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ABSTRACT

The quasi-geostrophic, baroclinic stability problem is solved using vertical structure functions corresponding to a
vertical variation of the static stability parameter which is inversely proportional to the square of the pressure. Due
to this assumption it is necessary to apply the upper boundary condition at a pressure level different from the outer
limit of the atmosphere. While this technique has been used earlier, the emphasis in this paper is on the stability
of jet profiles.

Various jet-like profiles of the zonal wind are defined mathematically, and they are used to investigate how the
stability depends on the maximum wind, the position of the jet maximum, the sharpness of the jet, and also the
position of the upper boundary. A comparison is made with the stability of the advective model for which the
stability may be obtained analytically.

From the general, quasi-geostrophic model it is found that a short-wave cut-off exists, while instability exists
for all wavelenghts larger than the cut-off wavelength, i.e. no long-wave cut-off exists. Smaller instabilities occurs
when the maximum wind is around 300 hPa, when the top level is located at 30 hPa, and when the jet profiles
are well rounded. A wind profile with ®stratospheric easterlies® has about the same stability for Rossby waves of
a few thousand kilometers as a profile with westerlies at all levels. However, for very long waves the profile with
easterlies is more unstable.

RESUMEN

El problema de la estabilidad baroclinica cuasi-geostréfica, se resuelve mediante funciones de estructura verticales
correspondientes a una variacién vertical del pardmetro de estabilidad est4tica que es inversamente proporcional al
cuadrado de la presién. Debido a esta suposicién es necesario aplicar la condicién fronteriza superior en un nivel
de presi6n diferente del limite exterior de la atmésfera. En tanto que esta técnica se ha usado anteriormente, el
énfasis en este trabajo es el de la estabilidad de los perfiles del chorro

Se definen matemdticamente varios perfiles que simulan chorros del viento zonal y se amplfan para investigar
c6mo la estabilidad depende del viento méximo; la posicién del maximo del chorro; la agudeza del chorro, y también
de la posicién de la frontera superior. Se hace una comparacién con la estabilidad del modelo advectivo para la
cual la estabilidad puede obtenerse analiticamente.
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A partir del modelo cuasi-geostréfico general, se encuentra que existe una baja segregada de onda corta, mientras
que hay estabilidad para todas las longitudes de onda més larga que la correspondiente a la baja segregada, es
decir, no existe una baja segregada de onda corta. Ocurren estabilidades menores cuando el viento miximo se halla
alrededor de los 300 hPa, cuando el limite superior se localiza a 30 hPa, y cuando los perfiles del chorro est4n bien
redondeados. Un perfil eélico con “vientos estratosféricos del Este® tiene casi la misma estabilidad, para ondas de
Rossby de unos pocos miles de kilémetros, como un perfil con vientos ponientes a todos los niveles. Sin embargo
para ondas muy largas, el perfil con vientos del Este es m4ds inestable.

1. Introduction

The first solution of the baroclinic stability problem was provided by Charney (1947) in his
classical paper on the stability of an atmospheric westerly current. The investigation was made
using analytical methods. Consequently, the basic state has to be as simple as possible. An
atmosphere with a constant lapse-rate in temperature and a linearly increasing wind with height
had to be used. A much more general, but still analytical approach to the problem of the

stability of internal baroclinic jets was later made by Charney and Stern (1962). Many other
studies, too numerous to be mentioned separately, have been made by analytical methods.

Another approach to the same problem was initiated by Green (1960) who solved the eigenval-
ue problem for the frequency equation by numerical methods. In addition to the major baroclinic
instability for waves with a wavelength of a few thounsands kilometer he found that also the
very long wave exhibited baroclinic instability although with considerably longer e- folding times.
While e-folding times of the order of one day are typical for the major baroclinic Rossby waves,
the e-folding times for the very long waves are typically 5-7 days. Green’s numerical results
are in agreement with the results of a theoretical study of the original Charney-problem by
Burger (1962, 1966) who found that instabilities exist at all wave-lengths. A different numerical
investigation of the atmospheric stability problem was made by Brown (1969) who found the
eigen-values by a time-integration to a steady state. This general approach can be applied to
a large variety of linear stability problems. The investigations mentioned above apply finite
difference methods in the numerical procedures.

