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RESUMEN

Se aplica el método adjunto para derivar férmulas integrales simples para el estudio de sensibilidad del Modelo
Termodindmico de Adem para océanos a variaciones pequefias tanto en el forzamiento de calor como en las condi-
ciones iniciales y de frontera. En cada férmula, la solucién del modelo adjunto es una fuente 1til de informacién
acerca de la contribucién de tales variaciones a las anomalias promedio de la temperatura de la superficie del mar
en una regién seleccionada. Gracias al conjunto de condiciones especiales en las fronteras “liquidas” de entrada
y salida, los modelos principal y adjunto son bien-puestos en el sentido de Hadamard (1923) no solamente para
cuencas ocednicas cerradas, sino también para abiertas.

Se construyen esquemas en diferencias finitas implicitos, absolutamente estables y balanceados con aproximacién
de segundo orden tanto en espacio como en tiempo para los modelos termodindmicos principal y adjunto para
océanos. Los esquemas estin basados en el método de separacién y son resueltos ficilmente por factorizacién.
Ambos operadores en diferencias (separados y no separados) de esos esquemas satisfacen la identidad de Lagrange
discreta en cada paso de tiempo. En el caso no-disipativo y no-forzado cuando no hay flujo a través de las fronteras
“liquidas®, cada uno de los esquemas tiene dos leyes de conservacién.

ABSTRACT

The adjoint method is applied to derive simple integral formulas for the sensitivity study of the Adem Ocean
Thermodynamic Model to small variations both in the heat forcing and in the initial and boundary conditions. In
each formula, the adjoint model solution is a useful source of information about the contribution of such variations
to average sea surface temperature anomaly in a certain region. Thanks to special conditions set at inflow and
outflow liquid boundaries, the main and adjoint thermodynamic models are well-posed in the sense of Hadamard
(1923) not only for closed, but also for open oceanic basins.

Balanced and absolutely stable implicit finite-difference schemes of the 2nd order approximation both in space
and in time are constructed for the main and adjoint ocean thermodynamic models. The schemes are based on the
splitting method and easily solved by the factorization. Both unsplit and split difference operators of these schemes
satisfy the discrete Lagrange identity at every time step. In the nondissipative and unforced case when there is no
flux across the liquid boundaries, the schemes have two conservation laws each.

1. Introduction

During the past two decades many applications of the adjoint equations have been developed in
the dynamic meteorology and oceanology. Marchuk (1974, 1975) suggested to use the adjoint
equation solutions for estimating the time-space average anomalies of hydro-meteorological fields
and for studying the linear response of the models to variations in the initial conditions and
forcing. For the three-dimensional global linear model of thermal interaction of the troposphere
with the oceans and continents, the adjoint solutions were constructed by Marchuk and Skiba
(1976) and Skiba (1978). Results obtained with a more refined version of this model were
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published later (Marchuk and Skiba 1990, 1992). For the average troposphere temperature
equation the adjoint solutions were calculated by Sadokov and Shteinbok (1977), Musaelyan et
al. (1983), Voronov et al. (1984) and others.

Rigorous mathematical definitions of the adjoint operator in nonlinear problems were given by
Vainberg (1979) and Cacuci (1981a,b). The method of the adjoint sensitivity study was devel-
oped, improved and generalized for nonlinear discrete systems by Penenko (1979) and Marchuk
and Penenko (1979), and for nonlinear differential systems by Cacuci (1981a,b), Marchuk et al.
(1993) and Marchuk (1995).

This methodology was applied for the nonlinear sensitivity analysis of the radiative-convective
model (Hall et al., 1982), of the OSU general circulation model (Hall 1986), and of the PSU-
NCAR mesoscale model (Errico and Vukicevic, 1992). It was used by Robertson (1991, 1992,
1993) in the diagnosis of regional anomalies, and by Zou et al. (1993) - in the blocking sensitivity
study. The adjoint equation solutions were also used to construct the explicit scheme whose
stability properties approximate those of the implicit Crank-Nicholson scheme (Marchuk et al.,
1985a), and to calculate the first two moments of random fields in the Kalman filtering (Marchuk
et al., 1985b).

Adjoint atmospheric and oceanic equations have also been applied for the variational data as-
similation (Penenko, 1981; Lewis and Derber, 1985; LeDimet and Talagrand, 1986; Courtier and
Talagrand 1987, 1990; Talagrand and Courtier, 1987; Thépaut and Courtier, 1991; Erendorfer,
1992; Navon et al., 1992; Rabier et al., 1992). Besides, Farrell (1990) and Barkmeijer (1992,
1993) applied adjoint solutions for estimating the optimal growth rates of the model initial
perturbations.

In this work, a balanced absolutely stable numerical algorithm is constructed for the adjoint
sensitivity study of the Adem ocean thermodynamic climate model (Adem, 1991). Physical
basis of the model was laid in Adem (1962, 1964a,b, 1970a,b, 1975) and Morales-Acoltzi and
Adem (1994), while numerical results were discussed in Adem (1963, 1975, 1979, 1982), Adem
and Donn (1981), Donn et al. (1985), and Adem et al. (1991, 1994a,b).

Mathematical formulation of the model for closed and open oceanic basins as well as balanced
absolutely stable finite-difference schemes based on the splitting method are given by Skiba and
Adem (1995).

