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RESUMEN

Se formula una teoria heuristica de la estructura zonalmente promediada sobre una Tierra esférica empleando una
parametrizacién de la influencia de los torbellinos sobre la estructura zonal. Las influencias principales de éstos
son los transportes meridionales de calor y momento. Dichos transportes se expresan en funcién de cantidades
promediadas zonalmente mediante el uso de la suposicién que los transportes de cantidades casi conservativas
pueden parametrizarse por un proceso de difusién con un valor constante del coeficiente. El principio es empleado
en los tranportes de vorticidad y temperatura potenciales, de donde se muestra que el transporte de momento puede
obtenerse indirectamente.

La teorfa se formula para el modelo casi geostréfico de dos niveles con calor y disipacién, mediante el desarrollo
de las variables dependientes zonalmente promediadas en polinomios de Legendre. Las ecuaciones casi geostréficas
suplementadas por una ecuacién lineal de balance son suficientes para satisfacer las relaciones de paridad vilidas
sobre la esfera.

Las aplicaciones de la torfa son llevadas a cabo empleando varios calentamientos zonalmente promediados basados
en cémputos de observaciones o en simples especificaciones. En el primer caso se muestra que la teoria, en un modo
cualitativamente correcto, puede explicar los perfiles meridionales de los vientos zonales en los diversos niveles, para
la circulacién meridional media y para los transportes de momento deducidos a partir del transporte meridional de
vorticidad.

Las soluciones para los diversos valores del coeficiente que determina el transporte meridional de la vorticidad
potencial muestra que la conversién de energia proveniente de los torbellinos en energia cinética zonal es parti-
cularmente sensible a la intensidad del transporte de vorticidad potencial. Si el transporte disminuye resulta que
la conversién se vuelve negativa de tal manera que la conversidn prosigue desde la energia zonal hacia la energia
cinética torbellinaria. Se sabe que esta situacién corresponde a los casos de bloqueo intenso.

Una simple especificacién del calentamiento, simulando calentamiento en las latitudes bajas y enfriamiento en
las altas latitudes es insuficiente para dar una imagen cualitativamente correcta de la circulacién meridional media.

ABSTRACT

A heuristic theory of the zonally averaged structure of the atmosphere is formulated on the spherical Earth using
parameterization of the influence of the eddies on the zonal structure. The principal influences of the eddies are
the meridional transports of heat and momentum. These transports are expressed in terms of zonally averaged
quantities by using the assumption that the transports of quasi-conservative quantities may be parameterized by
a diffusion process with a constant value of the coefficient. The principle is used on the transports of potential
vorticity and of potential temperature, whereafter it is shown that the momentum transport may be obtained
indirectly.

The theory is formulated for the quasi-geostrophic two-level model with heating and dissipation using an ex-
pansion of the dependent zonally averaged variables in Legendre polynomials. The quasi-geostrophic equations
supplemented by a linear balance equation are sufficient to satisfy the parity relations valid on the sphere.

Applications of the theory are carried out using zonally averaged heating based on calculations from observations
or on simple specifications. In the first case it is shown that the theory, in a qualitatively correct way, can account
for the meridional profiles of the zonal winds at the various levels, for the mean meridional circulation and for the
meridional transports of momentum derived from the meridional transport of vorticity.
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Solutions for various values of the coefficient determining the transport of potential vorticity show that the
energy conversion from eddy to zonal kinetic energy is particularly sensitive to the strength of the potential vorticity
transport. If the transport is decreased, it turns out that the conversion becomes negative in such a way that the
conversion goes from the zonal to the eddy kinetic energy. It is known that this situation corresponds to intense
cases of blocking.

A simple specification of the heating, simulating heating in the lower and cooling in the higher latitudes is
insufficient to give a qualitatively correct picture of the mean meridional circulation.

1. Introduction

A classical problem in meteorology is the explanations of the zonal structure of the atmosphere.
It is well known that Halley (1686) and Hadley (1735) were among the first to speculate on
why the surface zonal winds had the observed distributions. Later modifications to the original
schemes were done by a number of scientists, but Ferrel (1856) is especially remembered because
his name is attached to the indirect middle latitude meridional cell. An account of the classical
speculations on the subject is given by Lorenz (1967).

The modern view puts major emphasis on the réle of the eddies. Observational studies and
numerical integrations of equations describing the general circulation of the atmosphere have
shown that the zonal structure of the atmosphere can be described in terms of the diabatic
heating, the meridional transport of heat and momentum and the frictional dissipation at the
surface of the Earth and in the interior of the atmosphere. Theoretical studies such as the
investigation conducted by Charney (1959) describes the zonal structure in a schematical way
by computing the zonal structure as a result of the diabatic heating and the frictional dissipation
as a first step. It is then shown that the calculated structure is unstable for small perturbations.
Using an ad hoc assumption concerning the preservation of shape of the infinitesimal growing
wave and permitting only the nonlinear interaction between that wave and the zonally averaged
quantities it is possible to determine the steady state amplitude of the wave and then determine
the transports of heat and momentum by the wave. In the theory it has thus been assumed
that the nonlinear cascade of energy by the waves is negligible compared to the interaction
between the wave and the zonal structure. The theory cannot therefore account for the spectral
distribution of energy on the various wave numbers. It is also unable to pay attention to the
difference between forced and free waves.