The use of vertical structure functions in the solution of the baroclinic instability problem
was introduced by Kasahara and Tanaka (1989). They applied a set of normal modes for an
especially simple vertical temperature distribution, which corresponds to a vertical distribution of
the static stability parameter which is inversely proportional to the square of the pressure. Such a
distribution was originally proposed by Gates (1961) based on a data study. Due to the fact that
the static stability parameter goes to infinity at the top of the atmosphere it is necessary to apply
the upper boundary condition at a finite pressure, different from zero. One of the questions is
naturally where the upper level should be selected and how the selection influences the stability.
Kasahara and Tanaka (loc. cit.) applied the method involving the vertical normal modes to
the Charney problem with a linearly increasing wind and to a climatological jet profile typical
of 30°N. A weakness in this type of approach is that if the atmospheric parameters, expressed
in a series of the vertical structure functions, do not satisfy the same boundary conditions as
those used in the design of the vertical modes, there will always be discrepancies close to the
boundaries. They used the top boundary condition that the vertical velocity in the p-system
should vanish, while the bottom boundary condition was that the vertical velocity in the z-
system should vanish corresponding to an Earth without mountains. A linear windprofile is not
expressed very accurately close to the boundaries using these structure functions.

Vertical modes, very similar to those described above, have been used by Wiin-Nielsen and
Marshall (1990) to investigate the vertical structure of baroclinic, atmospheric waves. In this
study the boundary conditions at both the top and the bottom of the atmosphere were that the
vertical velocity in the p-system should vanish. The only major consequence of these simplified
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boundary conditions is that the external mode, the so-called barotropic component, will be
missing. We note that the investigation of the structure of the waves as a by-product can give
both the speed and the growth rate of the waves.

A number of years ago Wiin-Nielsen (1967) determined the baroclinic instability of an arbi-
trary vertical windprofile using the so-called advective model, which is a model with a static
stability equal to zero. In this greatly simplified case it is possible to determine both the phase
speed and the growth rate from the vertical windprofile. A purpose of this investigation will be to
compare the solutions obtained from these two models. The general purpose of this investigation
is, however, to calculate the eigen-values of the quasi-geostrophic, baroclinic instability problem
for various jet profiles. We shall then be interested in how these eigenvalues are influenced by
the shape of the zonal windprofile, the position of the maximum wind, the sharpness of the jet
and the location of the top level in the model. For these purposes we shall use the vertical modes
as determined by Wiin-Nielsen and Marshall (1990), hereafter called WM.

2. The computational scheme

The derivation of the vertical modes is given in detail in Section 3 of WM. It will thus suffice
to summarize the properties in this paper. They are solutions to the equation:

d
%[p2G] +2lg=0 (2.1)
satisfying the boundary condition
dG ,
o ~Gp=rrp=1 (2.2)

where p is the normalized pressure, i.e. the real pressure divided by the constant pressure
Po = 1000 hPa. The structure equation (2.1) appears when it is assumed that the static stability
is given by

Oo
o= — 2.3
o (2.3)

where 0, is the static stability at p = 1, i.e. at the surface. The solutions are:

G (p) = 2\5—:_)—)[sin(mré) — 2u(n) cos(nwé)] (2.4)

where
§ = —In(p)

ér = —In(pr)
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giving
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A(n)* = y +[€T] (2.6)

The functions Gn(p) form an orthogonal, normalized set over the interval pp to 1 as shown in
WM. The basic equation for quasi-geostrophic flow expresses the conservation of the Charney
vorticity in the horizontal, nondivergent flow. The Charney vorticity is:

2 a i ov
Q=7+VIU+ 5 (2550 (2.7)
The basic equation is therefore:
°0Q . 0Q 9Q
- =0 2.8
ot tu Bz tv By (2:8)

This general equation could be used to formulate a mixed barotropic-baroclinic problem.
However, we shall consider the classical, purely baroclinic stability problem assuming that the
zonal current U = U(p) varies with pressure only. Similarly, we shall assume that the perturba-
tion streamfunction ¢ = ¢(z, p,t) is given by

% = ¥(p) exp(ik(z — ct)) (2.9)

where ¥(p) is the complex amplitude, k the wave number, ¢ the complex wavespeed, z the
distance in the zonal direction and t the time. We shall next formulate the general eigen-value
problem. Using the assumptions made above and following the usual rules for creating a linear
problem we find that the linear perturbation equation is:

)—102‘1']+[ﬁ—i f" 2dU)\IJ (2.10)

d Py dv
© - L (L2, 0 e

dp oop}” dp

The problem is to determine the eigen-value (c) from the frequency equation (2.10). To this
end we express U(p) and 9 (p) in series of the structure functions, where the vertical mean has
been removed from U(p). We may thus write:

Up) = Z U(r)Gr(p)

r=1

N
T(p) = D ¥(s)Gal(p) (2.11)

r=1
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The series (2.11) are inserted in the frequency equation (2.10). To find the equation for a
single amplitude ¥(n) we multiply the resulting equation by Ga(p) and integrate from p to 1
with respect to p. Making use of the orthogonality properties we arrive at the equation:

