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RESUMEN

El trabajo explora la posibilidad de que las variaciones intermensuales observadas en la atmésfera puedan ser
descritas por un modelo no lineal, de bajo orden, conteniendo nueve componentes. El modelo es formulado sobre un
plano-f y contiene solamente interacciones de onda con onda. Est4 basado en la atmésfera barotrépica equivalente
formulada de tal manera que contiene tanto calentamiento como disipaciones. Los nimeros de onda varfande 1a 3
en ambas direcciones zonal y meridional. La mayoria de las integraciones del modelo suponen que las oscilaciones
son un fenémento planetario y, por consiguiente, han sido formuladas con una mixima longitud de onda de 28000
km.

Los resultados muestran que los periodos observados (30 a 35, 45 y 70 dias) pueden ser reproducidos por el
modelo. Otros periodos se encuentran también, pero son principalmente de pequefias amplitudes. El modelo
permite una determinacién del patrén de calentamiento necesario para producir las oscilaciones observadas. Se
requiere que el nivel de calentamiento esté arriba del calentamiento coronolégico promediado en la atmdsfera, y el
calentamiento es tal que muestra un fuerte gradiente de calentamiento meridional.

La investigacién es una continuacién de un intento previo de modelar oscilaciones intermensuales, usando un
muy simple modelo de tres componentes, basado en la primera ecuacién del movimiento con adveccién no lineal y
forzamiento del momento y disipacién.

El nuevo modelo permite una descripcién mds fisica del fenémeno.

ABSTRACT

The investigation explores the possibility that the observed intermonthly variations in the atmosphere may be
described by a nonlinear low-order model containing nine components. The model is formulated on a f-plane and
contains only wave-wave interactions. It is based on the equivalent barotropic atmosphere formulated in such a way
that it contains both heating and dissipations. The wave numbers vary from 1 to 3 in the zonal and the meridional
direction. Most of the integrations of the model assume that the oscillations are a planetary phenomenon, and they
have therefore been performed with a maximum wavelength of 28000 km.

The results show that the observed periods (30-35, 45 and 70 days) may be reproduced by the model. Other
periods are also found, but they are mainly of small amplitudes. The model permits a determination of the heating
pattern necessary to produce the observed oscillations. Tt is required that the heating level is above the time-
averaged heating in the atmosphere, and the heating is such that it displays a strong meridional heating gradient.

The investigation is a continuation of an earlier attempt to model intermonthly oscillations using a very simple
three-component model based on the first equation of motion with non-linear advection and momentum forcing
and dissipation. The new model permits a more physical description of the phenomena.
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1. Introduction

The present paper will deal with the inter-monthly oscillations in the atmosphere. An earlier
paper (Wiin-Nielsen, 1996), hereafter referred to as Part I, contains an extended list of references
on the subject. References in the present paper will therefore be restricted to those that are
directly relevant to the present study.

In Part I it was shown that some aspects of the intermonthly oscillations, determined from
observations by Plaut and Vautard (1994), could be simulated by a simple three-component
model based on the nonlinear first equation of motion with Newtonian momentum forcing and
dissipation. Only one space variation (x) and time (t) was permitted in Part I. While the
model could reproduce the observed periods of oscillations, it was so simple that many pertinent
questions concerning the oscillations could not be answered.

It was, however, also shown in Part I, that a low-order six-component model formulated on
the sphere and including the first three planetary waves could also reproduce essentially the
same periods as the simple model with only one space dimension. It should be pointed out that
the spherical model contained also a Newtonian forcing and thus no explicit heating.

The purpose of the present investigations is to generalize the model in Part I to include
atmospheric heating and cooling as well as dissipation and to permit variations in both the x-
and the y-directions. From a formal point of view this can be done in a simple way by using
the equivalent barotropic assumption in both the vorticity equation and in the thermodynamic
equation as shown in the appendix of Wiin-Nielsen (1991). While this approach will be used
in the present model, it is realized that the low-order model so derived does not contain the
influences of the atmospheric temperature advection.

2. The model

The model is based on the vorticity equation in the form:
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in which ¢ is the vertical component of the vorticity, f the Coriolis parameter, w the vertical
p-velocity, p the pressure and the last term gives the vertical change of the curl of the stress.

