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A note on longer term oscillations in the atmosphere

AKSEL WIIN-NIELSEN
Department of Geophysics University of Copenhagen Juliane Maries Vej 80 2100 Copenhagen &, Denmark

RESUMEN

Se usa un modelo simple, no-lineal, de orden bajo, con forzamiento y disipacién para demostrar que las oscilaciones
intermensuales pueden ser ocasionadas por la interaccién no-lineal. La longitud del periodo depende de la intensidad
del forzamiento.

El modelo empleado en las integraciones tiene tres componentes.

Otro modelo de orden bajo, basado en la ecuacién de vorticidad barotrdpica con forzamiento newtoniano se
utiliza para demostrar que unas oscilaciones semejantes aparecen también en este modelo.

Se propone que los modelos pueden describir el mecanismo basico de las variaciones atmosféricas intermensuales
observadas, aunque los modelos son demasiado sencillos para tomar en cuenta los detalles en las distribuciones
espaciales de las variaciones.

ABSTRACT

A simple low-order nonlinear model with forcing and dissipation is used to demonstrate that inter-monthly oscilla-
tions may be caused by the nonlinear interaction. The length of the period depends on the intensity of the forcing.
The model used for the integrations has three components.

Another low-order model based on the barotropic vorticity equation with Newtonian forcing is used to show that
similar oscillations appear also in this model.

It is proposed that the models may describe the basic mechanism for the observed atmospheric intermonthly
variations although the models are too simple to account for details in the spatial distributions of the variations.
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1. Introduction

Since Madden and Julian (1971) detected a 40-50 day oscillation in the zonal wind in the tropical
Pacific it has been possible to describe other spells of oscillations in the extratropical latitudes.
A large observational study conducted by Plaut and Vautard (1994) has described several low
frequency oscillations. Using 32 years of 700 hPa maps for the Northern Hemisphere it was
possible to describe three major oscillations. The 70 day oscillation consists of fluctuations in
both position and amplitude of the Atlantic jet. The 40-45 day oscillation is found in the Pacific
sector. In its high amplitude phase it is similar to what has been called the Pacific/North
American (PNA) structure, while the 30-35 day oscillation is found in the Atlantic region and
is described as a retrograding dipole pattern. It is also speculated that the 30-35 day oscillation
1s a sub-harmonic of the 70 day oscillation. For all the oscillations it should be mentioned that
they are excited from time to time pointing to the importance of the forcing.

The study by Plaut and Vautard (loc.cit.) relates the occurrence of blocking to the life cycle
of the 30-35 day oscillation and thus to the importance of the forcing permitting radical changes
of the flow pattern.

The low frequency oscillations have been classified in terms of the associated large-scale ano-
malies by Wallace and Gutzler (1981). These studies result in a description of teleconnection
patterns that contain a large part of the variability. Empirical orthogonal functions (Barnett
and Preisendorfer, 1987, Mo and Ghil, 1987 and Preisendorfer, 1988) are used to describe the
teleconnection patterns. They have also been described using cluster analysis (Legras et al.,

1987, Mo and Ghil, 1988, Molteni et al., 1990).

Quasi-stationary weather pattern have been identified by the use of low-order models by
Reinhold and Pierrehumbert (1982) and Vautard and Legras (1988). It may thus be said that
the low frequency extratropical atmosphere has a preference for a low number of quasi-stationary
states, and that a change in weather regimes normally is a change from one preferred state to
another.

We have thus a good knowledge of the spatial distribution of the low frequency oscillations,
and as described above the observational studies have also resulted in the determination of the
time scales involved in them.

On the theoretical side we prefer to describe matters using the dynamical system theory for
forced and dissipative systems where it is assumed that the number of possible states occurring
after a long integration is small. The set of states may be as simple as a point in phase space,
a stable periodic orbit, normally called a limit cycle, or an aperiodic behavior called a strange
attractor. The latter is connected with chaos and is equivalent to limited predictability (Lorenz,
1963).

Quasi-stationary behavior is observed in the middle latitudes, where certain regimes may
persist over a long time such as for example the blocking situations. The first theories of
blocking were given by Charney and DeVore (1979) and Wiin-Nielsen (1979) using different low-
order models where the mountain forcing was emphasized in the former study of a model on the
beta plane, while the forcing by heating was used in the latter study using a low order model
on the spherical Earth. However, in both cases the blocking pattern was established through
interactions between the zonal flow and the eddies. A later study by Wiin Christensen and Wiin-
Nielsen (1996) showed that the blocking pattern could just as well be established by interaction
between the three longest planetary waves without the participation of the zonal flow. Weather
regimes have also been found by Legras and Ghil (1985) and Itoh (19985) as stationary solution
of simplified general circulation models.