A quite different, but not necessarily more complete point of view has been used primarily by
Green (1968, 1970) and Wiin-Nielsen (1968, 1971). These considerations amount to a paramete-
rization of the influence of the eddies on the zonal flow. While such a point of view was advanced
already by Defant (1921) who described the transport of sensible heat as a diffusion process, it
has been difficult to expand the concept to other transport processes in the atmosphere. Some of
the first studies of the eddy momentum transport in the atmosphere by Starr and White (1951)
and Buch (1954) indicated clearly that a simple diffusion process cannot be used to describe the
influence of the eddy momentum transport on the zonal flow. A guiding principle in the studies
by Green (loc. cit.) and Wiin-Nielsen (loc. cit.) is that only quasi-conservative quantities may be
parameterized as diffusion processes. Such a principle is of course in agreement with the general
empirical description of a diffusion process since it rests on the assumption of conservation. The
concept may therefore be used on the transport of heat where the quasi-conservative quantity
is the potential temperature, and on the meridional transport of potential vorticity, where the
potential vorticity is conserved in the large-scale adiabatic and frictionless flow. As it turns
out, the meridional momentum transport become a secondary quantity that may be calculated
from the parameterizations. These ideas have been tested in a number of observational and
theoretical studies by Wiin-Nielsen and Sela (1971), Wiin-Nielsen and Fuenzalida (1975), White
and Green (1982, 1984) and by Wu and White (1986).
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The approach described above can accept a spectrum of waves, but it rests on the assumption
that the major wave groups in the spectrum transport the conservative property in qualitatively
the same way. In particular, it may be applied because the forced and the free waves obey the
assumption as shown from observations by Wiin-Nielsen et al. (1963, 1964). In its most general
form the procedure is nonlinear, because the diffusion factors depend on the flow, and all but
one are determined from the integral constraints that apply to the flow. Such an application
has been made by Wiin-Nielsen (1988), but the study was limited to only a few components.
i.e. to a low order system. The main idea has its limitations. While it may be applicable to the
general averaged atmospheric flow, it is probably unable to describe extreme flow configurations
such as blocking situations. More important is the weakness that while it rests on some general
properties of the structure of the atmospheric waves, it is unable to say anything at all about
the development and changes of the waves themselves.

The purpose of the present investigation is to describe some of the major features of the
atmospheric general circulation using a model of the above type and keeping the procedures as
simple as possible. In such a case one cannot expect that one can account for all the details,
but only that the results will be qualitatively correct with respect to the general structure of
the derived quantities and their order of magnitude. We shall in particular see how far we
may proceed using constant values of the diffusion coefficients. Furthermore, we shall formulate
the problem on the sphere and use an expansion of the scalar quantities in series of Legendre
functions of the first kind. Since we shall deal with zonal averages only, it will be sufficient
to use the Legendre polynomials. The study will make extensive use of the properties of these
functions, and the reader is refered to standard texts such as Jahnke, Emde and Losch (1960),
Abramowitz and Stegun (1972) or similar collections for the details of the various formulas used
in the developments and derivations.

The model used in the study is the standard two-level, quasi-nondivergent model. The vertica-
lly integrated heating entering the model will be specified in advance. The study will be limited
to the case where the heating is symmetrical with respect to the equator. This assumption
implies that the geopotential and the temperature have the same symmetry, while quantities
such as the streamfunction and the vorticity are asymmetric around the same curve. It will
thus be necessary to formulate the model in such a way that these properties are used correctly.
For this purpose we employ a linear form of the balance equation. With the full variation of
the Coriolis parameter in the balance equation we can satisfy the requirements. The use of the
linear balance equation is not without problems as was pointed out by Eliasen and Machenhauer
(1965). It turns out that it may be replaced by an infinite set of relations permitting the cal-
culation of a component of the streamfunction, say number n, from the component (n-1) in the
geopotential and the component (n-2) in the streamfunction provided that the first component
may be obtained by a special procedure. This difficulty is circumvented in observational studies
by relating the first component of the streamfunction to the total angular momentum of the
zonal flow. This procedure cannot be used directly in the present study because the zonal flow
is unknown. However, we can assume that the integrated angular momentum approximately va-
nishes since we are computing the steady state flow created by the prescribed heating. One may
therefore imagine that the angular momentum is zero at the start of the heating process, and
that it remains so during the approach to the steady state. In addition, one can show that the
first component is zero for the geostrophic flow with a full variation of the Coriolis parameter as
employed elsewhere in the study. Due to the nature of the linear balance equation it is a neces-
sity to select a reasonable maximum value of the components included in the calculations. The
maximum value of the number of Legendre functions is determined by restricting the number of
components to those for which the basic assumptions of quasi-balanced flow is satisfied.