The second basic equation is the thermodynamic equation in the form:
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in which ¥ is the streamfunction, o is the static stability parameter, R the gas constant, cp the
specific heat for constant pressure, and H the heating per unit mass and unit time.

For each of the quantities: the streamfunction, the vorticity and the two components of the
horizontal wind we introduce an equivalent barotropic assumption

a= A(p)a
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adp (2.3)

in which the bar indicates a vertical average as defined in (2.3).
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Using (2.3) it is seen that the advection term in the thermodynamic equation vanishes.
Inherently, we assume therefore that the intermonthly oscillations that we want to describe
also are of an equivalent barotropic nature. Following the derivation given in Wiin-Nielsen
(1991) we get after elimination of the vertical p-velocity the equation:
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We give finally the expressions for the coefficients in eq. (2.4):
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€ is a measure of the intensity of the dissipation in the boundary layer. The numerical value
is estimated using the normal approximation for the surface stress.

Equation (2.5) is valid at the equivalent barotropic level, where the horizontal divergence
vanishes. We may therefore express the horizontal wind in terms of the streamfunction. The
vertical velocity may then be calculated at any time that it is wanted from the equivalent
barotropic assumptions. Since many integrations have to be made of the basic equation it is of
importance to make these as efficient as possible. In the numerical integration of eq. (2.4) it is
an advantage to use non-dimensional quantities. The scaling has been done as inticated in eq.
(2.6) and the resulting equation is given in (2.7) with k = 27 /L:

H,=10"H, (2.6)

2=1 (2.7)

Based on eq. (2.7) a low-order model has been created. Numerous possibilities exist for the
selection of the components that are included in the model. In this particular case we want to
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emphasize wave-wave interactions. A dependent variable such as the stream-function and the
heating has therefore been selected in the following way:

3 3
a(z,y,t) = Z Z A(m, n,t) sin(nuy) sin(mAz) (2.8)

n=1m=1

where a is an arbitrary variable. The particular selection has its limitations. Since only sine-
functions are included, we will be dealing with standing oscillations. In addition, the beta-effect
and the role of the zonal current and its interactions with the waves will be excluded from the
model. Both of these limitations can be removed by generalizing the basic specification to the
following form:

3 3
a(z,y,t) = Z E sin(nuy)[A(m,n, t) sin(mAz) + B(m,n,t) cos(mz)] (2.9)

n=1m=1

in which case the waves will move and the beta-effect can be retained. It was, however, decided
to stay with the nine equations specified through (2.8) and to use more general models at a later
time, depending on the results obtained from the present investigation.

Appendix I contains the nine equations in detail, while Appendix II gives the formulas for all
the coefficients that are constants in each particular integration of the set of ordinary, coupled,
nonlinear equations. The integrations have in each case been carried out by using the lowest
order Runge-Kutta scheme, the so-called Heun scheme. The equations have been integrated for
several years to ensure that the initial state has no influence on the final result. The curves to
be shown later cover a suitable interval of time at the end of the integrations.

We have also assumed from the very beginning that the observed oscillations are of a planetary
nature and are due to nonlinear interactions among the three longest waves. The smallest wave
number corresponds thus to a wavelength of 28000 km which is approximately the circumference
of the Earth at 45 degrees of latitude.

3. Results from the 9-component model

The first condition which has to be satisfied in order to obtain a limit cycle is a sufficiently large
gradient in the imposed heating. The period of the limit cycle is determined by a frequency
analysis of one of the dependent variables for a suitable time period at the end of the long
integration.

To illustrate the behavior of the model with respect to the period of response we show some
examples. Figure 1 shows the amplitude of the response as a function of hl in a case where
h2=55.0 and h3=25.0, while all the remaining values of the heating components are zero. (The
symbols hn used here and in the figures are the same as the notation hy in the formulas). For
negative values of h1<-0.5 we find a period of 70 days. The amplitude is zero for h1=-30.0
(stability) and has a maximum for h1=-25.0. Smaller amplitudes are found for -25.0<h1<-0.5,
and at h1=-0.5 the model is again stable. Figures 2 and 3 show the heating distribuiion in the
two cases resulting in a stable stationary state (h1=-18 and h1=-0.5). For h1>-0.5 we obtain
again a series of limit cycles with a period of 52.5 days, but it is seen that the amplitudes are
smaller than those obtained for negative values of hi.
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h2=55,h3=25; Tp=70 days for h1<-0.5;Tp=52.5 for h1>0.5
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Fig. 1. The amplitude of a 70 day oscillation as a function of the heating parameter hl keeping h2=55 and h3=25.
Other heating components are zero.