Low frequency oscillations are classified in the three categories:

1. intramonthly oscillations with periods of less than a month (blocking belongs to this category
although they may occasionally persist for longer times),
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2. intermonthly oscillations with periods from a month to a year, also occasionally called inter-
seasonal oscillations,

3. interannual variations with periods of more than a year,
4. interdecadal oscillations.

In the present study we shall be particularly interested in the intermonthly oscillations where
the time scales have been established by observational studies. As pointed out above these
oscillations are influenced by the forcing. It is thus of considerable interest to investigate the
mechanism that may be responsible for the observed time scales of the intermonthly oscillations.
This time scale is certainly much larger than the time scale of the baroclinic instability of
the transient waves including the largest time scale connected with the weak instability of the
planetary waves of the order of 5-10 days. The dissipation time scale is also shorter than the
time scale for the oscillations in question. Since a time scale of the desired order of magnitude
does not seem to appear from any solution of the linear equations it would appear that we have
to deal with nonlinear models.

The present study will use an extremely simple model for nonlinear interactions first developed
by Wiin-Nielsen (1975) to illustrate the existence of multiple steady states and the dependence
of the stability of these states on the magnitude of the external forcing. The original study is
in certain regards similar to, but independent of the early work by Obukhov (1974) who also
worked with simple nonlinear models to explain certain laboratory experiments.

In the present context we shall use a minimum truncation that will permit the existence of
limit cycles. These models have also been analysed by Killén and Wiin-Nielsen (1980). Among
the many solutions of the model equations, each dependent on the magnitude of the forcing
on the various components, we shall be particularly interested in those cases where all steady
states are unstable preventing the model from approaching a point in the phase space in the
asymptotic limit. Since the model can be shown to be stable in the sense that it cannot go to
infininity in phase space, and since no stable steady states exist, we can expect the model to
have either a stable limit cycle or behave as a strange attractor. If that is the case we shall also
be able to determine the typical time scale for the periodic or aperiodic behavior and thus be
able to see whether or not the time scales are of the same order of magnitude as the various
time scales observed in the low frequency oscillations in the atmosphere. The forcing will in any
model influence the time scale. We can therefore not expect that only the observed periods will
be present in the model.

2. The model

The model is derived from a one-dimensional version of the equations of motion. We permit
one space coordinate (z) and the time (t) dependence. We add forcing in a Newtonian way
including the dissipation. The Newtonian term may be considered as a simple modeling of the
momentum forcing, but it is also an easy way to write a constant forcing and a dissipation that
is proportional to the velocity, u. The model equation may be written in the form:

e +ust =5(ug - V) (2.1)

where u is a velocity component and ~ is a coefficient of dimension ¢t~!. Considering the mo-
deling of the boundary layer friction in the atmosphere we should use a value v~ 1 X 1078571
corresponding to a time scale of about 11.6 days. The numerical value of the coefficient can
be determined by assuming a boundary layer dissipation only and assuming that the surface
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stress is proportional to the surface density and to a standard value of the surface wind. This
formulation gives the above value of 4, if one uses an equivalent barotropic model as the basis for
the determination. It is realized that the determination is uncertain depending on the choices
of the various parameters. By using this formulation we have not provided a time scale of the
order of magnitude of any of the intermonthly oscillations.

It will be convenient for our purposes to convert (2.1) to the spectral domain. For this purpose
and to keep the calculations simple we use a representation for u as follows:

N

u(z,t) = Z u(n, t) sin(nkz) (2.2)

n=1

where k is the basic wave number. Inserting (2.2) in (2.1) we obtain an equation in wave number
space. In deriving the following equation we have calculated the interaction coefficients directly.
The resulting equation is:

du(n) N—n n—1
o) = 1/2nk Y w(@u(n+9) —1/2k Y qu(q)u(n - @) + y(up(n) —u(m)  (23)
g=1 g=1

Eq. (2.3) can be integrated as it stands by selecting the maximum wave number N and
numerical values for k and v. However, it is more convenient for the later integrations to non-
dimensionalize the equation. For this purpose we define a length scale L = 1/k, a time scale T
and a velocity scale U.