The results of the study will show that for a realistic heating function we may obtain accept-
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able values of the zonal winds, the transports of heat, potential vorticity and, indirectly, of
momentum, and we are thus able to conclude that the theory is capable of accounting for some
gross aspects of the general atmospheric circulation.

2. Parameterizations

The purpose of the parameterizations is to relate various meridional transports to the zonal
mean quantities. As mentioned briefly in the introduction it is done by applying the diffusion
approximation to quasi-conservative parameters such as the potential vorticity and the potential
temperature. The adopted model will be a standard two-level, quasi-nondivergent model driven
by the zonally averaged heating and incorporating standard dissipation mechanisms.

In a two-level, quasi-nondivergent model the streamfunction and the quantities related to it
are carried at an upper (250 hPa) and a lower (750 hPa) level. These levels are indicated by
subscripts 1 and 3, respectively. The conserved quantity at level 1 is:

& =¢ —q¥p (1.1)

where £ is the potential vorticity, while ¢; is the ordinary vorticity. The remaining symbols are
defined as follows:

2 _ 207
=
Yr = (¥ - ¥3)/2 (1.2)

where o is the usual measure of the static stability in the p-system, (1 is a standard value of the
Coriolis’ parameter, and P = 500 hPa.

The main assumptions as described in the introduction are the diffusion assumptions for the
potential vorticity transport and the heat transport. They are:
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in which the K’s are the diffusion coefficients, a the radius of the Earth and ¢ is the latitude.

Using the formulas given above one can obtain the vorticity transport from its definition and
the transport parameterizations. Denoting the meridional vorticity transport by V; it turns out
to be most convenient to multiply by cosinus to latitude in which case one gets after rearrange-
ment:

Vlcos<,0:~ﬁ ﬂﬂg
a

e (1.4)

2
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To ease the calculations we shall nondimensionalize all scalar quantities by using a length scale
measured by the radius of the Earth and a timescale defined by the inverse of the angular velocity
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of the Earth. In addition we write all the scalar variables as series of Legendre polynomials.
Using the properties of these functions and denoting all nondimensional quantities by a ’hat’ we
obtain:

Vi cos(ie) = S [Rui(m) - (K - ) 0 - k) GE (15)

where the summation in all cases is carried out over the number n. We note that A% = a2q2 and
is a nondimensional quantity.

A formula for the derivative of a Legendre polynomial is:

dP, n(n+1)
dy  2n+1

(1 - u®) (Po-1— Pni1) (1.6)

This expression may be inserted in (1.5), and it is the possible to sum the series and to
calculate the vorticity transport at level 1. Although a division by cosinus is necessary there
will be no problems at the poles because formula (1.6) shows that the right hand side of (1.5) is
divisible by the cosinus function. This may be seen by the argument that the derivative of the
Legendre polynomial is itself some polynomial, and (1.6) shows then that the difference between

the two Legendre polynomials of order (n — 1) and (n + 1) has (1 — u?) as a factor. We may
use an analogous procedure to derive a formula for the vorticity transport at level 3 where the
conservative quantity is:

2
f3=¢+q ¥r (1.7)
The final formula corresponding to (1.5) may be written as follows:

P, 1— P,

Vycos(p) = — > [Kagas(n)n(n +1) = X*(Ks — Kp)ér(n) 5 —

(1.8)

In the following we shall use (1.5) and (1.8) to obtain the momentum transports at levels 1
and 3. For this purpose we introduce the notations:

my = (ulvl)z

m3 = (u3v3)z (1.9)

Using the well known formula:

_ omy cos’(p)

~ acost(p)dp (1.10)

and the corresponding formula for the momentum transport at level 3 we may derive the non-
dimensional expression:

_ 3y cos*(p))

Vi cos(p) = e

(1.11)

from which the momentum transport at level 1 may be obtained by integration from an arbitrary



190 A. WIIN NIELSEN

value of u to 1i.e. the North Pole. Also in this case there will be no problems at the Poles since
the left hand side is divisible by (1 — pz) after integration using an argument analogous to the
one applied above. It is seen that the same procedure may be applied to obtain the momentum
transport at level 3.

Next we turn the attention to the heat transport. The general definition of the heat transport
across a latitude circle is:

12w
H; = ’;—" / / ¢pTva cos(p)dAdp. (1.12)
o o0

where g is the acceleration of gravity, p, a standard value of the surface pressure and ps = P/po.
Using the gas equation and the hydrostatic equation to replace T by the thermal streamfunction
7 we may for the two-level model write:

H; = 477(1&%9(\111112)2 cos(p) (1.13)
g

Going to a nondimensional form and introducing once again the series expansion in Legendre
polynomials we obtain finally:

. ‘r(n
Hy=c Ky ). %(&—1 — Ppy1)

where
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In this formulation the heat transport will be expressed in energy per unit time, i.e. in Jg-1.