Two types of the model oceanic basin, both closed and open are considered in the present
work, too. Remind that the closed basin boundary everywhere coincides with a coast line, while
some part of the open basin boundary is liquid. The model dynamic operator is positive for both
the basins. For the open basin case it was achieved by setting different boundary conditions at
the “inflow” and “outflow” liquid boundaries of the basin. The original 2-D dynamic operator of
the model is split into the sum of two 1-D operators each of which is also positive. The positive
definiteness of these operators offers two main advantages:

1) the splitting method (Marchuk, 1982; Skiba and Adem, 1995) can be used for the con-
struction of economical balanced and absolutely stable finite-difference schemes;

2) The oceanic model is well posed in the sense of Hadamard (1923) for closed and open
basins: either model solution is unique and stable to initial perturbations.

The last property means that exponential growth of initial perturbations is impossible, and the
adjoint method can properly be applied to the sensitivity study of the model to small forcing
variations. On the contrary, whenever the real parts of the model operator eigenvalues are
opposite in sign, some initial perturbations grow exponentially and rapidly leave the domain
of small perturbations where the adjoint method is the only applicable. It presents additional
problems, and therefore the adjoint sensitivity study of any ill posed problem merits special
investigation.
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The model is briefly described in Section 2. A concept of the adjoint operator as well as some
examples are given in Section 3. The adjoint thermodynamic models for closed and open oceanic
basins are set in Section 4. Application of the adjoint model solutions in the model sensitivity
study is explained in Section 5, whereas the role of the boundary conditions is discussed in Section
6. The 2nd order finite - difference approximations (in space and time) of the thermodynamic
model and its adjoint are given in Sections 7 and 8. Although there is generally a difference

between the discretized adjoint operator (4*)* and the adjoint (Ah)* of the discretized operator

AY | the boundary conditions are approximated in Section 8 in such a way that (A*)h = (Ah)*
for any type of oceanic basin, both closed and open. This equality is also valid for each of
the split 1-D main and adjoint operators used in the splitting algorithm (Section 9). Thus the
discrete Lagrange identity is satisfied not only for unsplit, but also for split operators at each
fractional time step. Balanced and absolutely stable finite-difference schemes for the main and
adjoint ocean thermodynamic models are constructed in Section 10. In the case when both
dissipation and forcing are absent, either scheme has two conservation laws. Conclusions are
drawn in Section 11.

2. Description of the model in closed and open basins

The Adem Thermodynamic Climate Model written for climatic temperature anomaly T'(r, t) in
the ocean upper layer is described by the two-dimensional heat balance equation

%+U-VT—pV2T+7T:f (1)

in an oceanic basin {2 and time interval (0,7 ). The solution T'(r, t) is the sea surface temperature
(SST) anomaly defined as the difference between an actual SST, T (r,t), and the climatic SST,
Tsc(r,t); U(r,t) is the known vector of the ocean currents; V is the horizontal gradient; v?is
the spherical part of the Laplacian; r = (), ¢) is the ocean basin point identified by its longitude

A and colatitude ¢ in the geographic coordinate system; and p is a positive turbulent diffusion
coefficient.

The Adem Climate Model forcing F(T%) taking into account such processes as evaporation, ra-
diation and vertical turbulent transport, depends on the sea surface temperature Ts(r,t) (Adem,
1967, 1971). It is assumed here that the SST anomaly T(r,t) is small enough, so that F(T) can
be expanded into the power series of T'(r,t) in a vicinity of the climatic SST, Tsc(r,t). Then
the term 7T in the equation (1) with a positive function v(r,t) represents a linear part of this
series (Adem, 1971), while the Eq.(1) forcing

f(x,t) = F(Ts) — F(Tsc) + 4T 2)

includes its higher order terms. Note that though the term AT makes the sea surface temperature
s to return to the climatic value T, the heat forcing f(r,t) can generate the SST anomalies.

Equation (1) can be written as

oT
E‘FAT:f (3)

where

AT =U-VT — uViT 4+ 4T (4)
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We take
T(r,0) = T°(r) in Q (5)
as the initial condition, and
oT

as the condition at the boundary S of a closed 2-D oceanic basin (1. Here n is the unit outward

normal vector to S, 33: is the normal derivative, and S is formed only from segments of the lines
A=Const or 9=Const. Besides,

Upr=U-n=0 at S (7)

where Uy is the normal component of U at S. Thus there is no anomalous heat flux across
the boundary S in the case of the closed basin 2. It is also believed that the oceanic flow is
incompressible:

div U =0 (8)

If v = 0 then the operator (4) is positive semidefinite (Skiba and Adem, 1995), and hence, A
is positive definite for v > 0:

/TATdr>0, )
Q

Thus either solution of (2)-(8) is unique and stable to initial perturbations.

In the case of open oceanic basin 1, the conditions (6) and (7) are again valid at the part of
S being a coast line. However, unlike the closed basin, a nonzero anomalous heat flux across a
liquid part of the boundary S is now a possibility. Therefore we put (Skiba, 1993; Skiba and
Adem, 1995):

p% _U.T=0 atS” (10)
u% =0 atsSt (11)

Here S~ is the inflow part of the boundary S where Uy < 0, and by (10), the total (advective
plus diffusive) anomalous heat flux is zero at S~ . The outflow part of the boundary S where
Un > 0 is denoted by ST (Fig. 1), and (11) means that the turbulent anomalous heat flux at
ST is neglected as compared to the advective anomalous heat outflux by the current U.