Cr 5 +c]¥(n)+

_[1 + 2 (n)

N N 2 2 _3\(r)?
+ Z E 1+ '71 :i\gsz)/\(n)z( ) )U(r)I(r, 8, n)\Il(S) =0 (212)

s=1r=1

In (2.12) we have introduced the following notations:

cp=L.p= 2o (2.13)

The set of equations (2.12) for n = 1,2,..., N will be recognized as a standard eigen-value
problem expressed in a matrix since (2.12) gives the rules for the determination of all elements
in the matrix. The notation I(r,s,n) stands for the interaction integral:

Itrs,m) = [ 1 Cr(p)Cs(p)Gn (p)dp (2.14)

It is seen that I is independent of the order of r, s and n. I is a measure of the contribution to
component n from all pairs (r,s) of the spectrum. We recall that the windprofile U(p) is given
in the stability problem. The amplitudes U(n) are obtained in the usual way, i.e.

1
U(n) = /p UpGa)dp (2.15)

For a given profile U(p) and a given wavelength we may summarize the computational scheme
as follows:

1. U(n) is calculated for all n from (2.15)
2. All interaction integrals are calculated.

3. A standard eigen-value computer routine is used to determine the eigen values of the system
(2.12).

4. The eigen-value with the largest positive imaginary value indicates the maximum instability
for the given parameters.

3. Results
The following rather flexible specification of U(p) has been used:

_ (p—pr)*(1—p)°
Ule) = Unm (pm — pT)*(1 — pm)?

(3.1)
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It is similar to the formula used by Wiin-Nielsen (1967) and can be used to investigate the
properties of the windprofile on the stability of the zonal flow. (3.1) has a maximum value of
Um at p = py if @ and b are related by

b= ﬂa (3.2)
Pm —pr

Example 1: In this example we have selected a = 2 and pm = 1/4 giving b = 7.5. Since
U(1) =0, Un, is also a measure of the averaged windshear below the maximum. The eigen-value
problem has been solved with Um varying from 0 to 100 m per s for wavelengths up to 28000
km, corresponding to wave number 1 in mid-latitudes. The results for 0 < L < 14000 km are
shown in Figure 1 where isolines have been drawn fer the e-folding time, measured in days. In
each case we have selected only the most unstable mode. It is observed that a short wave cut-off
exists. It is located between 1500 and 2000 km. The maximum instability is found around
3500 km, and Te reaches a minimum of about 1/2 day at the excessive value of Uy = 100 m
per s. The diagram continues in Figure 2 for 14000 < L < 28000 km. Although curves for the
e-folding times are drawn up to 10 days only, we emphasize that an instability exists in all points
for Un > 5 m per s, but the e-folding times become very large for large L. For example for
L = 28000 km and Uy, = 5 we find T, = 45.5 days. For more realistic values of the maximum
wind the e-folding time is about 2 weeks.
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Fig. 1. The e-folding times in days as a function of the wavelength and the maximum windspeed for a zonal current
specified by eq. (3.1) fora =2, pm =1/4.
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Fig. 2. A continuation of Figure 1 for wavelengths larger than 14000 km.

Figure 3 shows three wind profiles using (3.1) having the same value of Uy, , but with maxima
at p;m = 0.15, 0.25 and 0.35. a = 2 for all cases, but b has in each case been determined from
(3.2). The e-folding times have been computed for a large number of profiles of the type shown
in Figure 3 with pyy varying from 0.1 to 0.4 for L = 3500 km. The results are shown in Figure
4 which indicates that the accuracy of the determination of the e-folding times is not very large
since we would undoubtedly expect a smoother curve. However, it is clear that the least unstable
windprofile should have its maximum between pym = 0.25 and py = 0.35 which is close to the
level where the observed jets are located.

An undesireable feature of the present formulation is that a ”1id” at p; > 0 has to be used in
all calculations. Earlier calculations by Kasahara and Tanaka (1989) used p, = 0.1 (100 hPa).
Since the e-folding times may vary with p, we have used two different maximum speeds (40 and

60 m per s for Unm) and L = 3500 km to calculate Te when pr is varying from 0.01 to 0.1. In
each case we had a = 2 and py, = 0.25. Figure 5 shows that the largest e-folding time is found
for pr = 0.03 (30 hPa) for both cases. We have also investigated the influence of the sharpness
of the jet on the stability. We used pm = 0.25, varied a and determined b from (3.2). Large
values of a mean a very sharp jet maximum, but also much smaller windspeeds away from the
maximum having in these experiments a constant value. Figure 6 shows that the larger values
of Te occur for small values of a, or, in other words, instability increases with the sharpness of
the jet.
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Fig. 3. Various zonal jet stream profiles with maxima at 0.15, 0.25 and 0.35, but with the same maximum speed,
a=2.
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Fig. 4. The e-folding time (in days) as a function of the position (pm) of the maximum wind for a single horizontal
wavelength of 3500 km.
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Fig. 5. The e-folding time (in days) as a function of the position of the top level {p.) for L = 3500 km and for the
two maximum windspeeds, Uy, = 40 m per 8 and Uy = 60 m per s.
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Fig. 6. The e-folding time (in days) as a function of the sharpness of the jet maximum as measured by the parameter
a.