h1=-28, h2=55, h3=25, stable steady state

Fig. 2. The distribution of the heating for h1=-28, h2=55 and h3=25. Other heating components are zero. This
configuration results in a stable steady state.
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h1=-0.5, h2=55.0, h3=25.0; stable steady state

Fig. 3. The distribution of the heating for h1=-0.5, h2=55 and h3=25. Other heating components are zero. This
configuration results in a stable steady state.

h2=h3=h5=h6=n8=h9=35.0, Tp in the range 26 to 42 days
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Fig. 4. The amplitude of an oscillation as a function of h1 = h4 = h7. h2= h3= h5= h6— h8= h9= 35. Periods
range from 26 to 42 days.

Similar behavior may be obtained for other values of the heating parameters. Figure 4 gives
an example. In this series of experiments we have always kept h1=h4=h7=H and the remaining
heating parameters are set at 35.0. It is then seen that limit cycles are obtained for —21 < H <
—8, while stable steady states are found for H=-21 and -8. The periods are 30 to 35 days for
—20 < H <-16 and 40 to 45 days for -15<H<-9. Figure 5 shows the typical heating pattern
for the left part of Figure 4 dominated by periods of about 30 to 35 days. It is seen that these
periods may appear when the heating distribution is more localized than in Figures 2 and 3, and
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where the cooling to the north is more intense than the heating to the south. Figure 6 shows the
heating distribution for the right part of Figure 4 dominated by periods of 40 to 45 days. These
oscillations may then appear also for a localized heating, but in the case of Figure 6 heating is

more intense to the south than the cooling is to the north.

Healing distribution for h1=h4=h7=-21, remaining h's=35, stable steady state

1

0.5 y

Fig. 5. Heating distribution for h1=h4=h7=-21, other heating components are equal to 35.

Heating distribution for h1=h4=h7=-8, remaining h's=35, stable steady state

1
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Fig. 6. Heating distribution for h1=h4=h7=-8, other heating components are equal to 35.
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As in Part I it has not been attempted to cover the 9-dimensional space of the amplitudes
of the heating function and to record the model response in each case.

Three examples of
oscillations, each corresponding for a specific period, will be presented.

h(4)=0, h(5)=55, h(6)=25; Tp= 35 days
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Fig. 7a. Frequency diagram for a case with h5=55 and h6=25. The period is 35 days.

h(d)=-5, h{5)=50, h(6)=3%; Tp=42 days
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Fig. 7b. Frequency diagram for the case of h4=-5, h5=50 and h6=35. The period is 42 days.
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Figure 7a shows the frequency analysis for a case with h5=>55 and h6=35, while all the other
heating components were set to zero. The frequency analysis was performed using a total of
210 days. It is thus seen that the period in this case is 35 days. Figure 7b is the corresponding
diagram for the case of h4=-5, h5=50 and h6é= 35 with all other heating components set to
zero. The maximum response is at n=5 corresponding to 42 days. Figure 7c is for the case
h5=40 with the remaining components set to zero. The maximum response is in this case at
n=3 corresponding to 70 days. The limit cycles are simple in some cases and complicated in
others. Figures 8a to 8c show, for a case with h4=-1, h5=60 and h6=+1, the projections of
the limit cycle on the three planes as indicated in the figures. All the curves show clearly the
periodicity of the oscillations since none of them indicate a beginning or an end. It is, however
also obvious that oscillations with smaller periods are present in the limit cycle. This can also
be seen from Figure 9 containing the frequency analysis for the same case.

h(i)=0 except h{5)=40.0; Tp=70 days

4 T T T T T T
35 F B
3+ J
c 25 |
>
Q
[y
)
3
o4
o 2+ B
©
g
<< 15 N
»
1r 4
0.5 N
O
T ooy
0 1 1 1 Y - @—0-0—0-0-4—6—20
0 S 10 15 20 25 30 35

n

Fig. 7c. Frequency diagram for h5=40. Other heating components are zero. The period is 70 days.