Where S coincides with the coast line the conditions (10) and (11) automatically satisfy (6)

due to (7). Thus when (7) is imposed at the solid part of S, conditions (10) and (11) can be
used at the entire boundary S without separating S into solid and liquid segments.

Egs. (10) and (11) are well known boundary conditions of the 3d and 2nd kind, respectively
(Ladyzhenskaya, 1973). In the limiting no-diffusive case (1 = 0), (10) is reduced to the reasonable
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condition T' = 0 at the inflow part of the boundary, while the condition (11) vanishes as it should,
since for pure advection, no condition is required at the outflow boundary, where the solution is
defined by the method of characteristics (Skiba and Adem, 1995).
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Fig. 1. The open oceanic domain D. The boundary points A and B belong to the boundary parts S~ and S*
respectively; Uy, is a projection of the current velocity vector U on the outward unit normal to the boundary S.

By analogy with Skiba and Adem (1995), it can easily be shown that the problem (1), (5),
(8)-(11) is well posed in the sense of Hadamard (1923). Indeed, the uniqueness and stability of
each model solution follows from the fact that the operator A of the open oceanic basin model
is positive, too.

3. Concept of the adjoint operator

Let us consider a Hilbert space H of such real functions ¢(r) defined in a domain 2 that the
norm

Lol =1 [ lo()Far)/? (12)

18 finite. Then the inner product of any two functions ¢(r) and ¥ (r) of H can be defined as
<pb>= [ o)) (13)

Obviously, || ¢ ||=< P, > /2. Let A be a linear operator with a domain D(A), i.e., the
result Ap(r) is determined in H for any function ¢(r) of D(A). Then the adjoint operator At
can be defined by the Lagrange identity (Kato, 1966)

< Ap,g >=<p,A%g > (14)
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which holds for any ¢(r) of D(A) and any function g(r) of a domain D(A*) of the adjoint
operator A* . We now consider 4 simple examples of the adjoint operator in various Hilbert
spaces H. Operators in the examples 1, 3 and 4 are parts of the thermodynamic model operator
(4) and therefore elucidate formulation of the continuous adjoint model. The example 2 is helpful
in setting up a finite-difference adjoint model (see Sections 7-10).

Ezample 1. A self-adjoint operator

Let H be a space of square integrable functions ¢(r) defined in {2 with inner product (13),
and Ap(r) = vyp(r) where v = Const. Obviously, the domain D(A) coincides with H, and A is
bounded: || A ||= v (Kato, 1966). Then, due to (14),

< 4p,9>= [ oo = [ o)g@)ldr =< p, 4" > (15)

Thus A is self-adjoint: A*g(r) = vg(r), and D(A*) = D(A).

Ezample 2. The adjoint to a matriz

Let H be a real Euclidean n — D vector space, and A be a n X n matrix. Define by < @, § >=
§'T<5 the inner product of vectors ¢ and g in H where §T is the transpose. Then

= T = T — T T & - 4T
<A F>=§ Ap=(7 A)g=(A"7) g=<gF,A §> (16)
and, due to (14), A* = AT. Thus the adjoint of A is merely the transpose of A. In particular,

A* = A if A is symmetric, and A* = —A if A is skew-symmetric.

Ezample 8. A skew-symmetric advection operator

Let H be a space of square integrable periodic real functions ¢(z) in interval [a,b] with the
inner product

b
<eb>= [ o)) (17)
and the norm

e ll=< p,p >/ (18)

Consider the simplest advection operator

Ap(@) = 2 p(z) (19)

in the domain D(A) of all continuously differentiable periodic functions: ¢(b) = p(a). Since
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D(A) is a part of H, A is unbounded, and by (17),

b
< 4p,9>= [ E)g(@)ds = p(0)a0) - pla)g(e)

b
+ [ @) -3 @) (20)

We now are in a good position to explain the role of boundary conditions in the definition
of the adjoint operator. Indeed, if D(A*) = D(A), i.e.,, D(A*) is also the set of continuously
differentiable periodic functions in [a, b] then

b
dg(z
<4p,9>= [ o)~ 244, (21)
a z
and by (14), A is skew symmetric (A* = —A):

99

A'g=—
g ox

(22)

The formula (22) is also valid if D(A*) is a set of all continuously differentiable functions g(z)
in [a,b] such that g(b) = 0 and g(a) = 0. However the domain D(A*) of the adjoint A* is now
more narrow. Thus although two adjoint operators have the same structure (22), they are not
identical because of different domains D(A").

Lastly, suppose that D(A) is a set of such continuously differentiable functions ¢(z) that
p(a) =¢, p(b) = d, c #d. Then A* = —A only if D(A*) consists of continuously differentiable
functions g(z) such that g(a) = d and g(b) = c. In this case, ¢ and g have different boundary
conditions, and D(A*) and D(A) differ from each other. Thus the adjoint A* is defined not only
by its formal structure (22), but also by its domain D(A*) and boundary conditions. This fact
is taken into account in the construction of the adjoint model operator in open oceanic basin
(see boundary conditions (10), (11) and (32), (33)).