This concludes the formulation of the parameterizations where we have expressed the transport
processes in terms of zonally averaged quantities. It will be seen that we have selected to use the
Legendre coefficients for vorticity and not for the streamfunction. This choice is made because
it simplifies the expressions. Whenever a Legendre coefficient in the streamfunction appears it
has been replaced by the corresponding coefficient for the vorticity using the relationship:

¢(n) = —n(n+1)¥(n) (1.16)

In this section we have formulated the parameterizations in the most simple form by assuming
that the values of the diffusion coefficients are constants. The assumption is not realistic because
observational studies have shown that the diffusion coefficients have a tendency to be at a ma-
ximum in middle latitudes with smaller values closer to the Poles and the equator. It is possible
to include such a fixed variation in the model as demonstrated by Wiin-Nielsen (1988) where
it was assumed that the latitudinal variation of the diffusion coefficients were given expressions
such as

K = Kpp®(1 - p%) (1.17)

but, while (1.17) may be a reasonable approximation to an averaged variation of the diffusion
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coefficient, it is more likely that the dependence on latitude is determined by the nature of the
zonally averaged quantities, and such a dependence is much more difficult to formulate.

3. Stationary States

Using the parameterizations developed in Section 2 it is the purpose of this section to give a
description of the calculation of the stationary states of the two-level model. The formulation of
the calculation requires some care due to parity relations existing among the various parameters.
As an example we may consider a heating that is symmetrical around the equator. In such a
case the thermodynamic equation dictates that the geopotential and the vertical velocity are
also symmetrical, while the streamfunctions and the vorticities are asymmetrical. It follows
then that the zonal winds are symmetrical, while the eddy transports become asymmetrical.

The standard two-level, quasi-nondivergent model is also quasi-geostrophic because the
streamfunction is obtained by a rescaling of the geopotential by dividing by a standard value of
the Coriolis parameter. It is therefore not applicable to our problem because the streamfunction
and the geopotential are of the same parity. It is therefore necessary to generalize the model
slightly. This will in this study be done by employing a simplified form of the balance equation
that expresses a balance between the pressure force and the Coriolis force, where the latter force
is expressed by the nondivergent wind. The balance equation becomes in this case:

VI 4+ Vf.VE =V (3.1)

Equation (3.1) is brought into nondimensional form, reduced to the meridional components,
and the Legendre series are introduced. Using a number of formulas for the Legendre polynomials
and the orthogonality properties one may transform (3.1) to the following recursion formula:

s+ 1)+ 20 Do 1) = g(w) (32)

2
2n+ 3

(3.2) will in general permit the calculation of component (n+1) of the vorticity from component
n of the geopotential and component (n—1) of the vorticity. However, it is seen that the recursion
relation does not permit the calculation of the first component of the vorticity. This should be
done by setting n = 0, but in that case we find that the factor in front of the first component
is zero. It is therefore necessary to invent a special starting procedure. In observational studies,
where the difficulty has been encountered before (Eliasen and Machenhauer, 1965) it can be
circumvented by noting that

1 1
$0) = [ nitwydn= [ acos®(p)dp (3.3)
-1 -1

(3.3) shows that the first Legendre coefficient can be obtained from a knowledge of the zonal
wind, and that it is proportional to the total angular momentum. Since we are trying to compute
the zonal wind among other quantities, the formula (3.3) is of no direct use in our case. On the
other hand we may argue that the steady state that we are seeking is the result of an atmospheric
development starting from a state of rest where the angular momentum is zero. Since the total
angular momentum is nearly conserved it should not deviate too much from zero in the steady
state. We shall therefore set the first Legendre component of the vorticity equal to zero with
the implication that the solution that we shall obtain will have the same property.
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The procedure to be used in the remaining parts of the calculations will be to specify the
heating decomposed in series of Legendre polynomials. The potential vorticity equations will
then be used to obtain the Legendre coefficients of the geopotential. For this purpose we employ
the quasi-geostrophic equations where the vorticity is expressed in the geopotential. For reasons
of consistency it is necessary to use the vorticity in the form:

g = %V2¢ (3.4)

where f, is a constant value of the Coriolis parameter ensuring that the area integral of the
vorticity vanishes. The steady state potential vorticity equations for levels 1 and 3 are then:

V[V~ q°67)5)] = —epVigp — CLH

V(Y63 + ¢ ¢r)is] = epVigr — €4V ¢4 — CLH (3.5)

where we have used the standard way of incorporating the friction, and where

R -Q2

= 7 3.6

In the equations (3.5) we introduce the parameterizations developed in section 2 and thereafter
the Legendre series for the dependent variables are used to obtain the equations for the Legendre
coefficients for the Laplacians of the two geopotential fields. Denoting these Legendre coefficients
by Z1(n) and Z3(n) we obtain after some calculations two linear equations that may be written
in the form:

a(n)Z1(n) — bZ3(n) = —h(n)

—cZ1(n) + d(n)Zs(n) = h(n) (3.7)

where the right hand sides contain the Legendre coefficients of the heating, while the coefficients
in the equations are defined by

a(n) = [n(n +1) + 1/22% K, + 1/2¢p
b=1/2¢p + 1/22° K,
¢ =1/20 K3 + 1/2¢p +1/2¢4
d(n) = [n(n+ 1) + 1/2X} K5 + 1/2¢7 + 3¢4/2 (3.8)
The equations (3.7) are solved for each n. The recursion relations will give the coefficients

for vorticity satisfying the simplified balance equation. We may then proceed to calculate some
additional quantities.
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The zonal winds may be obtained at levels 1 and 3 from the vorticity by noting that the
zonally averaged vorticity is related to the zonally averaged u-component by the relation:

1 Ouzcos(p)
a cos(p) dp (39)

Sz =

The resulting zonal winds may be obtained either by a direct integration of (3.9) or by using
the same equation to calculate the Legendre coefficients of the zonally averaged winds. The same
option is available for the other parameters. The zonally averaged vertical velocity is computed
from the steady state form of the thermodynamic equation using the known geopotential and
the heating. Using the zonally averaged continuity equation it is then possible to compute the
zonally averaged meridional wind component.

Finally we mention that certain aspects of the energetics of the model may be computed. It
will be seen that the generation of zonal available potential energy G(Az), the conversion from
zonal available potential energy to zonal kinetic energy C(Az, Kz) and the conversion between
the zonal and the eddy available potential energies may be computed. In addition, we may
compute the conversion from eddy to zonal kinetic energy C(Kg,K:) and the dissipation of
zonal kinetic energy D(K;). On the other hand, it is not possible to calculate any additional
energy quantities related to the eddy energies.

4. Some examples

The theory developed in sections 2 and 3 will in this section be used on some examples. As a first
example we shall use a specified heating that is an approximation to the diagnostic calculation
carried out by Lawniczak (1970). Figure 1 shows the applied heating in a normalized form in
which the value at the equator is set equal to unity. The heating distribution has been assumed
to be symmetrical around the equator. It will be seen that the heating is positive in the lower
latitudes and negative elsewhere. The heating has two maxima: one at the equator due to
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Fig. 1. Heat‘ing, normalized to unity at the equator, as a function of the sine of latitude. The curve is an
approximation to the heating calculated by Lawniczak (1970)
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radiation and another at about 50 degrees north supposedly due to the cyclonic activity in this
region. The original curve has been modified slightly to ensure a vanishing area average.

The following results were obtained with parameters as follows:

H(0) =2 x 10 3Jkg !s7!

K{ =9 x 10°m?s71

K3 =2 x 10°m?s71

Ky =14x10%m?s7!

er =6 X 1077571

€4 =4x10"%71 (4.1)

It is also necessary to specify the coefficient A%. This is done by selecting the average value of
the Coriolis parameter over the hemisphere ({1) and otherwise use standard values. We obtain:

A2 =34.46 (4.2)

All calculations with schematic heating distributions have been done using a maximum number
of Legendre polynomials equal to 10.

20 T T

ms

z1,

—40 i L 1 !
0 0.2 0.4 0.6 0.8 1

sin (o)

Fig. 2. The zonal wind at the upper level in m s™! as a function of sine of latitude. The heating in Figure 1 has
been applied.
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Figure 2 gives the zonal wind distribution at the upper level (250 hPa) as a function of u.
Two wind maxima are observed in the westerlies with a somewhat larger wind maximum in the
subtropical jet than in the polar jet. Equatorial and polar easterlies are also observed although
the easterlies in the low latitudes are stronger than observed. The wind distribution at the lower
level (750 hPa) is displayed in Figure 3. It has the same shape as the wind distribution at the
upper level, but the speeds are considerably weaker as they should be.

10 T T T T
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-10

-15
sin (o)

Fig. 3. The zonal wind at the lower level. Same units as in Figure 2.
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Fig. 4. The zonally averaged vertical p-velocity in P s~ ! at the middle level as a function of sine of latitude.
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The vertical velocity in the p-system (w) is shown in Figure 4. We notice a weak Hadley cell
in the low latitudes, a Ferrel cell in the middle latitude and a rather strong polar Hadley cell.
The strength of the polar cell is due to the strong decrease in the cooling over the high latitudes
as can be seen from Figure 1. The vertical velocities have a small order of magnitude. In the
diagram on Figure 4 they are given in the unit Ps L. The largest value at the Pole corresponds
to no more than about 1 mms~!. The corresponding zonally averaged meridional velocity at the
upper level is found in Figure 5, where the unit is ms~!. The corresponding quantity at the lower
level is due to the simplicity of the model of the same magnitude, but of the opposite sign. The
maximum value is slightly larger than 3 cms™!. While the distribution of the vertical velocities
and the zonally averaged meridional velocities are in qualitative agreement with observational
studies, the magnitudes are considerably smaller than observed.

-0.01

-0.02

-0.03

-0.04 L 1 1 L

sin (o)

Fig. 5. The mean meridional velocity in m s™! at the upper level as a function of sine of latitude.

Figure 6 and Figure 7 show the meridional transport of vorticity at the upper and lower levels,
respectively. As pointed out previously we may consider this transport as the convergence of the
momentum transport. A vanishing vorticity transport corresponds therefore to an extremum
in the momentum transport. It is evident that the vorticity transports at the two levels have
the same shape, but the transport at the upper level is somewhat larger than at the lower
level. Figure 8 displays the momentum transports at the two levels with a numerically larger
transport at the upper level. A comparison between Figures 6, 7 and 8 and Figures 2 and 3
shows that the convergence of the momentum transport maintains the wind maxima against
frictional dissipation.