Inserting in (2.3) we find that

T = %;U = 2L~ (2.4)

Denoting w(n) = u(n)/U and 7 = t/T we find that the basic equation becomes:

dw(n) B N—n n—1
S 0 Y wlgu(n+q) = Y quighu(n - q) + wi(n) - w(n) (25)
q=1 q=1

We shall consider a low-order system with N = 3. Denoting w(1) = z, w(2) = y and w(3) = z
we find the following three equations:

dx
— =zy+tyz+zg

dr
%:sz—x2+yE-—y
j—i: —3zy+z2p — 2 (2.6)

This system in a slightly different formulation has been considered by Kallén and Wiin-Nielsen
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(1980). For the equations (2.6) we are seeking the steady states. From the third of the equations
we find that

z=2z¢ — 32y (2.7)

Inserting from (2.7) in the second equation of (2.6) we may solve for y with the result:

_ 2zEx—x2 + YE

2.8
1+ 622 (2.8)

Eliminating y and z from the first equation in (2.6) we obtain finally a single equation in the
variable z. It can be solved numerically in a number of ways, and it is:

(22ex — z + ye)l(1 + 6:1:2)(2: + zg — 3z(2z2pz — z? +yp)l+

+(1+ 628)%(zg —2) =0 (2.9)

Once the steady states are known one can determine the stability of each of them. Linearizing
the three time-dependent equations in (2.6) around a steady state it is a straightforward matter
to determine the eigenvalues by numerical methods. As mentioned in the introduction we shall
in general be interested in cases in which all the steady states are unstable. However, limit cycles
may actually also be present in other cases. Assume for example that we have two unstable and
one stable steady state. As long as the initial state for the integration can be selected in such a
way that it is outside the attractor basin of the stable steady state one will be able to determine
the behavior of the system as determined by the two unstable steady states.

3. Results of the three component model

We shall start by considering the most simple case. It is assumed that zg = 25 = 0, but yg > 0.
The solution for the steady state is especially simple in this case, and it is found that

I=7Z=0;,=yg (3.1)

Considering next the stability of the steady state it is found that it is unstable, if yp > 2.
When the inequality is satisfied we have thus a possibility for a limit cycle. The full equations
were integrated for yg = 3. The results are shown in Figures 1a, 1b, 1c and 1d. Figure la
shows a very simple time dependence of one of the dependent variables on time. Converting the
nondimensional coordinate to real time we find a period of about 22.5 days. The experiment
shows then that relatively large time scales for the limit cycle are possible. Figures 1b, 1c and
1d show the projection of the three-dimensional limit cycle on the zy, the zz and the yz planes
indicating that the limit curve is relatively simple. This behavior is, however, the exception
rather than the rule.

Numerical experiments show that the time scales remain the same (22.5 days) for values of

yE < 4.890. For values of yg satisfying the inequality 4.890 < yp < 5.165 we observed larger
time scales.
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Limit cycle, xe=0, ye=3, ze=0
1 T T

X, non.dim.

65 66 67 68 69 70
t, non.dim.

Fig. 1a. The amplitude of the z-component as a function of time with zg =0, yg = 3 and zg = 0. The period is
about 23 days.

Limit cycle for xe=ze=0, ye=3
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Fig. 1b. The projection of the limit cycle on the zy-plane. Parameters as in Fig. 1a.
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Limit cycle for xe=ze=0, ye=3
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Fig. 1c. The projection of the limit cycle on the zz-plane.
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Fig. 1d. The projection of the limit cycle on the yz-plane.
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The next case has zp = 2z = 0 and yg = 5. From Figure 2a it is seen that the non-dimensional
period is about 3.9 corresponding to close to 45 days. Fig. 2b, showing the projection of the
limit curve on the zy-plane, indicates that the stable limit cycle is becoming more complicated.

Limit cycle, xe=0, ye=5, xe=0
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t, non.dim.

Fig. 2a. The amplitude of the z-component as a function of time with g =0, yg =5 and zg = 0. The amplitude
is about 45 days.

Limit cycle, xe=0, ye=5, xe=0
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Fig. 2b. The projection of the limit cycle on the zy-plane. The figure indicates two slightly different half periods.
Parameters as in Fig. 2a.
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The forcing is determined by the three values for zg, yg and zg. Since the limit cycle can
be determined by numerical integration only, it is possible, but cumbersome to investigate the
period of the limit cycle over a large volume of the forcing parameters, but this will not be
done in the present investigation. However, when zp = 0'and zp = 0 we find by numerical
experimentation that when yg is larger 5.165 the period of the oscillation returns to 22.5 days.
The short period disappears when yg is about 6.5, when the larger time scales appear again.
As an example we show z as function of time for zg =0, yg = 7.5 and zg = 0 in Figure 3. In
the figure one observes a large and a small time scale. They correspond to 30 and 67 days.