Tllustrations similar to Figures 8a, 8b and 8c could naturally be prepared for the x- and the
z-variables. However, it may be more instructive to look at the field of the stream-function
at times separated by half a period. For this purpose Figure 10a and Figure 10b have been
prepared. They refer to the same case as Figures 8 and 9. As explained in Section 2 the present
model does not contain neither a zonal current nor a beta-effect. The model is therefore capable
of producing standing oscillations only as seen in Figure 10a and 10b where the oscillation is
between a low and a high in the center of the channel.
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h4=-1,h5=60,h6=t1, Tp=70 days
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Fig. 8a. Projection of a limit cycle on the y1, y2 plane. h4=-1, h5=60 and h6=1.

hd=-1, h5=60, h6=+1, Tp=70 days
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Fig. 8b. Projection of the same limit cycle as in Fig. 8a on the y1, y3 plane.
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h4=-1, h5=60, h6=+1, Tp=70 days
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Fig. 8c. Projection of the same limit cycle as in Fig. 8a on the y2, y3 plane.

h4=-1, h5=60, h6=+1, Tp=70 days
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Fig. 9. Frequency diagram for the case displayed in Figs. 8a, 8b and 8c.
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Streamfunction at n=97
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Fig. 10a. The streamfunction at n=97 for the experiment in Figs. 8a, 8b and 8c
Streamfunction half a period later
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Fig. 10b. The streamfunction half a period later than the time for Fig. 10a.
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4. A model with the beta-effect

The main purpose of the present section is to show that the intermonthly oscillation appear also
in low-order models with the beta-effect which was excluded in the nine-component model.

From the paper by Wiin Christensen and Wiin-Nielsen (1996) we know that limit cycles
may appear in a spherical model with six components. However, only a couple of cases were
investigated leading to a 35 day oscillation. Using the same model we shall in the present section
expand the search for limit cycles with other periods. In the examples shown below we have
in all cases limited the forcing to the x-components of the six component model. Thus, the
components y1f, y2f and y3f are zero in all cases. We shall illustrate the model behavior by a
number of examples.

The first example will show a 70 day oscillation. As in the previous section it is found that low
values of the heating components result in stable steady states. Increasing the intensity of the
heating oscillations start to appear. After a number of experiments it was found that relatively
large values of the heating on components 2 and 3 combined with a small cooling on component
1 resulted in 70 day oscillations. Figure 11 gives an example with z;; = —1.0 X 10_3, Tyf =
2.2 x 1072 and z3f = 2.5 X 10~2. The main response corresponds to a period of 70 days, since

sampling is done over a period corresponding to 630 days, but smaller amplitude are also found
on the sub-harmonics n=18 and n=27.

x1f=-1.0 x 10"*-3, x2f=2.2 x 10"*-2, x3{=2.5 x 10*"-2; Tp= 70 days
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Fig. 11. Frequency diagram for z;; = —1.0 x 1073, Ty = 2.2 % 10~2 and z3p = 2.5 x 1072, The period is 70
days.
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Additional experimentation resulted in a combination of heating components giving a period of
45 days. The frequency diagram in Figure 12 was obtained for Ty =2.3X% 10_2, Tof =4.3% 1072

and z3; = 3.6 x 10~2. When z3y is increased the experiments show the same period of 45 days,
but a change is observed when z3; reaches a value of about 3.7 x 1072, For the value 3.731x 102

one still observes a main response at a period of 45 days, but for z3 f=3.732x 1072 a major

change is beginning to take place. In addition to the maximum at n=14 (45 days) one observes
secondary maxima at n=10 (63 days) and at n= 20 (34.5 days) as shown in Figure 13. A further

slight increase to the value z3 f=3.733 x 10~ 2 results in a frequency diagram given in Figure 14
where the major response in at n=21 (30 days) and a secondary maximum for n=10 (63 days).
Thereafter the period of 30 days is found when z4 f is increased up to a value of 4.187 x 102

x11=2.3 x 10**-2, x21=4.3 x 10**-2, x3{=3.6 x 10**-2, Tp=45 days
0.0035 T T Y T T T
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0.002 |- —

amp., non.dim.

