term on its right hand side:

oy (71— ) o0
(| El 12 +7‘;2) (COS @16T2A1 — A sin @18T2¢1)+

— 2 _ .
(I K2 I* +72 %) (cos ©207, Ay — Ay sin @207, ¢2). (3.5)

1 . . . .
The word secular is derived from the French word siécle, which means a century.
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The elimination of secular terms is achieved by setting:
6T2A1 - 8T2A2 =0
712 -2 -
Ay (I ky |® +re ) o, 1+ f1=0 (3.6)
= -2
Az <| kg |* +re ) o, 62 + f2 = 0,
whose solution is

A1 = A1(t=0) = Ay
Ap = Ap(t =0) = Ay

-f
= — T 3.7
¢1 A (ke + %10 (3.7)
¢y = ok T3 + ¢20,

Ax(| kg |2 +722)

where ¢;, = ¢;(t = 0), ¢ =1, 2 are the initial values of the phases.

Thus, resonant interactions at 0(52) do not change the amplitude of the waves, but only
their phases. As far as their dependence on T is concerned, the amplitudes are constants and
the phases are linear in T3. From (3.2), (3.3), (2.9) and (2.10) it follows that f; ~ A; A2 and

fa ~ A2A,, implying that

¢1 ~ A%Tz and ¢2 ~ A%Tz (3.8)

Due to resonance, second order nonlinear interactions lead to an 0(62) correction in the
frequency of wave-1 proportional to the amplitude squared of wave-2, and vice versa, for we can
write:

»©) =4, cos {El F— [wl + A7t (| ky |2 +r§2)_1J t+ ¢>10} +
) (3.9)
Agg cos {E2 - T — [w?, + f2A;1 <| E2 |2 +7';2> 1] t+ ¢20} .

The reader might have noticed the absence of the factor &2 multiplying the frequency cor-
rections. The reason is that dimensional variables are being used and in such case e plays
the role of an ordering parameter, which is set equals to one after doing the calculations. In
other words, the expressions for the phases ¢;, 3 are given by (3.7) with Ty replaced by the
dimensional time, ¢, when dimensional variables are used. For example, the perturbative solution

isy = 1/)(0) + d)(l) + 1/1(2) +.... On the other hand, if non—dimensional variables are used, ¢1, 2

would be given by (3.7) with Ty = €2t, € = U/(BL?), in which L and U are horizontal length and
horizontal velocity scales, respectively, and t would be the non-dimensional time; but obviously,
when dimensional variables are restored, all scales would drop out. Although formally one should
work with non-dimensional variables when using a perturbation expansion and multiple scales
(Nayfeh, 1981), this may be confusing [e.g. # would not appear in the dispersion relation (2.3)].
The validity of the expansion for a given set of wave parameters (including their amplitude) may

be checked a posteriori, by comparing for example ¢(l) to 1/1(0) in some integral sense (Graef and
Magaard, 1993).



SECOND ORDER NONLINEAR INTERACTIONS AMONG ROSSBY WAVES 95

As mentioned in the introduction, a similar effect of a frequency shift occurs in nonlinear
surface gravity waves where the phase speed (or frequency) depends on the square of the wave
amplitude. The frequency shift in a Stokes wave can only be found if the frequency is also
expanded in terms of the small parameter of the problem, the wave steepness ka, where k is the
magnitude of the wavenumber vector and a is the wave amplitude; or, equivalently, if multiple
time scales are introduced in the perturbation expansion. The elimination of a secular term at
order (ka)2 leads to the frequency shift. There is, however, a fundamental difference: whereas
the self interaction of a RW is zero, that of a surface gravity wave is not. This is the reason why
in the Stokes expansion one can have a single wave train but at least two primary RWs in the
leading order solution of .

In a more general framework, the frequency shift has to do with the broadening of the dis-
persion relation caused by nonlinear wave—wave interactions (Peter Muller, personal communi-
cation).

The advantages of an analytical solution can now be exploited by computing in a straightfor-
ward way the correction to the frequencies as a function of different wave parameters, without
actually computing the solution. Given wave-1 (i.e. given k; and A;) and Aj, one can compute

the maximum horizontal particle speed at first order of the forced terms, U(gl) =| B((il)HEl — ky|

and Ugl) = |B§1)||El + Ez\, and the frequency corrections of both waves as a function of the

wavelength of wave-2, Ay, and the angle that E2 makes with the eastern direction (positive
anticlockwise), 03, as shown in figures 1-2. Note that if the correct frequencies are written as
w; + 6w;, then the corrected periods are T;[1 — éw,/w; + O(bw;/w;)?], where T; = 27 /w; and
assuming |6w;|/w; < 1.