Ezample 4. A symmetric diffusion operator

Let H be the same space as in example 3, and let A has the diffusion operator form (see (4)):

2

Ap(z) = = (z) (23)

besides, D(A) contains such two times continuously differentiable in [a, b] functions that
dp
pa)=0 and Ez(b) =0 (24)

Then

b 2
< Ap,g >= ~g()32(0) ~ e 320 + [ o2 S1de (25)

for any two times continuously differentiable function g(z).
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Hence
A'g=— (26)
if
g(a) =0 and —()=0 (27)
Thus D(A*) = D(A), and A is unbounded and symmetric.

4. The adjoint thermodynamic model

We now formulate the adjoint thermodynamic model in oceanic basins, both closed and open.

a) A closed basin ). Then operator A is defined by the formulas (4) and (6). Using (7) and the
Lagrange identity (14) it is easy to show that

A'g=-V.(Ug) — uVig+~g (28)

is the adjoint operator under the boundary condition

99 _

pa 0 at S (29)

Due to (8), A* can be written as
A'g=-U-Vg—puVig+ng (30)
Since D(A*) = D(A), we can put ¢ = g in (14), and obtain

<g,A’g>=< Ag,g> >0 (31)

Thus the adjoint A* is also positive definite.

b) An open basin ). Application of the identity (14) to the model operator (4), (10) and (11),
results in the fact that the adjoint operator A* regains the form (28) or (30) if any function g(r)
of D(A") satisfies the following boundary conditions (see Skiba, 1993):

99 _

poo = 0 at S” (32)

0
p—a-—f; +Ung=0 at st (33)
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Since D(A*) does not coincide with D(A), the identity (31) can not be used in this case to
prove the positive definiteness of the adjoint operator A*. However, calculating directly the
scalar product (13) of g and A*g, we obtain

<g,A'g >=u/Q|Vg ? dr+7/092dr

1 2 2
+§{/S+Ungds /S_Ung ds) (34)

The boundary conditions (32) and (33) have been used here. Since Up, > 0 at ST, and U, <0
at S7, the adjoint A* is positive.

As the adjoint thermodynamic model in the domain £ and time interval (0, ) we consider
the equation

ag %
=g = 3
I +49g=R (35)

The adjoint forcing R will be defined later. As the boundary conditions for the adjoint model
we take (29) if (1 is a closed oceanic basin, and (32), (33) if the basin 0 is open. Since A* > 0,
we have

%)

— 0 36

S llgll> (36)
if the adjoint forcing R is zero. Hence the adjoint thermodynamic model is well-posed in the

sense of Hadamard only if solved backward in time: from ¢t = % to t = 0. Therefore the initial
condition for Eq. (35) is put at the moment t = ¢:

g(r,t)=Z(r) at t=t (37)

Let us denote ' =% —t. Then

99 _ _99
ot ot (38)
and (35) can be written as
dg x
EYY +Ag=R (39)

It is easily seen that the formal structures (30) and (4) of the adjoint and the main operators
are differed only by the sign of the current vector U. Since these vectors are directly opposed
in the main and adjoint problems, the inflow and outflow boundaries S~ and ST of the main
model (4), (10), (11) become, respectively, the outflow and inflow boundaries for the adjoint

model (39). It explains the replacement of the boundary conditions (10), (11) by (32), (33),
respectively.

Note that the adjoint model is a convenient mathematical tool used to solve some physical
problems. Besides, the choice of the forcing R(r,t) and initial condition Z (r) for the adjoint
model is determined by the purpose of a concrete investigation. One of such problems, the
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model sensitivity study, will be considered in the next section. Physical and mathematical
interpretation of the adjoint solution will be given too.

5. Adjoint sensitivity study of the open basin model

Let us consider the open basin model (3), (4), (10), (11) with initial condition (5). Suppose
that we have to study the response of the model to variations in the initial anomalies T°(r)
and forcing anomalies f(r,t) within a time interval (0,Z ). We now consider and compare two
different approaches to the problem.

1) The direct method

Assume that there is a set of various initial temperature anomalies T (r) and forcing anomalies
fe(r,t)(k = 1,2,...,N). The direct method of the model sensitivity study consists in solving
the model (3), (10), (11) within (0, ) for each k, and finding all N solutions T}(r,t). This
way gives comprehensive information about each solution T} in the domain © and time interval
(0, ). However, if the interval (0, ) and the number N of the numerical experiments are too
large, this method is rather costly because of considerable computing time consumption. It is
especially costly for complicated multi - dimensional models. In such cases the adjoint method
described below can be used as alternative and more economical.

