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RESUMEN

El reporte discute el efecto sobre la atmdésfera marciana de la distancia entre el centro de gravedad y el centro
geométrico del planeta. Se obtiene una solucién aproximada del problema por consideracién de la superficie real
como una orografia a gran escala con respecto a un planeta esférico de referencia.

La circulacién resultante tiene un mdximo de geopotencial en la regién, donde el planeta real estd arriba del

planeta de referencia y un minimo en el lado opuesto. Los vientos geostréficos resultantes tienen una rapidez de 10

a 30 ms~ L.

Un segundo problema es la determinacién del flujo cuasi geostréfico estacionario que estd en equilibrio con la
orografia marciana. El célculo estd fundado en una especificacién de la orografia marciana en funciones arménicas
esféricas con una resolucién triangular en 16 componentes. Esta es suficiente para el propédsito presente, porque la
contribucién de los rasgos menores de la orograffa a la configuracién del flujo estacionario se vuelve despreciable.

ABSTRACT

The paper discusses the effect on the martian atmosphere of the distance between the center of gravity and the
geometrical center of the planet. An approximate solution of the problem is obtained by considering the real surface
as a large-scale orography with respect to a reference spherical planet. The resulting circulation has a maximum in
the geopotential in the region, where the real planet is above the reference planet and a minimum in the geopotential
on the opposite side. The resulting geostrophic winds have a strength of 10 to 30 m s~ L.

A second problem is the determination of the stationary quasi-geostrophic flow which is in equilibrium with
the martian orography. The calculation is based on a specification of the martian orography in spherical harmonic
functions with a triangular resolution in 16 components. This resolution is sufficient for the present purpose because
the contribution from smaller features in the orography to the stationary flow pattern become negligible.

1. Introduction

The present paper is a continuation of an earlier paper by Wiin-Nielsen (1994) on the equilibrium
between a planet and its atmosphere. It was shown in the earlier paper how an equilibrium flow
with the orography of the Earth can be calculated within the framework of quasi-geostrophic
theory. Applications were made by using specific examples, and the paper continued by cal-
culating the equilibrium solution for the Northern Hemisphere from an equivalent barotropic
model, although the use of the theory was demonstrated also for a two-level quasi—geostrophic
model. The computed quasi-geostrophic flow for the Earth is in reasonable agreement with the
time-averaged observed flow at 500 hPa. In this paper we shall be concerned with Mars, its
orography and its atmosphere.
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According to Bills and Ferrari (1978) the geometrical center of the planet Mars is located at
a position of (ro, Ao, o) relative to the center of gravity of the planet. The position of the
centre of gravity will have an influence not only on the rotation of the planet itself, but also on
the atmosphere around the planet. The first purpose is to give an estimate of the stationary
circulation in the martian atmosphere created by the difference between the geometrical center
and the center of gravity.

For this purpose we shall make use of the standard meteorological treatment of a planet ap-
proximated by a sphere, where gravity, i.e. the sum of the gravitational force and the centrifugal
force, for practical purposes may be considered as a constant in the lower part of the atmosphere.

The problem may be considered as an effect of orography by considering the deviations from
an idealized (spherical) shape of the planet rotating around an axis going through the center
of gravity. The distance and orientation of the vector connecting the center of gravity with the
geometrical center will - relative to the idealized shape - create negative orographical heights
on one side of the planet and positive values on the other side. The dynamical effect of such
a large-scale orography may be considered by paying attention to the forced vertical motion
created by the orography and computed from the horizontal wind and the gradient of the slope
of the orography.

The general problem of computing the influence of the orography of Mars on the circulation of
the martian atmosphere is more difficult than the corresponding problem on the Earth because
some isolated mountains on Mars are very tall and steep forcing the flow to go around the
mountains rather than over them. The normal assumption made on the Earth that the main
effect of the mountains is a forced vertical velocity that can be computed from the surface winds
and the slope of the orography is therefore not applicable to these isolated features of the martian
orography. On the other hand, if we restrict our interest to the global stationary waves, we know
from the earlier calculations on Earth that only the large-scale orographical features will have
a major influence on the stationary flow. These large-scale features of the Martian orography
have moderate slopes, and we may therefore for this purpose apply quasi-geostrophic theory.