Limit cycle, xe=0, ye=7.5, ze=0

X, non. dim.

.3 1 1 L L 1 1 1

54 56 58 60 62 64 66 68 70
t, non .dim.

Fig. 3. The amplitude of the z-component as a function of time with zg =1, yg = 5 and zg = 1. The period is
about 70 days.

By selecting suitable examples we can, however, show that the behavior of the model is
strongly dependent on the values of the forcing parameters. Figures 4a and 4b are obtained for
zg =1, yg =5 and zg = 1. As seen from Figure 4a we get a much longer period for the limit
cycle. Converting to dimensional time we find a period of close to 70 days. Figure 4b shows the
projection of the limit curve on the zy-plane.

So far we have shown examples having periods of 22.5, 30, 45 and 70 days. Similar results may
be obtained for large values of the forcing. Figures 5a and 5b show the results of an integration
with zg = 1.25, yg = 10.0, and zg = 1.25. As one will observe in Figure 5a, the real period is
quite long (about 68 days), but it is divided on two time scales of 32 and 36 days. Figure 5b
shows the projection on the zy-plane.
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Limit cycle, xe=1, ye=5, ze=1
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Fig. 4a. The amplitude of the z-component as a function of time with zg =1.25, yg = 10.0 and 2z = 1.25. Two
timescales are present. They corresponds to 32 and 36 days giving a period of 68 days.
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Fig. 4b. The projection of the limit cycle on the zy-plane. The two time scales are seen as two loops in the periodic
trajectory.
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xe=1.25, ye=10.0, ze=1.25
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t
Fig. 5a. The amplitude of the x-component as a function of time with g = 1.5, yg = 10.0 and zg = 1.5. The
period is about 46 days.

xe=1.25, ye=10.0, ze=1.25

Fig. 5b: Projection of the limit cycle on the zy-plane..
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Using the same order of magnitude for the forcing we may also reproduce the other time scales
found from the observational studies. Figures 6a and 6b are calculated for zg = 1.5, yg = 10.0
and zg = 1.5. The single period in Figure 6a converts to about 46 days, while Figure 6b as
before is the projection of the limit curve on the zy-plane. Figure 7a computed for zp = 1.65,
yE = 10.0 and zg = 1.65 has a single period corresponding to about 69 days. It is thus seen that
relatively minor changes in the forcing will have large impacts on the period of the limit cycle.

Limit cycle with xe=1.5, ye=10.0, ze=1.5
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Fig. 6a. The amplitude of the z-component as a function of time with zg = 1.65, yg = 10.0 and zg = 1.65. The
period is about 69 days.
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6b. The projection of the limit cycle on the zz-plane.
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Limit cycle, xe=1.65, ye=10.0, ze=1.65
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Fig. 7a. Another case with two time scales of 35 and 69 days for zg =1, yg = 12 and 2zg = 1. The amplitude of
the z-component as a function of time.

Limit cycle, xe=1.65, ye=10.0, ze=1.65
T
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Fig. 7b. The projection of the limit cycle on the zz-plane. The two time scales are seen.
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As a minor variation we show this time in Figure 7b the projection of the limit cycle on the
zz-plane. To illustrate the two time scales that may be present in individual cases we present a
case with zp = 1.0, yg = 12.0 and zg = 1.0. Figure 8a shows clearly the two timescales in the
integration after a long time. They correspond to 35 and 69 days. The case is therefore close to
a period doubling. Figure 8b displays the projection on the zz-plane. One notices also here the
two timescales.

Limit cycle, xe=1, ye=12, ze=1
4 T L T T T T

X, non.dim.
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t, non.dim.

Fig. 8a. Another case with two time scales of 35 and 69 days for zg = 1, yg = 12, and zg = 1. The amplitude of
the z-component as a function of time.
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Flg 8b. The projection of the limit cycle on the zz-plane. The two time scales are seen.
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The examples displayed above indicate that the simple model is capable of producing limit
cycles with periods corresponding to the major observed periods in intermonthly oscillations.
On the other hand, it is also evident that other periods appear for a different selection of the
forcing parameters. These periods are all longer than the dissipation time, although they do not
agree exactly with the periods obtained from observational studies they have a strong tendency
to cluster around the values of 30-35, 40-50 and 65-75 days except when small values are used
for the forcing on the middle component. In the integrations we have found the 30 to 35 day
oscillation as a sub-harmonic of a 70 day oscillation.