2) The adjoint method

We now apply the standard combination of the main and adjoint equations (Marchuk, 1974)
to the Adem Thermodynamic Model. The inner product (13) of Eq. (3) with the solution g of
Eq. (35) yields

aT
<§,g>+<AT,g>:< f,g >, (40)

while the inner product of (35) with the solution T of Eq. (3) gives

a
—<T,a—‘ct’>+<T,A*g>=<T,R> (41)
Subtracting (41) from (40) and using the Lagrange identity (14) we obtain

o)
E<T,g>:<f,g>—<T,R> (42)

Finally, the integration of (42) over time from t = 0 to t = %, and taking into
account (37) lead to

<T(r,t),Z(x) > — < T°(r),g(r,0) >= /:[< [,9>—<T,R>]dt (43)
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Let us define the value

t

Jg(T) = / <T,R>dt= /o ' /Q R(r,)T(r, t)drdt (44)

o

as a sensitivity characteristic of the linear response of the model (3). Obviously (44), can be
used in the direct method of the model sensitivity study. Note that J r(T) is completely defined
by the function R(r,t) which, in such event, is taken as the adjoint model forcing. By setting
Z(r) = 0in (37) we eliminate the first term in (43), and therefore (43) and (44) give

TR(T) = /Q g(r,0)T°(r)dr + /o t /ﬂ g(r, ) f(r, )drdt (45)

which is fundamental in the adjoint sensitivity study. Any of the dual formulas (44) and (45) can
be used for studying the model response. However, the main advantage of (45) lies in the fact
that it directly relates the model sensitivity characteristic Jg(T') with initial condition T°(r)
and forcing f(r,t) of the model, besides, the adjoint solution g(r,t) appears here as a weight
function (multiplier) for T°(r) and f(r,t). Unlike (44) that involves the thermodynamic model
solution, the formula (45) uses a solution of the adjoint thermodynamic model. Since (45) can
be written in the form

Jr(T) =< ¢(r,0),T°(r) > +/: < g(r,t), f(r,t) > dt (46)

(see (13)), the model response Jg(T) is insensitive to any initial temperature anomaly T°(r)
whose spatial structure is orthogonal to g(r,0) in the sense of the inner product (13). It is the
case, for example, if the regions of nonzero values g(r,0) and T°(r) in € have empty intersection.
In a similar manner, the sensitivity of Jg(T') to the forcing anomaly f (r,t) in any subinterval
(t1,t2) of (0,T) depends on the projection of f(r,t) onto g(r,t) within this subinterval. In
particular, the response (46) can be significant if the positions of local maxima of g(r,0) and
g(r,t) coincide with the positions of local maxima of 7°(r) and f(r,t), respectively. Since a
fixed characteristic (44) cannot be sensitive to any 7°(r) and f(r,t), a few such characteristics
(for various R(r,t)) are generally chosen in the model adjoint sensitivity study.

Thus the adjoint solution g(r,t) can be interpreted as an influence function which may tell
preliminary information about the spatial and temporal structure of the model response to the
forcing and initial temperature anomalies (Wigner, 1945; Marchuk and Orlov, 1961). Besides,
where the influence function g(r,t) has local maxima, the anomalies 7°(r) and f(r,t) are espe-
cially important, since they may contribute significantly to the characteristic (45).

Assume that we want to analyze the linear response of the model in M subdomains ; C
2 (i=1,2, ... ,M) within a time interval ( £ ~ At,f ) of length At. To this end, we introduce
M functions

Ri(r,t) = p;(r)q(t) (47)

with such nonnegative functions p;(r) and ¢(t) that

[, oy =3 =
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for each 7 (¢ =1,2,...,M), and

/_ ! g(t)dt = 1 (49)

t—At

In particular, p;(r) and ¢(t) can be taken as in Marchuk and Skiba (1976):

1 .
if re €1,
(r) = { mes {i’ LK 50
Pi(r) {0, otherwise (50)
and
1 : ry
fte (t — At,t)
) = 7y 1 ) 51
a(t) {0, otherwise ( )

where mes ); is the area of {};, and ¢ denotes the membership to a set. The values t and At
as well as the form and location of {2; are determined by the purpose of the study. Under the
assumptions (47) - (51), either sensitivity characteristic

_ _ 1 t

(i=1,2,...,M) is the SST anomaly averaged over domain (2; and time interval (t— At,1), and
can be calculated as soon as the solution T'(r,t) of the model (3) is found. At the same time,
(52) can also be computed using the dual formula (45) of the adjoint sensitivity study:

t
Jt(T) =< g'i(rao))To(r) > +/{; < gi(r)t)’ f(r’t) > dt (53)

To this end, for each ¢ (i = 1,2,...,M), the adjoint solution g;(r,t) should be found with
the zero initial condition (37) and forcing (47), and then the formula (53) is used repeatedly to
calculate the characteristic J;(T") for various pairs of small initial temperature anomaly Ty (r)
and small forcing anomaly fi(r,t) (k=1,2,...,N).

The main advantage of the direct method of the model sensitivity study is the possibility
to use, along with the linear characteristics (52), any nonlinear characteristics. However if the
number N of the pairs {Tf(r), fx(r,t)} is sufficiently large then the direct method becomes
rather costly (time-consuming), since the thermodynamic model has to be solved N times (for
each k). In this connection, whenever the number M of the sensitivity characteristics (52) is
considerably less than N, the adjoint model sensitivity study is more economical, since it requires
to solve only M adjoint problems before using the simple formulas (53).

Since the operator A* of the adjoint problem (35), (37) is positive definite for both types of
the oceanic basins (see (31) and (34)), the adjoint solution is estimated in the norm (12) by

t
o011 < [ 1RG0 | (54)



NUMERICAL ALGORITHM FOR THE ADJOINT SENSITIVITY STUDY 159

If the adjoint forcing is defined by (47), (50)-(51) then

1

ol t) || <
o0 1€ ot

(55)
and, due to (53),

1

9T | € e (1T 1+ [ 11 76e,0) 1 ) (56)

Thus the model response (53) depends on the size of €1;: the less is mes 1;, the stronger can
be the model response.