Applications of general circulation models adapted to Mars have been made by Leovy and
Mintz (1969), but this calculation did not include the influence of orography. A later simulation
study by Mass and Sagan (1976) emphasized on the other hand the influence of orographic
features on the general circulation of Mars, since Gierasch and Sagan (1971) had estimated an
increase in the windspeed by a factor 2-3 in certain localities. By comparing model integrations
with and without orography they demonstrated that the orography generated winds may be as
large as 40-60 m s71. A simulation by Pollack et al. (1976) made use of an improved version
of the model applied by Leovy and Mintz (1969). One of the improvement was the addition
of orography in the model. The results show very clearly the influence of orography since
the computed winds are considerably larger than in the previous calculations. Webster (1977)
has made of study of the low-latitude circulation on Mars using a simple, linear baroclinic
model from which he calculates the response of the Martian atmosphere to the steady-state
influence of the orography. He argues that the orography possesses both mechanical and thermal
influences, where the thermal influence is a result of the temperature anomalies introduced by
the mountains.

The most recent contribution comes from Joshi et al. (1994). They emphasize that the
rather steep orography on Mars in certain situations may create western boundary currents.
Such currents are mostly known in the oceans on Earth, but they are observed also in the
atmosphere, the main example being the East African Jet. These boundary current depend not
only on the orography, but also on the parameterization of the surface drag. The second purpose
of this investigation is to provide an approximate determination of the stationary flow pattern
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forced by mechanical influence of the Martian orography. We shall restrict the calculation to an

equivalent barotropic atmosphere, although it could easily be expanded to a two-level baroclinic,
quasi-geostrophic model.

2. The problem

The axis of rotation of the planet goes through the center of gravity. The reference planet is
defined as follows. We select a coordinate system, where the z-axis is along the axis of rotation,
while z- and y-axes are in the plane perpendicular to the axis of rotation and going through
the center of gravity. The coordinates of the geometrical center of the planet in the just defined

system are denoted (ro, Ao, o). We shall describe the planet in the selected system. It is also
approximated by a sphere with its center in the geometrical center of the planet. The two spheres
will intersect each other. The real planet is described with respect to the reference sphere by
giving the distance in the radial direction between the two spheres. In this way we may consider

the shape of the real planet as orography on the reference sphere. In the selected coordinate
system the equation for the reference sphere is:

2yt + 2t =4t (2.1)
where a is the radius of the planet. We may of course also describe the surface of the reference

planet by using longitude and latitude as follows:

T =acospcosA
Yy = acossin A

z=asingp (2.2)
The equation for the real planet in the reference system is:

(2 — 7o cos oo cos Ao)? + (y — ro cos posin Ao)? + (2 — rosinpy)? = a? (2.3)

We insert the coordinates of an arbitrary position vector in the reference system in the equation
for the real planet, i.e. (2.3). Let the coordinates be:

z = Rcospcos A
y = Rcospsin A

z = Rsingp (2.4)
We may solve eq. (2.3) for R. The solution is:

R=roT + (a® - r2(1 — 7%))'/? (2.5)
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where T is a notation for
T = cos pcos po cos(A — Ao) + sin psin o (2.6)

We note finally that the height of the orography is:
h=R—-a=r,T —a+(a® —ri(1 - T?)"? (2.7)

With respect to the two signs we can observe that the minus sign will have to be removed
since R has to be a positive quantity. This has been done in (2.7).

The final formula has been used in the form in which it is written. We observe, however, that
since ro << a in our case we could write (2.7) in the form:

h To Tg 2

Having determined the orography we shall next address the question of how it may influence
the atmospheric circulation of the planet. For the moment we shall be satisfied by considering
the steady state circulation. This problem has been treated by Wiin-Nielsen (1994) for both an
equivalent barotropic atmosphere and a two layer baroclinic atmosphere. We consider the first
case where the circulation due to orography may be calculated from the equation:

J+f+Th,¥)=0

r = ;’,}"0 (2.9)

It is thus seen that in order to apply (2.9) to a given planet it is necessary to know the
gravity on the planet, its rotation rate, the composition of the planetary atmosphere resulting
in a numerical value of the gas constant and a characteristic value of the surface temperature.