Example 2: We shall compare the stability in the advective model with the present model.
The solution for the phase speed in the advective model is according to Wiin-Nielsen (1967):
¢ = Um — 1/2Cy £ (% c? —1y)'? (3.3)

where Uy, is the vertically averaged wind and Ij; is the integral:

1
I; = / Udp;Ur =U - Up, (3.4)
o
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The calculations of the e-folding time for the advective model is thus straightforward. Using
the same windprofiles as given in (3.1) we note that I; for this case is:

(2a)!(2d)! alb! UL

I; = [(2a +2b+1)! - ((a T 1)!)2]p?ﬁ‘(1 o) (3.5)

The e-folding time for the advective model is shown in Figure 7. A comparison between this
figure and Figure 1 shows that the advective model has no short wave cut-off. As a matter of
fact the e-folding time goes to zero when the wavelength goes to zero, the so-called ultraviolet
catastrophe. On the other hand, the advective model has a long wave cut-off which is due to
the beta effect, and, finally, the advective model is much more unstable than the more general
model used in example 1. There are differences of an order of magnitude in some cases.
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Fig. 7. The stability of the advective model shown in the same way as in Figure 1.

Example 3: While windprofile defined by (3.1) has westerlies at all levels, the real atmosphere
has easterlies on top of the westerlies. To design an example with the observed features we define

for pr < p < pm that

_ 1 _(p—pr)*(p—ps) 3pm — 2ps — pr _
Ulp) = Um (pm — p7)*(Pm ~ ps) ol (pm — pr)(pPm — ps) (pm = )] (3.6)

The profile given in (3.6) satisfies the conditions that its maximum (Uy) occurs at p = pp,
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that it has a zero at a level p; in the stratosphere, and that both the value and the derivative
at p = p, are zero. For the remaining part of the windprofile (pm < p < 1) we may use

_ ¢!
U(p) = Um 1

-p)? p—pm
( _pm)2(1+2 —) (3.7)

1

The profile described by the two expressions in (3.6) and (3.7) is shown in Figure 8. It has
been used to calculate the stability using the same procedure as in example 1. The results are
displayed in Figure 9. The main features of the curves in Figure 1 and Figure 2 can be found in
Figure 9. A short-wave cut-off is found again although at slightly smaller wavelengths than in
the previous case. For larger wavelengths we find instability in all points in which the calculation
has been made. A closer inspection of the curves shows, however, that the present case in general
results in a larger degree of instability in corresponding points for the longer waves. We may

thus conclude that the introduction of easterlies in the top part of the model has a destabilizing

effect.
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Fig. 8. The windprofile (U/Uy,) containing high level easterlies.

A number of additional calculations have been performed to investigate if the conclusions,
drawn in this section from the numerical experiments, are sensitive to small changes in the
parameters. This does not seem to be the case.
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Fig. 9. The stability diagram for the windprofiles containing easterly flow in the upper part of the atmosphere as
displayed in Figure 8.

4. Concluding remarks

The main purpose of the present investigation has been to explore the stability properties of jet
streams in the atmosphere. For this purpose a number of rather flexible mathematical expressions
have been designed. By changing the parameters it is possible to change the strength of the
flow, the position and the sharpness of its maximum, and the location of the upper lid. Other
examples, containing both westerlies and easterlies, have been used.

Eigenvalues are determined for all cases using the vertical structure functions designed as an
orthogonal, normalized set, determined for a distribution of the static stability parameter that is
inversely proportional to square of the pressure. The main results are that the advective model
is too simple to display the real stabilities of the zonal flow, that the instability increases with
the strength and the sharpness of the jet, while the positions of the jet and the upper boundary
have minor influences on the stability. A vertical wind profile with stratospheric easterlies result
in somewhat larger instabilities for the longer waves, but practically no change for the shortest
baroclinic waves.

The vertical structure functions applied in this study are probably good approximations al-
though they are derived for a special stratification of the atmosphere. Generalizations can be
made, but the resulting functions are far from efficient in describing the processes in the tropo-
sphere since the zeroes of the more general functions are located mainly in the upper part of the
atmosphere.
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