Once again, we stress that the adjoint thermodynamic model is not well posed in the sense of
Hadamard if A* is not positive semidefinite. In this case, the eigenfunctions corresponding to
the eigenvalues with negative real part form the unstable manifold. Indeed, a nonzero projection
of the adjoint forcing (47) on such a manifold will cause the exponential growth of the adjoint
solution g;(r,t') with ¢/ =7 —¢. Therefore, due to (53), the adjoint sensitivity study of the model
to small anomalies T°(r) and f(r,t) can become problematical. This case calls for further
investigation which should include such steps as

a) separate sensitivity study of the model with respect to the anomalies T°(r) and f(r,t) of
the stable and unstable invariant manifolds;

b) search of appropriate sensitivity characteristics and a suitable time interval (0,1);
c) special formulation of the adjoint problems separately for stable and unstable manifold.

6. Role of the boundary conditions
We now analyze the role of the boundary conditions in the linear response of the Adem Thermo-
dynamic Model, and generalize the sensitivity formula (45) to the case when there is also ano-

malous heat flux at the inflow boundary S~ of the open oceanic basin {1. To this end, assume
that the boundary condition (10) has the form

ua—T-f—UnT:Q at S”

In (57)

while the condition (11) is unchangeable. Here Q(r,t) is a known anomalous heat flux across
S™ . Then the sensitivity formula (45) is generalized to

JR(T) = /Q o(r, 0)T° (r)dr + /0 t /9 o(r,O)f (x,2) drdt

+ /o ‘ /S _o(r,t) Q(r, t)dSdt (58)

which takes into account not only the initial temperature anomaly T°(r) and heat forcing anom-
aly f(r,t), but also the anomalous heat flux Q(r,t) across the boundary S~ .
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7. Finite-difference approximation of the model operator

The operators A and A" of the main and adjoint thermodynamic models can be written as

A=A1+4, A* = A} + A; (59)
where
AT = 2as1n19[ (uT) +u?91): ;ﬁg_{_% (60)
AT = 2as1nz9[ (vT sin¥) +vsmt9(;£]
~;ﬁfi~r—l—5%(sinﬂ£) + 3T (61)
Aig= g2 () 0l - 00 T (62)
and
Azg = _2asm19[ (vgsin¥) + vsin 19—]
—2 sl;nﬁaa_ﬂ(sm 192—;(;) + %g (63)

The operators (60) - (63) are positive definite if at least one of the following three conditions
is satisfied (Skiba, 1993; Skiba and Adem, 1995): pu > 0, v > 0 or Up # 0 at the boundary of
open basin. If 4 = 0,7 = 0 and Uy, = 0 then either operator (60)-(63) is skew symmetric.

s, .
Tl,j—l
ij =
u, . u. . A
—o NES) . Atl, ] ,
i-1,7 Ti; Ti1,5
Vi,j+1a
Ti,j+1
s |

Fig. 2. Location of the grid functions near the node (;, 9;).
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We will use the same shifted regular grids as in Skiba and Adem (1995) with constant mesh
sizes AX and A¢ along the axes A and 9 respectively (Fig. 2). Finite-difference approximations
1

A" and Ag' of the 1 — D operators A; and Ay are obtained in the same way as in Skiba and
Adem (1995). Therefore only the final formulas will be given here:

h 1
{A1T}; = m(ui+l,fTi+l,j = U;Tima,4)

Iz g
ANty otd ~ 2~ Ta) ¥ 5Ty (64
and
hey _ Vig+l sind4:T5 544 — V5 sin VT 51
4Ty = 2aAdsin ¥,
_psin 94 (T j1 = Tig) —sind—(Tyy ~ Tyj1)} | v, (65)
a?A¥2sind; PR

where u;;, v;; and T;; are the velocity U components and the temperature anomaly in the grid
points, respectively; a is the Earth radius; 9; =JAY, 94 = (j+1/2)Ad ,and 9_ = (5—1/2)A9.

The adjoint operators A} are approximated by the matrices (A} )h defined as

h 1

{(A;) g}ij = *m{“iﬂ,jgiﬂ,j - “ijgi—l,j}

K P YU e S
—m{gzﬂ,g 29;5 +gi—1,5} + 5 9ij (66)

and

{(A;)hg}ij _ _Vigj+18indigi 4y Y sind_g; ;1

2aA¥sin 19]'
_ p{sind4(gi i1 = gi5) — sin9—(g45 — ¢ j-1)} ey (67)
aZA9%sin v, 294

Obviously there is generally a difference between the discretized adjoint operator (A;] )h and the

adjoint (A?)* of the discretized operator A?’ . However the boundary conditions approximation
given in Section 8 leads to
Proposition 1. The equality

(ah)t = (aby’

is valid for any oceanic basin, both closed and open.

(68)
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The equality (68) means that the operators of the main and adjoint discrete problems satisfy
the discrete Lagrange identity (14) (see (72) below).