The solution of (2.9) is obtained by the same treatment as given by Wiin-Nielsen (loc.cit.)
where one makes use of the fact that if (2.9) shall have more than the trivial solution of no
motion it is necessary that the two quantities entering the Jacobian are proportional to each
other giving

¢+ f+Th=q"V (2.10)

where q2 is the proportionality factor. It is determined from the fact that (2.10) should apply
everywhere on the sphere and thus also for the average over the planet. Noting that both
the relative vorticity and the Coriolis parameter average to zero, we find from (2.10) that the
proportionality factor is determined from the following expression:

wf

Tfo
p (2.11)

where the overbar means an area average. In particular, the average of 2 means the averaged
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height of the isobaric surface corresponding to the equivalent barotropic level. In the atmosphere
of the Earth this surface is normally approximated by the 500 hPa isobaric level. Assuming that
the same principles will hold for the martian atmosphere we need an estimate of the mean height
of the isobaric surface that has a pressure which is half of the surface pressure on the planet. On
the Earth it is a reasonable assumption to use a standard value of the surface pressure equal to
1000 hPa, but on Mars we have only limited information of the surface pressure. It appears that
the relative horizontal variation is larger on Mars than on the Earth, and that the pressure itself
varies between 2 and 10 hPa. To estimate the height of the equivalent barotropic level on Mars
we shall also need to have additional information about the vertical structure of the atmosphere.
It 1s costumary to express the vertical variation of the temperature field in the form:

in which T is a representative value of the surface temperature and ~ is the lapse rate. According
to Hess and Panofsky (1951) the adiabatic lapse rate is

y=37x10 km™? (2.13)

but this value is incorrect because it is based on a composition of the atmosphere assuming that
nitrogen is the main component. Knowing that the atmosphere is almost 100% CO, we find a
value of the specific heat for constant pressure of 661.36 J kg~ ! K1 giving an adiabatic lapse
rate of 5.6 x 1073 K m™!. It is difficult to obtain a value of the actual lapse rate in the martian
atmosphere, but as we shall see later the results are insensitive to the assumed value. It has been
assumed that the actual lapse rate is 2/3 of the adiabatic rate, i.e. 3.74 x 1072 K m~L. We may

estimate the averaged height of the equivalent barotropic level by hydrostatic considerations.
For the temperature at the desired level we find:

p . Ex
T=To(=)s (2.14)
Po
where p/po = 1/2. Knowing the temperature we find the mean height from
To-T
zZ= 2.15
- (2.15)

The evaluation of the mean height of the orography is straightforward. We can obtain the
desired quantity by making a numerical integration of (2.7) over the whole sphere. As expected
we find a very small value of the mean height because the values of h are positive on one side

and negative on the other side of the planet. The spherical coordinates of the geometrical center
of the planet are:

ro = 2.5 x 10°m
A = 92.29 degrees (eastlong.)

@ = —62.0 degrees (2.16)
in the system centered at the center of gravity.
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3. Procedure

Eq. (2.9) is solved for the streamfunction by expanding the right hand side in spherical harmonic
functions. The coefficients are calculated from the specification given in eq. (2.7). Let the
coefficients for the orographical field be denoted Hc¢(m, n) and Hs(m, n). Knowing these
coefficients we may calculate the coefficients for the streamfunctions denoted by Sc(m, n) and
Ss(m, n). For these purposes it may be an advantage to write eq. (2.9) in the form:

VI — ¢?a®¥ = —Ta’h (3.1)
We get then

'a?
n(n+ 1) + q%a2

Sc(m,n) = he(m,n) (3.2)

where T is given by eq. (2.9) and q° by (2.11). The other coefficient obeys an analogous formula.
To estimate the first factor we have used the following values of the parameters:

g = 3.71ms™ 2

fo=10"%s71

R=189Jkg 1K}
To = 217k (3.3)

Using furthermore a = 3.397 % 10° m we find that

1

Ta? = 1.0439 x 10°ms™ (3.4)

while the other coefficient becomes:

4

a’q® ~2.4x 10" (3.5)

The value given in (3.5) is small because the averaged height of the orography is small, while
the value of the averaged height of the equivalent barotropic level is of the order of magnitude of
7000 m. It is thus seen that the value is completely negligible compared to the factor n(n + 1).
For this reason we find that the numerical value of the lapse rate going into the determination
of the equivalent barotropic level is rather unimportant in this calculation.