From the above example based on one of the calculations of the diabatic heating from obser-
vations we may thus conclude that the model using the parameterization of the transports of
potential vorticity and sensible heat is capable of accounting for some major aspects of the gene-
ral circulation albeit in a schematical sense only. In judging the results it should be remembered
that the heating calculation is based on a single winter months (January, 1969) where the polar
as well as the subtropical jets are well developed. It should also be kept in mind that the model
assumes constant diffusion coefficients.
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Fig. 6. The vorticity transport at the upper level in the unit: m s~
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as a function of sine of latitude.
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Fig. 7. The vorticity transport at the lower level. Unit and arrangement as in Figure 6.
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One may naturally ask if essentially the same results can be obtained with a much simpler
specification of the zonally averaged heating. We shall show by an example that this is not the
case. The most primitive description of the dependence of the heating on latitude is that heating
occurs in the low latitudes and cooling in the remaining part to the North Pole. Such a heating
field can be described in several ways, but one example is given by the expression:

H(p) =1/2(2 - 9p* + 74%)

(4.3)
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Equation (4.3) is normalized in such a way that the value is unity at the equator. The heating
(4.3) is shown in Figure 9. To make the point it is sufficient to show the meridional change of
the vertical p-velocity. It is shown in Figure 10, while Figure 11 shows the corresponding mean
meridional velocity at the upper level. These two figures show a two cell meridional circulation
with a direct Hadley cell in the low latitudes and a Ferrel cell in the high latitudes. The region

close to the North Pole is therefore characterized by rising motion.

15

10

-10

Fig. 8. The momentum transport at the upper level (full curve)
function of latitude.

1

heating,non.dim.

sin (o)

and the lower level (dashed

curve) in m? s72 as a

sin (o)

Fig. 9. A simple heating distribution normalized to unity at the equator as a function of sine of latitude.
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Fig.10. The zonally averaged vertical p-velocity in P s~! at the middle level as a result of the heating in Figure 9.
Unit: Ps™!

<in (o)
Fig.11. The mean meridional velocity in m s~ ! at the upper level as a function of sine of latitude as a result of the
heating in Figure 9. Unit: m st
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We list next the computed energy quantities for the main example. The quantities have the
following numerical values:

Az = 3212kJm ™2
K, = 2278kJm™?
G(Az) = 3.78Wm™?
C(Az, Ag) = 2.94Wm ™ ? (4.4)
C(Az, K;) = 0.84Wm ™ *
C(Kg, K:) =09TWm ™ ?

D(K;) = 1.81Wm™?

These values were obtained with the following values of the heating and the diffusion coeffi-
cients:

Hy =2 x 10 3Jkg 1571

K; =9 x10°m?%s7!

K3 =2 x 105m2s7!

Ky =14x10°m?%s7! (4.5)

The values given in (4.4) are in good qualitative agreement with observational studies both
with respect to sign and to order of magnitude. The quantity most sensitive to the values of the
parameters given in (4.5) is the energy conversion from eddy to zonal kinetic energy, because
the sign of the vorticity transport and therefore the conversion of the momentum transport is
sensitive to these coefficients. If, for example, the diffusion coefficient for potential vorticity
at the lower level is decreased from the value given in (4.5) to values closer to the diffusion
coefficient for heat, we will obtain a decrease in the conversion and eventually a change of sign.
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We may see this from the following listing of values:

K5, 10°m%s7! C(Kg, Kz), Wm™?2
1.9 0.75
1.8 0.54
1.7 0.34
1.6 0.15
1.5 -0.03
1.4 -0.20

The energy conversion listed above is the most sensitive. The other generations, conversions
and dissipations maintain the direction for wide variations of the diffusion parameters provided
the heating is reasonable. This is understandable from the formulations simply because the
system is driven by the heating, making the generation of the zonal available energy positive,
just as the dissipation of zonal kinetic energy is positive due to the formulation of the frictional
processes in the model. Finally, due to the diffusion of heat the conversion from zonal to eddy
available potential energy will also be positive in realistic cases.

5. An improved procedure

The examples in the previous section shows quite clearly that the winds in the low latitudes are
of too large a magnitude although the direction is correct. It is possible that this may be due to
the assumption that the first Legendre coefficient of the vorticity is set to zero in the previous
section. It is easily seen that first Legendre component in the vorticity at a certain level will
correspond to a wind distribution with an extremum at the equator and zeroes at the North

40 T T T T - T T T T

Uz3, ms ~!