0.0015 |- ) .

0.001 b

0.0005 .

Fig. 12. Frequency diagram for z;; = 2.3 X 1072, zZar = 4.3 % 1072 and z3r = 3.6 X 1072, The period is 45 days.

However, for z3; = 4.188 X 1072 the frequency diagrém changes suddenly to show a periodic
oscillation of 45 days as seen in Figure 15.

It has thus been shown that the major observed periods of 30, 35, 45 and 70 days can be
found using the spherical 6-component model.
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Transition from Tp=45 to tp=30 days, x1f=2.3x10**-2,x2{=4 3x10**-2,x3{=3.732x10**-2
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Fig. 13. Frequency diagram z3y = 3.732 X 1072 while the other values are as in Figure 12. Note that the major
response is still n=14, but secondary maxima appear at n=10 and n=20.

x1=2.3x10**-2, x2f=4,3x10"*-2, x3f=3.733x10*"-2
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Fig. 14. Frequency diagram for z3; = 3.733 x 10~2 while other values are as in Figure 12. The main response is
now at n=21 (30 day period).
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x1{=2.3x10"*-2, x2{=4.3*10**-2, x3f=4.188x10"*-2
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Fig. 15. Frequency diagram for z3; = 4.188 x 10~ 2 while other values are as in Figure 12. It is seen that the
period is once again 45 days.

5. Concluding remarks and suggestions for further work

The investigation presented in this paper is more realistic than the one in Part I. Although the
integrations are based on a simple low-order model it is possible to incorporate atmospheric
heating and dissipation. The results show that the heating has to have a south-north gradient
that is sufficiently large to create limit cycles. If such a condition is not fulfilled the model will
converge towards a stable steady state.

By varying a single component of the heating while keeping the other components constant it
has been demonstrated that limit cycles typically appear within a certain range of the changing
heating component. Stable steady states are found at both ends of the interval. Within the
range limit cycles occur. The amplitudes and the periods of the limit cycles are small adjacent
to the endpoints while a larger amplitude of the limit cycle is found in the central part of the
interval. It is also found for large values of the changing heating component that the amplitude
and the period may continue to increase, but this behavior is observed for unrealistically large
values of the forcing.

As illustrated by examples the shorter periods of the intermonthly oscillations (30-35 days)
will appear when the heating gradient is localized as seen in Figures 5 and 6, while the longer
period oscillations (about 70 days) will appear when the heating gradient is of a global nature
as seen in Figure 2. The localized heating pattern are obtained by superposition of the three
long waves incorporated in the model. However, it is possible that the various oscillations may
occur during other heating patterns since it has not been possible to cover all combinations in
the six dimensional space of possible heating components.
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The main conclusion reached in Part I may therefore be maintained for the present more
physically based model. The observed intermonthly oscillations seem to be a result of larger
than normal heating intensity on regional or global scales. A localized heating will produce
the smaller periods and the global heating patterns will produce the longer periods of the limit
cycles. As stated in Part I it will be interesting to investigate whether or not these conclusions
obtained from a model with very few degrees of freedom are true also for a general circulation
model with a large number of degrees of freedom. Experiments of this kind could be done by
specifying the heating patterns in advance and to keep them constant during the integration of
the model, but a better experiment would be to incorporate a physical mechanism that gradually
would increase the heating to a level where the intermonthly oscillations would be created by
the model. Supposedly, it would then be possible also to investigate the conditions under which
the intermonthly oscillations would disappear in the model.

The model described in the present paper suffers from the neglect of the beta-effect. It
is thus also necessary to investigate a low-order model including the variation of the Coriolis
parameter. In the present paper we have looked at the problem by adopting an earlier model
which is formulated on the spherical Earth and contain six components We know already from
the results of Wiin Christensen and Wiin-Nielsen (1996) that limit cycles appear also when the
full variation of the Coriolis parameter is included in low order models, but a more extensive
investigation has been made in this paper. In addition, the whole question of intermonthly
oscillations should be explored by applying baroclinic models. It is hoped that a return to these
questions will be possible in the future.