8. Approximation of boundary conditions

We now approximate the boundary conditions (10), (11) and (32), (33). Assume that the oceanic
boundary S consists only of such segments that are parallel either to the lines A = Const or to
the lines ¥ = Const (Fig. 3). Therefore in each boundary node, the normal component Uy, of
the velocity vector U coincides either with + u;; or with £v;; , while the normal vector n to S
is always directed along one of the coordinates A or 9. As a result we do not face any difficulties
with setting boundary conditions for the 1-D split operators (60)-(63).

[
S |
. SN A P A
| [
I I
1 I
u T u T u T
X 4 X ° X °
| I
| I
S | |
r————lY-———-{————lv———— - — —m-
[ !
[ i
u T iu T lu T
X ° X o 3 o
[ I
[ [
' | \ ' v
|| S | | S— | ]

Fig.3. Location of the functions in the grid domain.

Since finite-difference approximation of the boundary conditions for the main split problems is
described in Skiba and Adem (1995), we demonstrate approximation of the boundary condition
only at a single boundary node for the main and adjoint split operators (64) and (66).

Let a line #; = Const runs across the oceanic domain, and let L = (A — AX/2,9;) be the left
boundary point on this line. We assume that L belongs to S~ (Fig.4). Then ur ; > 0, and the

u(L)
—o0 X ° 9. = Const

L-1,7 T15

Fig.4. Location of the grid nodes immediately adjacent to the boundary point L on the line ¢; = Conast.
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normal component Un(L) at L is negative and coincides with —ur, ;. We denote as Ty; the SST
anomaly in the first internal node (Ap, 19]-) adjacent to L. At the point L, the normal vector n
to S is directed from (Ar,¥;) to the external point (Ar_;,9;) of the grid ocean domain, and

%%(L) is approximated by (T_; ; — Tf, ;)/(aAXsind;). Then the boundary condition (10) is
approximated as

o 1
aAXsind; (Tp-1,5 = Try) + EULJ'(TL—I,J' +Tg;) =0 (69)
J

while the adjoint problem boundary condition (32) at L is approximated as

9r-1; — 9 7
A =0 o g (70)

The boundary conditions at any node of ST as well as the boundary conditions for the split

operators (65) and (67) are obtained in perfect analogy to this one (see also Skiba and Adem,
1995).

Let us introduce the inner product in the finite - dimensional vector space of the grid functions
as

<T,§>p=a*AXAY D Tiig;isind; (71)
)
where the summation is taken over all interval nodes of the grid oceanic domain 2. Then it is

easy to check using the boundary conditions of the type of (69) and (70) that the finite-difference
operators (64) and (66) as well as (65) and (67) satisfy the discrete Lagrange identity:

< AMT,§ >p=<T,(4})"5 > (72)
(# = 1,2), and hence, Proposition 1 (see (68)) is valid. Moreover, either discrete operator Af and

(A,f‘)* is positive definite in the presence of dissipation (4 > 0 or 4 > 0), or/and when Uy, # 0
at the boundary S (see (34)):

< AM T >,> 0, < g, (AMY*g>>0 (73)
If both 4 = 0,7 =0 and Up =0 at S then the operators (64)-(67) are skew-symmetric:
<AM T >p=0,  <§(4%)'g>=0 (74)

Thus discrete operators (64)-(67) conserve the main properties of the corresponding differential
operators (60) - (63).
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9. Splitting-up method

The equations (3) and (35) discretized in space can be written as

O b+ AT = (75)

and

~ST () + (4h) g =B (76)

where A:‘ and (AS‘)* are defined by (64) - (67), and the column vectors T (t), f(t), §(t) and E(t)
have as their components the values T;;(t), f;;(t), 9;;(t) and R;;(t) of the corresponding functions
in the grid nodes (Fig. 3).

In the next section we will discuss approximation of the model boundary conditions and show

that all the 1-D matrices Ah and (Ah) are positive definite (¢ = 1,2). This property is of great
importance at the constructlon of economical implicit absolutely stable difference schemes based
on the splitting method.

Since the operators A; and Aj are time-dependent and do not commute: AjA; # A3A4;, the
symmetric version of the splitting method (Marchuk, 1982) is used here to obtain a scheme of
the second order approximation in time within each small time interval (t — 7,t + ) (choice of
7 is discussed in Skiba and Adem (1995)). The symmetric algorithm for the main model (75)
consists of the three successive steps:

1) The equation

66::1 +A{Ty =0 (77)

is solved in the interval (¢ — 7,t) with the initial condition T (t — r) = T'(t — r) where T(t — r)
is the solution of Eq. (75) obtained in the previous interval (¢t — 3r,t — 7).

2) The equation

oT.
St AT =f (78)

is solved in the interval (t — 7,¢ + r) with initial condition T3(t — 7) = T} (t).

3) The equation

661;3 +AMY =0 (79)

is solved in (¢,t+7) with initial condition T3(t) = T3(t+7). Then T3(t+r) approximates solution

T(t + 7) of the unsplit equation (75), and is taken as the initial condition to solve (75) in the
next interval (¢t + r,t + 37).
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The splitting algorithm used to solve the adjoint model (76) in (t — r,t+ r) has a similar form:

1) The equation

o7 hyt
—7%3 +(Af)'@ =0 (80)
is backward solved within (¢,t + r) with the initial condition g3(t +7) = hg‘(t + 7) where §(t + 1)
is the solution of the adjoint equation (76) at the moment ¢ + 7 obtained in the previous interval
(t+7,t+37).