The first case (Fig. 1), in which wave-1 is an annual period first baroclinic mode? with a

wavelength of 315 km and 6; = 120°, shows regions in (A, 6;)-space where both U(gl) and

U,(l) exceed the corresponding particle speeds of the primary waves. There the perturbative
solution is not valid, and correspond to waves-2 near resonance at first order, where wave-1,

wave-2 and one of the two forced waves, ~ B‘(il) or ~ Bgl), form a resonant triad. As resonance
is approached, ]Bl(il)| — 00 or \B§1)| — oo and [éwy, 3| — oo. The maximum frequency shift in

the permissible region, say where both U(gl) and U_,(l) are less than 1 cm/s or half the particle
speed of the primary waves, is in the upper and lower left corners with values of |§w;|/w; of up
to 25%, corresponding to periods of 2 to 4 years of wave-2. The rest of the permissible region

shows values of |6w;|/w; less than 5%. The B—Rossby number of wave-1 is €] = Uy |k;|2/8 = 0.4
and ey < 1 for A9 > 200 km.

The second example (Fig. 2) has wave-1 as in the first case but with its phase due west
(f; = 180°) as well as its energy, giving A; — 984 km and €; = 0.04, a nonlinearly weaker wave.
The permissible region shows that |§w;|/w; < 1% and regions of |6w;|/w; > 10% correspond to

. . 1
waves-2 In or near resonance with wave-1 and the forced wave ~ Bd ).

Neglecting the nonlinear coupling between this mode and that of wave-2, which is also first mode, or taking the point of
view of a barotropic ocean with an equivalent depth corresponding to a first mode baroclinic Rossby radius of deformation.
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The first example shows that the frequency corrections are not negligible in regions of (A, 8)-
space sufficiently close to resonance at first order but far enough such that the perturbative
solution be valid. In general, it would be fair to say that outside regions of wavenumber space of

wave-2 near resonance at O(e), the frequency correction of the primary waves due to resonance
at O(sz) is negligible.
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Figure 1. Maps of (a) the maximum horizontal particle speed at first order of the forced term Ut(il) =| B((il) ||El k3 |

in cm/s; (b) idem for U,(l) =| BEI)”EI + k2 |; (c) the frequency correction of wave-1, | 6wy | /w; in % and (d)
idem for wave-2, | §ws | /we in % as functions of the wavelength of wave-2, Az, and the angle that k; makes with
the eastern direction (positive anticlockwise), 8, . Reference latitude = 30°, vertical mode number of both waves
n = 1, baroclinic Rossby radius of deformation = 41 km, period of wave-1 = 1 year, §; = 120°, wavelength
of wave-1 Ay = 315 km, maximum horizontal particle speed of primary waves U; = Uz = 2 cm/s, #-Rossby

number of wave-1 e; = U1|E1]2/ﬁ = 0.4. Note the correspondence between the high values of Uél) and U,(l)
and those of | §w; | /w;.
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Figure 2. As in Figure 1, except that 8, = 180°, Ay =984 km, ey = U; | k; |2 /B = 0.04. Note the low values (less
than 1%) of | §w; | /w; over most of the region and high values in regions where wave-2 is in or near resonance

with wave-1 and the forced wave ~ B((ll).

4. Discussion and conclusions

It was shown that if the leading order solution of the QGPVE is the superposition of two
arbitrary RWs, then the second order perturbation equation for 1/1(2) always has resonant forcing,
which is similar to 1/)(0), but with the RWs having other amplitude and a phase change of
90°. Generalization of this result to a superposition of an arbitrary number of RWs follows
immediately. In contrast to first order nonlinear interactions where one has to search for resonant
triads, resonant forcing at second order is the rule rather than the exception.
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The occurrence of resonant forcing at second order is due to the fact that the governing
equation, being the QGPVE, has a quadratic nonlinearity. This can be easily understood by
considering a nonlinear, energy conserving dynamical system governed by N[p] = 0, where X is
a nonlinear operator and ¢ a solution. Linearizing this equation, one obtains £[po] = 0, where
L is a linear operator and g, a (linear) solution. Writing some sort of expansion for ¢, i.e.

© = Z;‘;O s’goj and assuming £ has constant coefficients, one gets

®o ~ cos b

Llp1) = Qlpo] ~ cos?0 =

(14 cos 26) (4.1)

[V

1 3
Llp2] = Qlwo, v1] ~ cos® § = rhau 30 + 7 8 0,

where Q is a quadratic operator and # a wave phase. The equation for 5 has a forcing that is
a homogeneous solution of the linear equation, thus it is resonant.

Multiple scales were used to avoid secular terms in zp(z), which leads to a change in the
phase of the primary waves, whereas the amplitudes remain constant. The phase change can be
interpreted as a frequency correction of each wave that results proportional to the amplitude
squared of the other one. In the reflection problem, where the two.primary waves are not
arbitrary but have a relationship, resonance at second order leads to a correction in the offshore
wavenumbers of the incident-reflected waves (Graef-Ziehl, 1990). The problem here can be
thought of as homogeneous in space and inhomogeneous in time, as an initial value problem.
The reflection problem is homogeneous in time but inhomogeneous in space (in the offshore
direction). Thus, in both problems, there is a correction in the Fourier space variable of the
inhomogeneity.