APPENDIX I
The equations describing the model are based on the following expression for the streamfunc-
tion:

¥(z,y,t) = sin(kz)[z; sin(py) + 22 sin(2py) + z3 sin(3uy)]
+ sin(2kz)[y; sin(py) + yz sin(2py) + y3 sin(3uy)]

+ sin{3kz)[z; sin(uy) + 29 sin(2py) + 23 sin(3py)] (A1)

The nine equations governing the model are:

d:l:l
PTEER R AL + coz3ys + c3y221 + c4¥Y322

+cszoys + cey122 + dihy + €17y (A.2)

dzg
5 = cT + cgy121 + coy123 t+ C10Y321

+c1123y1 + c1221y3 + daha + egx2 (A.3)
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d$3
qr  C13T1Y2 T c14Z2y1 + c15y123

+c16y221 + d3hs + e3z3 (A4)
d _,
i 17%1Z2 + C18%223 + 197322 + €202 23
te212123 + c227221 + dghy + €4y (A.5)
d

Y2
ar  C23%3T1 + c242121 + ca5732)

+dshs + esy2 (A.6)

dys
2t C26T1T2 + co7Z129 + cogz2 2

+dghe + egy3 (A7)

le
3 29T + c30%1Y2 + €3123Y2 + c3225y3

+d7h7 + €721 (AS)

d22
dt  C33T1Y1 T C3471Y3 + C35Z3y)

+dghg + egzy (A.9)
dzg
2t = 36%2y1 + dohg + 923 (A.10)
APPENDIX I

The coefficients entering the model equations will be listed in this appendix. The following
notations have been introduced:

L 2r 3 _ g3
r W) L’ q k2’

where L is the length of the channel and W is the width.
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In addition, the following notations have been defined:

n1:1+r2+q2; n2:1+4r2+q2; n3=1—+-9r2+q2
n4=4+r2+q2; n5:4+4r2+q2; 716:4—}-91'2+q2

n7:9+r2+q2; ng:9+4r2+q2; ng=9+9r2+q2

Using the above notations we may write the formulas for the c-coefficients in the following
way:

9r(1 — r?) r(3 — 5r%) r(5 — 3r%)
)= ——]—, = —>; 3= ——
4n1 ny n)
2 2 2
. _25r(1— %), _r(3+5r).c __r(5+3r9)
4 4ny ’ - 4ny » 6 4n;
o O 2r 3r(5 + 8r%)
17— 4an.,’ 8 — 4712, 9 — 4ﬂ2
2 2 2
. _7r(5—8r)_c _ 5r(3—8r )'c _ r(3+8r9)
10 — 4ny y €11 — 4n, y €12 — 4n,
2 2 2
3r(14+r%) 15r(1 — r®) Tr(5 + 3r°)
Cl3=————j 4= 5=~ ———
ng 4n3 4n3
po o 2(-8Y)  _9r® 250
16 — ns y €17 — 4”4’ 18 — 4ny
k.2 2 2
7r(8 — 5r°) 3r(8 + 5r°) r(8 + 3r)
Cl9=—F 1 C0=—"""FT — 0= ———(
4ny 4ny 4ny
. _5r(8——3r2).c __8r3.c _ 8
22 — 4n, y €23 — ng y €24 — ns
16r(1 — r?) 3r2 5r(8 + 3¢2%)
Cos = ——— ;€ =—T ;1= ——
ns 4ng 4ng
7r(8 — 3r 15r(1 — r? 3r(1+r?
028__—“—( ); 029=——( ); 3o=————( )
4ng 4nq dy
o = @8 T4 3
31 ny y €32 — anyg y €33 — 4dng
5¢(3 + 8r2 Tr(3 — 8¢%) 9r(1 — r?)
€34 = — —; €35 = ————; €36 = —,——

4ng ' dng 4ng
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The d-coeflicients are listed as follows:

r r r

dy np 2= i ds= o
r r r
= dg = dg= —
d4 g’ BT pgr BT oo
r
d7=£,ds—£;dg=—
n ng ng

1+r2 1~|—4r‘2 l—f—9r2
e =— ; €2 = — y
ny no ns

4+r? 4(1 + 4r2) 4 +9r?
T 6T 6= —————

€4 =
4 ng ns neg
9 4 r2 9 + 4r? 9(1 + r?)
e7=— ;e g=———; = ————F
ny ng ng
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