2) The equation

o lil . _,
—SE (Al g = R (81)

is backward solved in (t — 7,¢ + r) with the initial condition g (t + ) = §3(t).

3) The equation
34 Ay =
~5p A @ =o (82)
is backward solved within (¢ — 7,¢) with the initial condition § () = ga(t — 7). Then g (t — 1)
approximates the adjoint solution §(t — r) of the unsplit problem (76).

10. The main and adjoint numerical schemes

Let us divide the whole time interval (0,%) into a set of equal subintervals (tn,tn+1) where tp4y =
th+7,80=0,ty4; =% n=0,1,2,...,N, and 7 is small. Applying the symmetric splitting
algorithm (77) - (79) and approximating the 1-D split problems in time by the Crank-Nicholson

scheme, we obtain the following implicit numerical scheme for the Adem Ocean Thermodynamic
Model:

Tln— 3] - Tln— 1] = — 2 A} (Tn - %] +Tln—1))

Tln+ 31 = Tin = 31 = ~rab(Tln + 1+ T — 1) 201

Tin+1] - T+ 1] = 5 AN Fln+ 1]+ Tln+ 1)) (83)

where T[n — 1], T[n + 1] and fln] are the column vectors T(tn_1), T(tns1) and %—[f(tn+1) +

f(tn—1)] respectively, whereas Tln — %] and T[n + %] having the same dimension as T'[n — 1] are
the auxiliary vectors of the splitting-up algorithm.
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In the same time interval (t,_j,ts+1), the algorithm (80) - (82) leads to the adjoint ther-
modynamic model scheme

din+ 3] - gln+1] = —2(4})' @ + 31+ [n+1)
din— 3]~ gin + 5] = —r(48)" Gln - 3]+ gln + 31) + 20 Eln]

7ln—1 - gln — 2] = ~2(4})" @l — 1) + 71 - 3) (54

Assume now that f [n] and R[n] are identically zero. If we take the inner product (71) of the

ﬁ{:—,t equation (83) with the vector %(T[n - %] + T[n — 1]), and use the inequality (73) then we
obtain

1 in = 51 lln < 1| Fin = 1] Il

where || T ||, =< T,T >;L/ 2 | Similar procedure as applied to the rest homogeneous equations

of the schemes (83) and (84) results in the inequalities

| Tln+ 1] lla < || Tln = 1] [Ix (85)

and

1 gln— 1]l < 11§ [n+1]lx (86)

which are valid for each n. Thus the schemes (83) and (84) are stable to any initial errors
regardless of the choice of the scheme time step 7, or absolutely stable. .Therefore 7 should
be chosen only for reasons of getting a good approximation of the original unsplit differential
problems.

Let us now take the inner product (71) of each of the three equations (83) with the vectors
%—(g’ [n— %] +§[n—1)), %(g‘ [n+ %] +g[n— %]) and %(g‘ [n+1]+4 [n+%]) respectively. Similarly,
let us take the inner product (71) of the vectors %(T[n + 3]+ T[n + 1)), %(T[n + %] + T[n - %])

and %(T[n — 1] + Tn - %]) with the first, second and the third equation of the system (84)
respectively. Then the Lagrange identity (72) leads to the formula

<Tn+1],§ln+1] >, — <Tln—1],§[n— 1} >4
=27 < fln], 3 (gln + 5] +9ln — 31 >

~2r < 2 (Tln+ 3]+ Tn— 21), Bln) > (87)

which is the second order difference approximation of the identity (43) written for a small time
interval (t — 7,t + 7). Thus the main and adjoint numerical schemes are not only absolutely
stable , but also balanced and compatible to each other.
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Under the conditions (74), and fn] = 0 and E[n] = 0, each of the schemes (83) and (84) has
the conservation law

| Fln+ 1] la=1 Tln — 1] || (88)

and

I gln — 1] [lx=| gln + 1} |l (89)

The second conservation law under the same conditions is

Z T;;sind; = Const, Z gijsind; = Const (90)
i,J i.J
Each equation of the schemes (83) and (84) represents a simple three-point equation that is
easily solved by the routine factorization method (Skiba and Adem, 1995).

11. Concluding remarks

The Adem Thermodynamic Model and its adjoint are shown to be well posed in closed and
open oceanic basins. Balanced, compatible in the sense of the discrete Lagrange identity, and
absolutely stable main and adjoint finite-difference schemes of the second order approximation
in space and time are constructed for the sensitivity study of the Adem Thermodynamic Model
in closed and open oceanic basins. In the absence of dissipation and forcing the schemes have
two conservation laws each.

Specially formulated boundary conditions for the open basin permitted to conserve the prop-
erty of the positive definiteness for the discrete split operators of both the models, and apply
the splitting method for their solution.

In spite of the fact that the schemes are implicit, the symmetric splitting method makes it
possible to reduce the original two-dimensional problem to the solution of three simple one-
dimensional problems. As a result, the implicit numerical algorithm is economical, and can be
realized exactly (without iterations) by the factorization.

The method is readily generalized to three dimension problems.
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