Uz,

sin (a)

Fig.12. The zonal winds at the upper level (full line) and the lower level {dashed line) for the heating case described

by (4.3) as a function of sine of latitude. Unit: m s~?!
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and the South Poles. Such a component with a westerly wind at the equator would improve the
results. Lacking any other methods it was decided to obtain the first coefficient by a slightly
inconsistent procedure. This was done by using the standard two level quasi-nondivergent model,
but to let the Coriolis parameter vary in such a way that the parity relations were maintained.
Since the averaged heating over the globe, i.e. the coefficient corresponding to the Legendre
polynomial P,, vanishes we will then get a relation in which the first coefficient of the vorticity
is related to the second coefficient of the heating. This procedure is used only for the first
coefficient of the vorticity. The remaining Legendre coefficients are as before computed from the
linear balance equation (see Wiin-Nielsen, 1988).

We start by doing the calculation with the new estimate for the first Legendre coefficient

for the heating, specified in (4.3), having heating in the low latitudes and cooling in the high
latitudes. The constants are those given in (4.1). Figure 12 shows the two windprofiles at the

60 T T T T T T T T T

M1,M3,m2s5-2

sin (o)

Fig.13. The momentum transports at the upper level (full line) and the lower level (dashed line) as a function of

sine of latitude for the same case as Figure 12. Unit: m? s~2

upper and lower levels. The number of Legendre functions is in this section reduced to N=6 to
concentrate on the large scale features. We notice a single maximum in each hemisphere, but also
reduced easterlies in the region around equator. Figure 13 contains the momentum transports
at the two levels. There is agreement between the windprofiles and the momentum transports
in the sense that the wind maxima are situated at the place of maximum convergence. Figure
14 and Figure 15 show the vertical p-velocity and the mean meridional wind, respectively. As
in the previous section we find a single meridional cell of the Hadley type. The energy amounts
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and the generations and conversions are as follows:

Az = 5498kJm ™2
Kz =2207kJm ™2
G(Az) = 2.94Wm ™2
C(Az, Ae) =2.32Wm >
C(Az, Kz)=0.62Wm ™ *
C(Ke, Kz) = 1.2TWm ™2
D(KT) = 1.24Wm™*

D(K4) = 0.65Wm ™2

The amount of zonal available potential energy is somewhat higher than obtained from data
studies, but the other figures are reasonable in both direction and magnitude.

0.003 T T T ¥ T T T T T

0.002

0.001
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Wz,

~0.001

-0.002

~0.003 1 1 ! | 1 1 L i L
0 .

sin (o)

Fig.14. The vertical p-velocity as a function of sine of latitude for the same case as Figure 12. Unit: P s~ 1
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Fig.15. The mean meridional velocity as a function of sine of latitude for the same case as Figure 12. Unit: m s~ !

LATITUDE
0

Model Levels
Pressure

LATITUDE

Fig.16. The zonal mean diabatic heating as computed from the ECMWF model as a function of pressure and
latitude. The unit is degrees per day. Mean values for January, 1993.

As the next example we have selected the averaged heating for January, 1993 as provided
from the European Centre for Medium-Range Forecasts and based on the computation of the
diabatic heating from analyses done with an interval of 6 hour. The heating field, displayed in
Figure 16, is actually provided at all the pressure levels of the analysis. One will notice from the
figure that the heating is mainly a low level feature apart from the tropics, where the convection
provide heating all the way into the stratosphere. In our simple two level model the heating is
used only at the middle level (500 hPa). The distribution of the vertically averaged heating with
respect to latitude is displayed in Figure 17. The maximum heating is found at the equator,
when the data have been smoothed to remove two-grid-increment waves, and when the heating
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has been corrected in such a way that the area averaged heating vanishes. The result is shown
in Figure 17 indicating clearly the northern wintertime strong cooling in the high latitudes as
compared to the much smaller cooling close to the South Pole. One notices also the decreased
cooling in the Southern Hemisphere close to 50 degrees south, while the same feature is found

in the Northern Hemisphere at 35 degrees north.
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Fig.17. The vertically averaged mean diabatic heating as a function of latitude for January 1993. The unit is 10-3
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Fig.18. The zonal mean winds at the upper level (full curve) and the lower level(dashed curve) as a function of sine
of latitude for the heating described in Figure 17. Unit: m g1
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The wind profiles at the two levels are shown in Figure 18. The strength of the jet stream
in the northern latitude is more than 50 m per sec as compared to about 20 m per sec in
the Southern Hemisphere. The jet in the winter hemisphere is somewhat closer to the equator
than the jet in the summertime hemisphere. The equatorial easterlies are wider in the summer
hemisphere, where they cover the latitude belt from the equator to almost 30 degrees south.
Weak polar easterlies are found in both hemispheres.
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Fig.19. The vertical p-velocity as a function of sine of latitude for the heating given in Figure 17. Unit: P s~ 1,
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Fig. 20. 1The mean meridional velocity as a function of sine of latitude for the heating described in Figure 17. Unit:
ms .
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The zonally averaged vertical p-velocity is displayed in Figure 19 for the Northern Hemisphere.
It shows rising motion from the equator to about 17.5 degrees north followed by sinking motion
to about 45 degrees north. Rising motion is found again from that latitude to about 60 degrees
north, where it is replaced by sinking motion to the North Pole. The mean meridional circulation
corresponding to Figure 19 is shown in Figure 20. The reason that this curve does not clearly
indicate the three cell pattern as seen in Figure 18 is due to the fact that a zero in the vertical
velocity corresponds to an extremum in the curve for the mean meridional velocity. With the
weak indirect cell in the middle latitudes the mean meridional velocity does not change sign.