Another example where nonlinearities change the frequency is a nonlinear pendulum with
cubic nonlinearity, whose evolution is governed by the so called Duffing equation. Such pendulum
has its period reduced by the nonlinearity (Nayfeh, 1981).

The frequency shift in the primary waves does not imply that there is an instability, as it does
in the case of resonance at first order (Pedlosky, 1987). Thus, in principle we could conceive
a field of RWs weakly interacting with each other, such that at O(e) there are no resonant
interactions; however the shift in their frequencies will always be present due to resonance at
O(eh).

The theory in this paper has been given in terms of oceanographic parameters. In principle,
it would be straightforward to present the theory in terms of atmospheric parameters. The wave
parameters would of course have different numerical values, and the vertical structure functions
would be different, but the same results should hold.
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APPENDIX

Resonant triads in the case w; = wy

Here I develop a very simple graphical method to find resonant triads of barotropic RWs at O(e)
when two of the waves have the same frequency. Let

w] =—wz —w, (Al)

and let (k, !) be the (z, y) components of k. Then, only the term ~ cos(©; + ©3) in (2.7) could

be resonant, for the other term, whose response is B((il) sin(@; — ©3), would require o (ky — k) =
wj —wg = 0, which implies k; = kg so that the waves have the same zonal or z-slowness and
therefore ['71"? = 0, i.e the waves would not interact.

The problem is then to investigate whether U(El + EZ) = 2w. There are five variables: k, ko

and w, and three equations: w = o(k;), w = o(k;) and 2w = o(k; + k). Thus, there are two
degrees of freedom. Combining the first two equations yields

S . - (4.2)
| k1 |2 +re | k2 |2 +re
whereas the third equation is
_ dkl + kzﬂ i} = — 2ka - (A.3)
| k1 |2+ | kg |2 42k - kg +re | kg |2 +re
Manipulation of (A.3) and using (A.2) results in
| ki [* + | By | +4ky - Ky =0, (4.9)

after division by ky # 0 (if k; = 0 then k; = 0 so k|[ky and T'y; = 0). Thus k; - k3 < 0 to have
a solution and the angle between k; and kj is in the interval (w/2, .
Given k; = (ky, 11), the wave vectors ky = (kg, l3) which are solutions of (A.4) must lie on a

circle of radius 3% | k; | and centered at (—2k;, —2l1), since (A.4) can be written as

(12 + 211)? + (kg + 2k1)% = 3(k? +13). (A.5)

Finally, since Ez must also satisfy w = U(Eg), they must also lie on the same slowness curve
that passes through k;, i.e. the circle of radius ('72 - re_z)% and centered at (v, 0), where
vy = —B/(2w) and w = o(k;). The geometric locus of wavenumber vectors k2 that resonantly
interact with the given El, and such that w; = wy, is given by the intersection of these two

circles, and therefore, there are at most two (see Fig. 3). The high values of Us(l) in Figure

1(b) for 8, ~ 240°and A, in the range 200~350 km correspond to resonances with w; = wy, as
confirmed by the two vectors ks shown in Figure 3 (wave-1 is the same in Figs. 1 and 3) and

by looking at the level curve of annual period for waves-2 (not shown). Note that the more k;
is westward, the less possibility there is for an intersection, i.e. for resonance.
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Figure 3. Graphical method to find a resonantly interacting triad of RWs at O(e) in the case w3 = wgz = w for

given wavenumber vector k; of wave-1. First, choose a k1, compute the frequency from w = U(El) and draw
the slowness curve (solid circle) on which all wavenumbers of this frequency must lie, i.e. the circle of radius

(* ~ re_z)l/2 and centered at (v, 0). Second, draw the circle (dashed)of radius 31/2 | k1 | and centered at
(—2ky, —24) = —2ky. The intersections of these two circles (marked with a small *) give the geometric locus
of wavenumber vectors 122 that resonantly interact with l;l and El + ky. Reference latitude = 30°, vertical mode
number of both waves n = 1, baroclinic Rossby radius of deformation = 41 km and k1 chosen from the polar
coordinates §; = 120°and | k; |= 27/315 km ™!, thus resulting in a period of wave-1 = 1 year (as in Fig. 1).

The coordinates of the points of intersection can be found anaiytically by obtaining first the
equation of the radical axis of the two circles (a straight line) and then substituting it into either
of the circles’ equations. The result is

res —mb=*t b—v)?% - (1 2)(p? e_2 2
ke o m [(m ’7)1+n(12+m)( +r )]z’ (46)
e = ;i) 4o, (A.T)

where m = —(ky +v/2)/l; and b = (re_z— | k |2) /(4l1). Obviously, if the circles do (do not)

intersect, the radicand in (A.6) must be positive (negative), and if the circles are tangent, the
radicand is zero.
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