4. Results

The values of the coefficients of the streamfunction were calculated for a number of spherical
harmonics. Some results are given in Table 1, and they indicate very clearly that only the
components (0,1) and (1,1) have significant values, while the rest are so small that they may be
neglected.
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TABLE 1

m n Sc Ss

0 1 -1.15x10% 0.0

0 2 7.14x10° 0.0

0 3 3.41x10° 0.0

1 1 -1.22x10° 3.05x107

1 2 1.77x10? -4.42x10°

1 3 -1.11x10-3 2.75x10-2
2 2 -5.86x10° -4.69x10’

2 3 5.84x10™ -1.06x10°

Having only two simple components it becomes possible to do the whole calculation by ap-
plying eq. (2.8) with T given by eq (2.6). This is done by calculating the coefficients of the
spherical harmonics directly. They are:

2m
ro =2 [0 [T a0 Prlw)dran (4.1
1 2w
he(1,1) = 83_7r/_1/0 h()\,u)Pll(u) cos(A)dAdpu (4.2)
1 2m
hs(1,1) = 837/_1/0 h(X, p) PL(u) sin(A)dAdu (4.3)

The three integrals may be calculated without difficulties, and they give the following results:
h(0,1) = rosin(po)
he(1,1) = 2/1r0 cos(po) cos(Ao)

hs(1,1) = 1/2r, cos(po) sin(Ao) (4.4)

These approximate results may for the two components be compared with the values given in
Table 1. It will be seen that there is an excellent agreement. We shall therefore in the following
use the approximation (4.4). We consider first the zonal component (0,1). Calculating the zonal
wind from the (0,1) component we get

uz = 33.76(1 — u?)!/? (4.5)

It is thus seen that this component of the zonal wind has a maximum at the equator and
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decreases to zero at the two poles. On the other hand, the u and v components of the contribution
by the (1,1) component are:

u(1,1) = 9.0 cos(X + 267.71)

v(1,1) = 8.99 cos(A — 2.29) (4.6)

where it is seen that the u-component has a zero value at the equator, while the v-component
is independent of latitude as it always is for this particular component. Figure 1 and Figure 2
show the isolines of the streamfunction on the sphere. By considering the total streamfunction
from the two components it may be calculated that the minimum value of the streamfunction
(—1.152 x 108) is found for A = 272.29 degrees and ¢ = 75.11, while the maximum (1.152 x 10%)
is found at (92.29, -75.11) as verified by the figures.
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Fig. 1. The circulation due to the difference between the center of gravity and the geometrical center with emphasis
on the Northern Hemisphere. The center of circulation represents a minimum.
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Fig. 2. As Figure 1, but viewing the Southern Hemisphere, where the center of circulation is a maximum.

5. The general influence of orography on the atmosphere of Mars

It may be of some interest to make a first estimate of the influence of the orography of Mars on
the circulation of the atmosphere. An estimate of the orography expressed in the amplitudes
of the spherical harmonics has been carried out by Bills and Ferrari (1978). They include 16
components in both directions on the sphere. Considering the available data and their uneven
distribution over the surface of Mars, it is unavoidable that considerable uncertainty exists in
the results. In any case, the chosen resolution will have a minimum wavelength of about 1000
km in the middle latitudes of the planet and some 1300 km at the equator. It is thus clear
that the tallest mountains that may have a height of 27 km and a width of only 600 km are
not well represented in the data. As mentioned earlier in this paper the flow around these tall
individual mountains cannot be handled by the model employed in the previous section. On the
other hand, the large-scale mountains resolved by the data may be handled by quasi-geostrophic
theory which will be used in the same form as in section 4.

An inspection of the numerical values of the amplitude of the spherical harmonic components



62 A. WIIN-NIELSEN and TORBEN RISBO

given by Bills and Ferrari (loc.cit.) reveals that the zonal component (0,2) has a particularly
large value (-6180 m). The reason for this is that the orography is given in the form:

16 n
R(A, ¢) = Ro[1 + Z Z (C(m,n) cos(mA) + D(m,n)sin(mA)) Py (u)] (5.1)

n=1 m=0

in which the Legendre functions are normalized by the factor:

N(m,n) = [(2 — §(m,0))(2n + 1)£”‘—m)’]1/2

()] (5.2)

in which 6(m,n) is the Kronecker delta. R(A, ) in (5.1) is the radial distance from the origin.
While (5.1) is a correct way to express the orography, we shall express it relative to the mean
radius of the planet. The equatorial central distance of the planet is re = 3397 km and the
oblateness is f = 0.0059. From these numbers we get that the polar central distance rp is

The mean radius is then found from the formula:

R = (r2rp)*/® = 3370 km (5.4)

We may thus correct the zonal components of the spherical harmonics. This is done by
calculating the distance h between the sphere and the ellipsoid. It is:

Te

B 1+ %:sin2 ©)

h Rm (5.5)

1/2

in which we have introduced the oblateness by the approximate relation e = 2f, valid for small
values of the ellipticity. The spherical harmonic components of the above expression have been
calculated. It is obvious that it is symmetrical around the equator and there will thus be only
even components. In addition, the distance h will have some similarity to the second Legendre
polynomial with a negative coefficient. It is therefore not surprising that the main component
is the second. Using the same scaling as Bills and Ferrari (loc.cit.) where the components are

multiplied by 10° we find that C(0,2)= -1757 and C(0,4)= 4, while all the other components
vanish for practical purposes.

The original components have been corrected according to the above results. The orography
in this part of the study will thus not agree with the one displayed by Bills and Ferrari (loc.cit).
Thereafter we have calculated the streamfunction using the same procedure as in Section 3.
From the data available it is not possible to estimate the global mean height of the orography.
We are therefore forced to make the assumption that the term containing q2 is negligible. It is
less valid here than in Section 3, especially for the small values of n. The neglect of the q2 term
will result in values of the streamfunction that may be too high.

The orographical field computed from all spherical components is shown in Figure 3, where
180 deg. long. is in the middle of the figure, while 0 deg. is at the edge. We notice in particular
the large mountain heights at the equator at about 120 deg. east. with low values to the
west with a minimum around 30 deg. east. Considerable slopes exist therefore in the eastern
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hemisphere close to equator. In the Southern Hemisphere one notices the deep depression in the
western hemisphere with a center located at about 300 deg. east and 40 deg. south.

The streamfunction, which really is only a rescaled geopotential, calculated as a response to
the orographical forcing is shown in Figure 4. It is much simpler in structure than the orography.
The main response is on the first few wave numbers. The major anticyclonic feature across the
equator in the eastern half is clearly related to the large ridge in the orography. The center
of the anticyclone is located to the west of the ridge. The cyclonic circulation in the western
hemisphere is connected with the low orographic heights in the same region.
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Fig. 3. The orography of Mars as obtained from the addition of all spherical harmonic components with triangu-
lartruncation at wave number 16.0 degree along the edge, 180 degrees in the middle.

Fig. 4. The eddy streamfunction for the circulation in equilibrium with the orography. Map projection as in Figure
3.
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6. Concluding remarks

The investigation in this note deals with a part of the general circulation of the Martian at-
mosphere. We have concentrated on the influence on the atmosphere of the displacement of the
center of gravity from the geometrical center of the planet. In addition, we have restricted the
investigation to the stationary problem. In spite of the fact that the displacement is only 2.5
km as compared to the radius of the planet (close to 3400 km), it is nevertheless a significant
orographic disturbance on the planetary scale.

Due to the position of the geometrical center of the planet (see (2.16)) the orography is
not strictly speaking expressible in the lowest order harmonics, but, as shown in Table 1, the
calculation indicates that only the components (0,1) and (1,1) have significant amplitudes in the
derived components of the streamfunction. The remaining part of the calculations contains the
two components only. As seen from Figure 1 and Figure 2 showing two different representations
of the streamfunction we find low values of the streamfunction in the Northern Hemisphere of
the planet, centered at 272.29 and 75.11 in longitude and latitude, respectively. High values are
found in the Southern Hemisphere at 92.29 long. and -75.11 lat.

The zonal winds connected with the components have a maximum of more than 30 m s=!
at the equator and vanish at the Poles. The velocities connected with the planetary wave
component (1,1) are considerably smaller, but amount to about 9 m s™?.

The motion in equilibrium with the large-scale orography is computed in Section 4 based on a
triangular 16 component spherical harmonic representation. Such a representation is inadequate
to resolve all features of the Martian orography, but our calculation displayes the larger scales
of the orographically forced circulation of the planet.
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