It appears therefore likely that the nonlinear interactions connected with the advection term
are a main contributor to the creation of the observed inter-monthly oscillations. The condition
for the creation of the limit cycle is first of all that the forcing shall be suitable selected within
certain intervals which in this paper has been determined only for the simple case where the
forcing is only on the middle component. However, the numerical experiments indicate clearly
that if the forcing is selected close to the lower or upper limit of the interval we get a limit cycle
with a small range while a larger range is obtained when the forcing is selected in the middle of
the the interval. If oscillations should be detected in the atmosphere they need to be of a certain
magnitude. It is apparently only the 30-35, 45 and 70 day oscillations that has been determined
because of their larger amplitudes.

4. A barotropic model

As pointed out earlier Wiin Christensen and Wiin-Nielsen (1996) showed a single example of a
stable limit cycle in a six component barotropic model with Newtonian forcing. The amplitudes

are denoted zy, y;, z3, y2, 3 and y3 while the forcing components have an additional subscript
of E. The period was 36 days.

Limit cycle for 3 comp. g.g. model
5 T T T T T T T T T

g
3 0 4
g
Q
c
- 1k 4
*
2+ 4
3+ _
-4 + -
-5 =
6 1 ! 1 1 1 1 ! t 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
t, non.dim.
Fig 9. z; as a function of time in the barotropic model for ;5 = —1.021072, 2,5 = 1.92z10~2 and z3p = 3.021072,

The period is about 68 days.
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The model is formulated on the spherical Earth, and it contains wave-wave interactions only.
In the following we shall demonstrate that the model contains larger scales as well. The first
example was integrated with z;5 = —1.0:::10_3, zog = 1.971072 and T3 = 2.92x107%, while
the forcing was zero on all three y-components. Note, that the scaling is different in this case
because the dependent variables are streamfunction amplitudes. The variable z3 is shown as
a function of the non-dimensional time in Figure 9. The main period corresponds to about 68
days, but it is seen that an oscillation with a smaller period may be present. To bring out the
oscillations with the smaller periods other experiments were conducted. Figure 10 was obtained
from z;p = —1.01:10_3, Top = 3.4z1072 and T3 = 3.0z10"2. The main period is about
59 days, and the oscillation with a smaller time scale has become more pronounced. The two
oscillations appear with about the same amplitude in Figure 11 obtained with the following
forcing: ;5 = 1.0:1:10"3, Top = 2221072 and I3p = 4221072, The larger period is still 59
days, but the smaller period corresponds to about 32 days. Note that in these integrations the
time scaling is different from the model in the previous sections. We use now:

t=0"1r (4.1)

It is thus seen that both long and short periods are possible using the present barotropic
model, and that these periods are of the correct order of magnitude.

Limit cycle for 3 comp. q.g. model
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Fig. 10. z, as a function of time in the barotropic model for ;g = —1.0z1073, zop = 3.4z1072 and 23 =

3.0z1072, The periods is about 59 days.
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Limit cycle for 3 comp. q.g. model
8 T T T T T T T T T

E
o
c i
Q
fuid
<
_8 1 1 1 1 1 1 1 L ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000
t, non. dim.
Fig. 11. z; as a function of time in the barotropic model for z,5 = —1.0z1073, Top = 2.2210"2 and z3g =

4.221072, Periods are 59 and 32 days.

5. Concluding remarks

The present investigation has used a very simple model to investigate the longer term response
to a Newtonian forcing. The study has been restricted to a low order model with one space
dimension and time. The displayed examples are all of the limit cycle type, and it has been
found that the periods of the limit cycles are close to the periods of the observed oscillations
for selected values of the forcing parameters indicating that the nonlinear interactions may be
responsible for the observed oscillations provided the forcing is of the required magnitude. More
definite conclusions are probably not possible from the present study.

In view of the results obtained in the investigation one may wonder why no oscillation with a
time scale of about 22.5 days have been recorded in data studies. The reason is probably that
the response is too small to be observed using atmospheric data.

In the study we have assumed that the forcing parameters are constants with respect to time.
In reality one would expect variations with time, but we do not know how to specify the time
variations in a realistic way. It has, however, been investigated if an annual variation of the
forcing has an impact on the oscillations. With a relatively small annual variation it is found
that the impact on the various oscillations is very small supposedly due to the large annual
period as compared to the periods of the various limit cycles. Due to the simplicity of the model
it would be of interest to investigate the response of a higher order general circulation model to
an observed spatial distribution of the heating.
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