The energy quantities for this case are:

Az = 6T12kJm ™ >
Kz =2727kJm™?
G(Az) = 3.61Wm™?
C(Az, Ae) =29TWm 2
C(Az, Kz) = 0.64Wm™*
C(Ke, Kz) = 4.4TWm ™ *
D(Kt) = 2.38Wm ™2

D(K4) = 2.73Wm™°

We notice in this case again the rather large value of the zonal available potential energy. The
conversion from eddy to zonal kinetic energy is also somewhat larger than values obtained from
observational studies. It should be remembered that the example is based on heating data from
a specific month.

The transports of vorticity and momentum were also investigated, but they reveal nothing
new as compared to the previous examples.

6. Approach to the steady states

It is of interest to estimate how long time it takes to approach the steady state, if the system
Is in an arbitrary state. Since the equations are linear in the present case, such a measure can
be obtained by analytical means. To treat the problem it is first of all necessary to add time
dependence to the steady state equations treated so far.
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We shall as before work with the quasi-geostrophic equations. Denoting the Laplacian for the
zonally averaged quantities by L, i.e.

2]3

L=—[1- -_— 6.1
a“[ Wl (6.1)
and working with a nondimensional time
T = tQ (6.2)
we may write the quasi-geostrophic equations for the two level model in the form:
o . . . , . . . R
2 (L(®1) — Nbq] — Ky LIL(8)) - M dp) = epL(dr) - H (63)
8 .« . X . . . R R
57 1 L(®3) + X&) = K3L(L(®3) + N &r] = erL(®r) — &4 L(24) + H (6.4)

where we have used the same notations and the same scaling as in the previous sections. The
equations (6.3) and (6.4) may then be written in wave number space using the identical ex-
pansions as before. Thereafter we subtract the steady state equations from both equations and
obtain equations for the deviations from the steady states. The result is:

o) L (n) 222 = () () + baa(n)
() ¥ o) 480 — o () — d(m)za(n) (65)

where the Legendre coefficients are denoted by z(n).a(n), b, ¢ and d(n) have been defined before.
The new notations are:

a(n) =1+ f(n)

Bln) =1/2- » (6.6)

(n+1)
A solution of the equations above may be obtained by assuming that they are of the form:

z1(n) =& (n)ey"t

z3(n) = &3(n)e"*

(6.7)

We obtain then two homogeneous linear equations with v(n) as the unknown. Setting the
determinant equal to zero we get a second degree equation from which we obtain two solutions for
the frequency. They will both be negative indicating as expected that the computed steady state
for the zonal structure is stable. When an e-damping time is computed from the numerically
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larger frequency we get a measure of how fast the steady state is approached. The e-damping
time is a function of n, and it is seen from Figure 12 that the largest scales take the longest
time to come close to the steady state. This means that we probably never see a steady state in
reality, because the forcing is changing in time preventing a real approach to the steady state.

7. Concluding remarks

The simplified theory of certain aspects of the general circulation of the atmosphere presented
in this and earlier papers is far from complete simply because it cannot describe the evolution
of the eddies and their intensity. It is only capable of accounting for some major aspects of
the zonal structure of the atmosphere due to the parameterizations of the various meridional

eddy transport processes. In this sense the theory may be seen as a continuation of the classical
efforts to describe the major physical processes maintaining the zonal structure of the winds and
temperature fields. The difference between the present and classical models is the major emphasis
on incorporating the effects of the eddies on the zonal structure, while the attempts made
by Hadley, Ferrel and others tried to explain the zonal structure considering the symmetrical
structure only. As any empirical theory it relies on the heuristic assumption that only quasi-
conservative quantities may be described as large-scale diffusion processes. In the theory this
principle is applied to quasi-geostrophic potential vorticity and to potential temperature, while
the momentum transport by the eddies is obtained in an indirect manner. In formulating the
parameterizations it is also important to ensure that certain integral constraints valid for the
zonal structure in general are satisfied for the parameterization as well.

The theory is capable of accounting for the general structure of the tropospheric zonal wind
systems and for the inherent mean meridional circulation provided the assumed heating is realis-
tic. The derived transports of heat and momentum are also in good agreement with observational
studies.

In the present version of the theory we have emphasized simplicity by using a two- level quasi-
geostrophic model and constant values of the diffusion coefficients. In specifying the values of the
coefficients we have used the results of calculations based on observations, but we have also to a
limited extent investigated the sensitivity of the results to the numerical values of the coeflicients.
An expansion of the theory to multi-level quasi-geostrophic models is possible, but requires a
specification of the values of the diffusion coefficients at additional levels. It should also be
possible to expand the theory to quasi-geostrophic models with a continuous variation of the
dependent variables in the vertical direction. In the latter case it will probably be advantageous
to use vertical structure functions.
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